Animal and Cellular Models for the Neuronal Degeneration

台大醫學院 解剖學暨細胞生物學研究所 錢宗良

Neuronal Cytoskeletons

Microtubule

Intermediate filament: Neurofilaments

Plakin family: cytoskeleton linker proteins

Seven Intermediate Filament Proteins in Neural Differentiation

<u>Neuroepithelial stem cells</u>

Primary culture of embryonic (E15) hippocampal cells

α -internexin: a 66 kD protein,

the first neuronal intermediate filament protein expressed in the post-mitotic neurons of developing mammalian central nervous system

NF-M

Internexin, NF-M, NF-L but not NF-H expressed in the 6 days *in vitro* (DIV) culture of hippocampal neurons

Internexin and Neurofilament Triplet Proteins (NF-L, NF-M and NF-H) all expressed in the 13 DIV hippocampal neurons

Animal model for cerebellar atrophy (J. Neurosci. 19:2974-2986, 1999)

Neuronal loss in the cerebella and thalamus of transgenic mice

7

Nature Mutant for Neuronal Degeneration

Dystonia musculorum (dt) mouse is a recessive hereditary sensory neuropathy of the mutant mouse, which is defective in BPAG1 gene.

Mice affected with *dt* are seemingly normal at birth, but by 10–12 days they begin twitching, writhing, and exhibiting uncoordinated movements.

BPAG1 cross-links the intermediate filaments and other cytoskeletons.

BPAG1 is known as dystonin.

Dystonin, a neural isoform of BPAG1, contains actinbinding domain (ABD) at N-terminus, and is a cytoskeletal crosslinker protein.

Plakin domain

- Plakin repeats
- Spectrin repeats
- EF-hand calcium-binding motifs
- GAR domain
- GSR-containing domain
 - Linker subdomain
- ? Not yet chararacterized
- The gene structures are not drawn to scale and do not represent the actual number of exons

To study the neural dysfunction and degeneration of primary sensory neurons in dorsal root ganglia in *dt* mice.

Peripheral and central processes from WT and *dt/dt* mice

RT-PCR and in situ hybridization analysis

Expression of neuronal intermediate filaments in WT and *dt/dt* mice

 α -interenxin is absent in the central process of adult *dt/dt* mice

Sensory and autonomic nerves degenerated in the skin of *dt* mutant Fig. 6

Primary culture DRG neurons

- Take DRGs and transfer DRGs to a fresh epondroff tube with 0.5 ml HBSS (CMF) on ice.
- Add 0.5 ml 0.25% Trypsin-EDTA and incubate in rotating incubator at 37°C for 15 min.
- 3. Resuspend with 40% FBS L15
- 4. Spin for 5 min at 1500 rpm, remove supernatant..
- 5. Resuspend with 1.5 ml 40% FBS L15 in incubator at 37°C for 15 min.
- 6. Spin for 5 min at 1500 rpm.
- 7. Resuspend in 2 ml NB1 with FBS, glucose, 100ng/ml NGF.
- 8. Transfer containing neurons medium to 30 mm poly-L-lysine coated Petri dish and then incubate 10-20 min (preplating).
- 9. Transfer the medium to 35 mm Petri dish containing poly-L-lysine coated slide.

Cultured DRG neurons from E15.5 embryos

 α -interenxin proteins are accumulated in the cell bodies as well as in the processes of *dt/dt* neurons.

Primary culture of DRG neurons

	WT	dt/dt
Internexin	+	++ Aggregations
Activated Caspa se	-	+

Perinatal development

	WT	dt/dt
Internexin	+	++ Aggregations
Activated Caspase	-	+

TUNEL Assays

DNA ladder pattern from cultured DRG of 5DIV

500 bp

 Marker: 100 bp marker
3.4. DNA extraction from DRG neurons of *dt/dt*

Primary culture of DRG neurons

DRG neurons of *dt/dt* mice observation by Electron microscope

Summary I

- The interaction between BPAG1 and α-internexin may be one of the key factors involved in the neuronal degeneration of DRG in the *dt* mutant.
- Abnormal accumulation of α-internexin and other cytoskeletal components may impair the axonal transport and subsequently turn on the cascade of neuronal apoptosis during development.

(J. Neuropathol. Exp. Neurol. 65:336-347, 2006)

Overexpression of neuronal intermediate filament α -internexin in the PC-12 cell line (J. Neurosci. Res. 80:693-706, 2005)

Confocal Patterns

3-day NGF induction

pINT-EGFP

Cells after 2-day NGF induction

PC-12 Neurite outgrowth after NGF induction

The longest neurite from each single cell was measured at different time points (n=25).

RT-PCR

В	1 2 3 4 5
Internexin	
Peripherin	
NFL	annerse annerse annerse strange
NFM	
GAPDH	
1 2 3 4 5	pINT-EGFP, Day 0 pINT-EGFP + NGF, Day 1 pINT-EGFP + NGF, Day 3 pINT-EGFP + NGF, Day 7 pINT-EGEP + NGF, Day 10

Western Blot

1. Control, Day 0 2. Control + NGF, Day 1 3. Control + NGF, Day 3 4. Control + NGF, Day 7 5. Control + NGF, Day 10 6. pINT-EGFP, Day 0
7. pINT-EGFP + NGF, Day 1
8. pINT-EGFP + NGF, Day 3
9. pINT-EGFP + NGF, Day 7
10. pINT-EGFP + NGF, Day 10

Summary II

1. Overexpression of pINT-EGFP enhances neurite outgrowth, it could be suggested that internexin may play an important role in early neuronal differentiation.

 Internexin may regulate the expression of other neurofilaments during neuronal development, since overexpressed internexin-EGFP enhanced the expression of NF-L and NF-M.

Cell Death vs. α- internexin Overexpression

- From our observations, cells transfected with pINT-EGFP were found obviously detached from the culture plates after 5-day NGF induction.
- PINT-EGFP
- α-internexin-overexpressing transgenic mice show neuronal dysfunction, progressive neurodegeneration and loss of neurons in the neocortex, thalamus, and cerebellum of aged transgenic mice (Ching et al., 1999).

Ultrastructure patterns (5-day NGF induction)

Control cells

pINT-EGFP tranfected cells Ultrastructural patterns (5-day NGF)

pINT-EGFP transfected cells

Degenerating neurite

Degenerated neurite

TUNEL assay at the 5th day of NGF induction

Summary III

1. Overexpression of pINT-EGFP may induce swelling mitochondria and massive intermediate filament accumulations in cell bodies and processes.

2. Early events of apoptosis could be characterized in the pINT-EGFP transfected cells by the caspase activity and TUNEL positive patterns.

Microarray: pINT-EGFP Day 6 vs. PC12 Day 6

Neuronal proteins	Regulation	Fold
internexin, alpha	UP	414.961
neurofilament 3, medium	UP	4.85568
neurofilament, light polypeptide	UP	6.28745
nestin	UP	3.34591
peripherin 1	UP	2.25822
microtubule-associated protein 1 light chain 3 alpha	UP	2.48439
Microtubule-associated proteins 1A/1B light chain 3	DOWN	3.38617
synapsin II	DOWN	3.02512

Microarray core, NTU Research Center for Medical Excellence

Microarray: pINT-EGFP Day 6 Vs. PC12 Day 6

Calpain family of proteases	Regulation	Fold
calpain 1	UP	2.55472
calpain 2	UP	2.31951
Calpastatin (Inhibitor of calpain)	UP	2.50921
Caspase family of proteases	Regulation	Fold
caspase 1	UP	2.40321
caspase 6	UP	2.19194
caspase 9	UP	3.8618
caspase 12	UP	7.17128
caspase 8 associated protein 2 (predicted)	UP	3.13442
apoptosis, caspase activation inhibitor (predicted)	UP	3.00528
caspase recruitment domain protein 9	UP	3.88923

Calpain Pattern

Day 0

Scale bar₃₆8µm

Calpain Pattern

NGF induction, Day 6

Internexin

PC12

Merged

Microarray: pINT-EGFP Day 6 vs. PC12 Day 6

Ubiquitin proteasome system	Regulation	Fold
ubiquitin specific protease 13 (isopeptidase T-3) (predicted)	DOWN	16.9253
ubiquitin specific protease 13 (isopeptidase T-3) (predicted)	DOWN	4.14307
Ubiquitin-conjugating enzyme E2G 2 (predicted)	DOWN	2.93784
Itchy homolog E3 ubiquitin protein ligase	DOWN	2.88891
proteosome (prosome, macropain) subunit, beta type 9	DOWN	3.29785

Heat shock proteins and molecular chaperones	Regulation	Fold
Heat shock 70kD protein 1A	UP	5.56855
heat shock 70kD protein 1A /// heat shock 70kD protein 1B	UP	2.86266
heat shock protein, alpha-crystallin-related, B6	DOWN	2.82089
heat shock protein 1 (chaperonin)	DOWN	2.17408

Ubiquitin pattern

Day 0

Ubiquitin pattern

NGF induction, Day 6

Scale bar= $20\mu m$

<u>Ultrastructural</u> patterns :

nontransfected PC12 cells and pINT-EGFPtransfected cells after NGF induction for 8 days

ER stress?

Rescue Effect of Caspase-9 and Caspase-12 inhibitors (8-day NGF induction)

44

Abnormal accumulation of α-internexin and other cytoskeletal components may impair the axonal transport and subsequently turn on the cascade of neuronal apoptosis during development.

Thank you for your attention!

Intermediate filaments mis-accumulated within motor neurons in the spinal cord of *dt* mice

Axon

Motor neurons could survive in the spinal cord of *dt* mice

Why?

Neuronal type differences?

DRG neuron vs. motor neuron

