Animal Models for Neurological Diseases

Chung-Liang Chien, Ph.D. Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC

阿茲海默氏病 (Alzheimer's disease) 基因轉殖動物模式

類澱粉前驅蛋白 (Amyloid Precursor Protein, APP)基因轉殖動物 (Nature 373:523-527, 1995; Nature 395:755-756, 1998)探討神經退化機制

LETTERS TO NATURE

Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein

Dora Games^{*}, David Adams^{†‡}, Ree Alessandrini[†], Robin Barbour^{*}, Patricia Berthelette^{†‡}, Catherine Blackwell^{†‡}, Tony Carr^{*}, James Clemens[§], Thomas Donaldson^{†‡}, Frances Gillespie^{†‡}, Terry Guldo^{*}, Stephanie Hagopian^{†‡}, Kelly Johnson-Wood^{*}, Karen Khan^{*}, Mike Lee^{*}, Paul Leibowitz^{†‡}, Ivan Lieberburg^{*¶}, Sheila Little[§], Eliezer Masliah^{||}, Lisa McConlogue^{*}, Martin Montoya-Zavala^{†‡}, Lennart Mucke^{**}, Lisa Paganini^{*}, Elizabeth Penniman[†], Mike Power^{*}, Dale Schenk^{*}, Peter Seubert^{*}, Ben Snyder[†], Ferdie Soriano^{*}, Hua Tan^{*}, James Vitale^{†‡}, Sam Wadsworth^{†‡}, Ben Wolozin^{**} & Jun Zhao^{*}

* Athena Neurosciences, Inc., 800 Gateway Boulevard, South San Francisco, California 94080, USA
† Exemplar Corporation, One Innovation Drive, Worcester, Massachusetts 01605, USA
§ Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
* The Scripps Research Institute, Department of Neuropharmacology, 10666 North Torrey Pines Road, La Jolla, California 92037, USA

|| Department of Neurosciences, University of California, San Diego, 9500 Gilman Driver La Jolla, California 92093, USA ** Laboratory of Clinical Science, National Institute of Mental Health,

基因轉殖鼠腦中具有與 阿滋海默症一樣的老年斑(Senile plaques)

 A transgenic mouse over expressed the neuronal intermediate filament α-internexin gene that represent a model for the cerebellar atrophy.

2. A nature mutant dystonia musculorum (*dt*) mouse that showed a recessive hereditary sensory neuropathy.

Seven Intermediate Filament Proteins in Neural Differentiation

Volume 73 Number 1

April 9, 1993

Animal model for cerebellar atrophy (J. Neurosci. 19:2974-2986, 1999)

12 m cerebella

18 m cerebella

18 m thalamus

Table 2. Quantitation of Purkinje cell numbers in transgenicmice overexpressing α -internexin

Genotype	Age (months)	Number of Purkinje cells present (%)*
Hemizygous	12	83.4 ± 2.1
	18	39.4 ± 4.4
Homozygous	12	62.6 ± 3.7
	18	28.5 ± 5.1

*Numbers of Purkinje cells present in the transgenic mice are expressed as percentages of those in the nontransgenic littermates.

Values given are means \pm SD (from quantitation of three or four pairs of transgenic/nontransgenic mice in each group).

Comparison of performance in the rotorod test

- high levels of misaccumulated neuronal intermediate filaments lead to neuronal dysfunction, progressive neurodegeneration, and ultimate loss of neurons.
- 2. the degrees of neuronal dysfunction and degeneration are proportional to the levels of misaccumulated neuronal intermediate filaments.

Dystonia musculorum (dt) mouse is a recessive hereditary sensory neuropathy of the mutant mouse, which is defective in BPAG1 gene.

It is a very interesting neurological mutant, first discovered as a spontaneously occurring, autosomal recessive variant (Duchen et al., 1963).

Mice affected with *dt* are seemingly normal at birth, but by 10–12 days they begin twitching, writhing, and exhibiting uncoordinated movements. Dystonin, a neural isoform of BPAG1, contains actin-binding domain (ABD) at N-terminus, and is a cytoskeletal crosslinker protein.

To study the neural dysfunction and degeneration of primary sensory neurons in dorsal root ganglia and motor neurons in ventral horn of spinal cord in *dt* mice.

Peripheral process

Ultrastructures of peripheral and central process from WT and *dt/dt* mice

Peripheral process

Central process

Expression of neurofilaments in WT and *dt/dt* mice

Peripheral process

Central process

Why α -internexin disappeared in the DRG of dt/dt mutant?

In situ hybridization analysis the BPAG1n, α -internexin and peripherin

Sensory and autonomic nerves in the skin

Different performances of *dt*/+ and WT mice in the hot plate test

Hot-plate test was used to measure the mouse response latencies

dt/+ mice showed the longer paw-withdrawal latency

α -internexin plays what kind of role in the spinal cord of dt/dt mutant?

In situ hybridization analysis the BPAG1n, α -internexin and peripherin mRNA in the ventral horn of spinal cord

In situ hybridization analysis the α -internexin mRNA in the ventral horn of dt/dt spinal cord

Immunostaining of α-internexin in Swelling Axon of Motor Neuron

α -internexin translocated into cell nucleus of motor neuron in the *dt* spinal cord

 α -internexin translocated into cell nucleus of motor neuron in the *dt* spinal cord

Immunoreactivity of α-internexin in Nucleus of Motor neuron

- We demonstrated that α-internexin is localized in DRN and its mRNA is expressed in DRG neurons of wild type mice, but not in that of *dt* mice.
- 2. The absence of α -internexin in DRN of *dt* mice suggests that sensory nerve fibers in DRN and peripheral nerve may degenerate by different mechanisms.

Questions:

- Why α-internexin disappeared in the DRG of dt/dt mutant?
- Why α -internexin translocated into cell nucleus of motor neuron in the *dt/dt* spinal cord ?
- What kind of relationship between *α*-internexin and BPAG1n?

Acknowledgments

Lab. Members

Kwang-Wen Tseng (曾廣文) Pei Wang (王霈) Tzu-Chiang Liu (劉自強) Jin-Chung Shih (施景中)

Ping-Chung Chen (陳品中) Yi-Shan Lin (林憶珊) Yu-Chieh Lin (林雨潔)

Dr. Ronald Liem Dr. Gee Ching

Department of Pathology, College of Physicians & Surgeons Columbia University

