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Abstract

The main theme of this thesis is to study plane wave scattering from perfectly reflecting
rough surfaces attempting to simulate the scenarios of wave scattering from rough sea surface
and seabed. From the practical point of view, the ocean surface separating the air and water may
be considered as a perfectly reflecting pressure-release surface because of the strong impedance
contrast between these two media. As for the seabed, it is assumed to be a rigid rough surface.
This assumption may not be completely acceptable because in reality the seafloor, particularly
the upper part of the sediment layer, is a medium with finite bulk and shear modulus so that
the interface allows energy to be penetrated into bottom through both compressional and shear
waves. However, in this study, we shall approximate the seafloor as a rigid bottom, and consider
the effect of roughness on the acoustic scattering from such interface. A complete model which
considers wave scattering from a rough interface overlying on a penetrable medium with gradual
variation of acoustic properties is included and discussed in the thesis. Further investigation

will soon be undertaken.

The rough surfaces under consideration are described by various statistical quantities,
including height probability function, correlation function, power spectrum, and realization. To
suit for the types of rough surfaces of our interests, we place our emphases on three kinds of
power spectrum: the Pierson-Moskowitz spectrum, the Gaussian spectrum, and the Goff-Jordan
spectrum. A realization process for the power spectrum is developed. The scattered pressure
fields, the scattering coefficient, and the correlation function are generated and analyzed for a

wide range of controlling parameters.

Despite the fact that the scattering from a single rough interface is an old subject which
has been studied extensively, most studies have been concerned with the solution of spectral
distribution of the scattered field. Little has been done in applying modern data processing
software such as MATLAB in solving these problems in time domain. The dynamic simulation of
the scattered fields and other acoustic phenomena provide a vivid presentation of the acoustic
fields, which not only eases the way of communication with others but also provides a perfect
tool for classroom demonstration. Therefore, it is highly desirable that a complete toolbox in
acoustic wave propagation in an oceanic environment is available, and, in this regard, the present

study serves as an initiation of the development along this line.
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Chapter 1

Introduction

1.1 Background and Motivation

The problems of rough surface scattering have long been an interest in underwater acoustics.
The reasons are simple: both the sea surface and the seabed are rough. Any practice exercising
long-range wave propagation in an oceanic environment, particularly in shallow water, must
consider the effect of these two surfaces, simply because of the fact that both two surfaces
are strong scatterers. As a result of interactions with these two boundaries, the acoustic field
not only becomes random but also attenuates rapidly as the range of propagation increases,

rendering applications of underwater acoustics a very challenging problem.

However, the effects are not all bad, as evidenced by many recent studies, in which it was
demonstrated that the scattered field carries many useful information, allowing the inversion of
the environmental parameters as well as the source geometry. In order to achieve these purposes,
the first step is to model the acoustic field accurately. The main theme of this study is to analyze
the rough surface scattering from an interface closely resembling the two major rough surfaces

in the oceanic environment, i.e., the ocean surface and the seabed.

Practically speaking, the ocean surface separating the air and water may be considered
as a perfectly reflecting surface, owing to the fact that the impedance of water is nearly 3500
times larger than that of air. Therefore, if a plane wave impinges upon the sea surface which
is assumed to be completely flat, then the incident plane wave is coherently reflected into the

specular direction with a phase shift of 180° relative to the incoming wave.

If the sea surface is rough, as it should be treated in reality, the situation becomes more
complicated. Figure 1.1 schematically demonstrates the effect of roughness. The figure shows
that for a flat surface [Case (a)], the wave is reflected into the specular direction without dis-
turbance, and for slightly rough surface [Case (b)], the wave is scattered into certain range of
angles with major energy still propagating in the specular direction. As the surface becomes

even rougher [Case (c)], the scattered waves spread over a wider angle, and eventually, when the
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Figure 1.1: Schematic diagram of rough surface scattering.

surface becomes very rough [Case (d)], the scattered wave field shows no preferred angle, with

the energy randomly spreading all over space, and the specular reflection ceases to exist.

A plane wave impinges upon the seafloor will also demonstrate a similar scenario, except
that in this case the seafloor is relatively hard with respect to water. In real situation, the seafloor
should be considered as an elastic medium, allowing energy to be penetrated into bottom through
both compressional and shear waves. However, in this study, we shall approximate the seabed

as a rigid rough surface, and consider the effect of roughness on acoustic scattering in this case.

Despite the fact that the scattering from a single rough interface is an old subject, most
studies have been concerned with the solution of spectral distribution of the scattered field. Little
has been done to examine the problem systematically in all aspects. Even though, there are
ample results which are available in literature, many of them are found to be quite theoretical,
and more often than not, the formulation is lengthy and esoteric, making the whole theory

difficult for comprehension and application.

Modern programming language and data processing software such as MATLAB have ad-
vanced to the point that many tedious computations and data manipulations may be accom-
plished by the kernels built in the language with much faster pace than the traditional methods,
so that the task can be resolved more efficiently and effectively. For example, dynamic sim-
ulation of the scattered fields and other acoustic phenomena may be obtained with moderate
computational effort and the results presented by its graphical capacity offer a vivid presentation

of the acoustic fields, which not only ease the way of communication with others but also provide



a perfect tool for demonstrations. It is therefore highly desirable that a complete toolbox in
acoustic wave propagation in an oceanic environment is available, and the present study serves

as an initiation of the development following this line.

1.2 A Concise Survey of Literature

As mentioned previously, the topic of wave scattering from randomly rough surfaces has been
a subject of interest for many decades. This becomes the case because the subject covers a
wide range of areas involving wave interaction with surfaces. These fields of study include sonar
detection, radar imaging, medical ultrasonics, solid-state physics, optics, and ultrasonic non-
destructive testing, to name a few. To some extent, all real surfaces are rough with respect
to the wavelength, especially for high frequency waves, and therefore, the problems of wave

scattering from rough surface naturally arise in the study of the above-mentioned areas.

The most frequently cited book on wave scattering from rough surfaces is that of Beckmann
and Spizzichino [3]. The book considers Kirchhoff solutions of electromagnetic wave scattering
from periodic and random surfaces; most results of the book are equally well be applied to
acoustic waves. The later part of the book discusses experimental study of the effects of surface
roughness on the reflection of terrestrial bodies such as Moon, Sun, and Earth. More recently,
Bass and Fuks [1] wrote a book on the subject in which both perturbation and Kirchhoff theory
are considered. Moreover, this book includes some complicating effects such as surface self-
shadowing and multiple scales of roughness. The effect of multiple scattering is also considered

through integral equation method.

In the last decade, two new volumes on the wave scattering from rough surfaces were
added into literature: one by Ogilvy [34] and the other by Voronovich [49]. The book by Ogilvy
is a general book on the subject which serves as a review of the theories developed up to the
date of its publication. Discussion on the nature of rough surfaces is first provided, followed by
a development of methods by the perturbation and Kirchhoff theories. Both scalar and vector
waves are included. The book concluded with a summary of numerical simulation techniques.
On the other hand, the book by Voronovich is theoretical in nature, which represents the most
recent publication on the subject. The book covers broad range of issues including traditional
topics such as perturbation method and Kirchhoff approximation, and non-traditional topics
such as small slope approximation, phase perturbation technique, phase operator method for
Dirchlet problems, and others. The scattering of rough boundary in a waveguide environment

is also discussed in the book.

In addition to the above-mentioned books, which obviously represent only a small fraction
of relevant books in the literature, there are numerous articles published in various journals
in the related fields, notably the Journal of Acoustical Society of America (JASA). Here, it is
emphasized that we make no attempt to conduct a complete survey on the whole subject, except



concentrating on the articles which are closely related to the presents analysis.

An earlier survey of literature on acoustic wave scattering from the sea surface was per-
formed by Eckart [9] and another by Fortuin [10] in 1960’s, in which the authors discussed the
scattering from both random and periodic surfaces, and the results predicted from theories were
compared with the experimental data. During 1970’s, the advent of modern computing facility
had greatly enhanced the ability of the investigation on subject. To list a few, these include
Lynch [28], Fortuin and Boer [11], Caruthers and Novarini [7], Novarini and Caruthers [33],
Galybin [13], Kuperman [21], and many more. These work has been largely emphasized on the
development of numerical models which are capable of solving scattering problems from various

kinds of rough surfaces.

The 1980’s has entered a booming period of research in underwater acoustics. Theories
for wave scattering in an oceanic waveguide were developed. Kuperman and Ingenito [24] for-
mulated a model for the calculation of the spatial properties of the noise field produced in a
stratified ocean by the action of wind at the surface, and the results show that the sound-speed
profile and the presence of the bottom can be important in determining the spatial properties
of the noise field. Later, Kuperman and Schmidt [22] extended a previously developed bound-
ary perturbation method [21] to treat scattering at a randomly rough interface which separates
viscoelastic media. Before the end of the decade, the same authors developed a unified, self-
consistent perturbation approach to rough surface scattering in stratified ocean, in which a
boundary-condition operator formulation was developed. The new approach makes the formula-
tion of scattering compatible with existing propagation models for stratified media citeberman,
allowing simulation of scattering loss of the coherent component of the field due to the gener-
ation of a scattered field in the stratified fluid-solid media with an arbitrary number of rough
interfaces [23]. Liu el al. [26, 27] combined the theories due to Kuperman [24] and Schmidt [23]
to study the scattering from rough interfaces due to noise sources near the surface of the ocean

waveguide.

Dashen et al. [8] developed a formalism that describes the scattering of a wave off a
finite object. The scattering cross section is evaluated numerically and it was concluded that
the observed cross section for scattering near the ocean surface cannot be explained by ocean
surface scattering alone. Goalwin [14] applied the method of stationary phase approach to
the calculate the correlation of the acoustic field scattered from a two-dimensional random sea
surface, however, the results were limited to some particular separations in space. Thorsos
and Jackson [48] and Thorsos [47] examined the validity of the methods which are frequently
employed in the study of rough surface scattering, and later applied the theory to examine the

validity of acoustic scattering from a Pierson-Moskowitz sea surface.

Even though the relevant literature on rough surface scattering is abundant, as evidenced
by the above short review, it is still not readily available in the literature in which a systematic
development on various aspects of scattering from sea surface and seabed is made. For example,

it is still yet to be seen that a systematic presentation of scattering characteristics of sea surface



in terms of a complete two-dimensional correlation function and of its spatial realization. The
present analysis attempts to deal with this old subject with a new look, within which the
complicated formalisms in terms of mathematics are deliberately suppressed in favor of graphical
and dynamical presentations. In this way, the author wish that the present study may illuminate
many obscure phenomena, frequently undermined by the unfriendly formulation employed on the
subject. At minimum level, this thesis launches a planned project in our research group, and is

intended to serve as a source of reference for many years to come.

1.3 Objectives

The objectives of this thesis project are:

1. To study the characteristics of rough surfaces which are relevant to oceanic environment,

in particular, the rough sea surface and seabed;

2. To study the plane wave scattering from rough sea surface and seabed, which are modeled

as a pressure-release or rigid surface, respectively.

3. To develop a software using MATLAB which is capable of demonstrating the acoustic prop-

agation and scattering; and

4. To propose a model which closely resembles the seabed interface.

Both the sea surface and the sea floor are characterized by its own special roughness
spectrum. The scattering for a plane wave impinging upon these surfaces provide many useful
information both for the scattered field and for the rough surface themselves. Our interests
include understanding of the energy spectrum and correlation of the scattered fields in relation

with the various roughness spectra employed in the simulation.

The later part of the thesis concerns with a problem which addresses the rough interface
scattering from a semi-infinite space with continuous varying sound speed and density; this
problem attempts to simulate the realistic seabed conditions. A wave-theoretical model which
describes the problem will be developed, and current existing software package OASES will be

invoked to analyze the problem.

Our laboratory has launched an effort! to develop a MATLAB-based toolbox which deals
with acoustic propagation problems in marine environment. The present analysis serves as a
primal study, and is expected to extend to become a comprehensive code so that the capacity

is enhanced to solve for many ocean acoustic problems of our interests.

!The endeavor is temporarily named Project Poseidon, Poseidon being the god of sea according to Greek
mythology.



1.4 Scopes of the Thesis

Chapter 2 of this thesis is to study the random rough surfaces encountered in oceanic environ-
ment. The basic concepts and assumptions for a random process are reviewed. Various ways
for the presentation of a rough surface are studied and analyzed. The chapter serves as a basis

for interpretations of many results obtained in later chapters.

The first part of Chapter 3 is to demonstrate the Rayleigh reflection problem in a dynamic
manner. This problem allows us to gain appreciation of reflection and transmission which are
not achievable in line graphs. The second part of this chapter is to study the scattered field
in spatial domain. The random scattered fields are directly generated using the exact integral

formulas for the scattered fields.

Chapter 4 deals with the statistics of the scattered fields, including the average intensity,

scattering coefficients and spatial correlation of the scattered fields.

Chapter 5 concerned the rough surface scattering from a semi-infinite space with contin-
uous sound speed and density variation. A model is proposed and derived. Preliminary results
will be generated by modern acoustic software OASES. The last chapter summarizes what have
been done in this thesis, followed by two appendices within which a formulation for a particular

problem is derived.



Chapter 2

Random Rough Surfaces

Many surfaces in nature are characterized by their unpredictability, which means that any
part of the surface is not derivable from the knowledge of its adjacent parts in a deterministic
manner. This type of surface is referred to as random surface. In this chapter, we shall discuss
the characteristics of random rough surfaces, in particular, the sea surface and the seabed.
Even though this is not a new topic, many reports on the subject are fragmental and limited.

Therefore, a consistent presentation deserves a special attention.

There are four aspects to be emphasized in relation to the description of a random rough
surface in this chapter: probability density function, correlation function, power spectrum, and
realization. Each one of them demonstrates a particular feature of a rough surface, and in view
of its non-deterministic nature, many discussions in this chapter have lent themselves to the

theories of probability and statistics. As such, we shall have a brief discussion on these subjects.

We shall begin with a review of some important concepts about a random process, followed
by a discussion of the description of a random surface in terms of its probability distribution and
correlation functions. We then analyze and compare various models which are used to describe
the power spectra of the sea surface and seafloor. Artificial random rough surfaces corresponding
to the various power spectra are generated and discussed. The chapter is concluded with a few
comments with respect to the applications of these statistical models on the seafloor topography

in combination with acoustic image obtained by a sounding system.

2.1 Stationarity and Ergodicity

In this section we shall briefly review some important concepts about a random process, and
also place the basic assumptions which are invoked throughout this study. To facilitate our
discussion, we shall consider a surface which is intrinsically random in nature, the one with

which we are really concerned, that is, the surface of the random sea.



Figure 2.1: Sample surfaces of a rough sea.

Suppose at a particular moment, a snap shot of the sea surface is taken, it is conceivable
that the surface elevation demonstrates a random distribution. If later on, other snap shots
are taken under the same conditions, then the compilation of these snap shots forms a set of
random surfaces as shown in Figure 2.1. This collection of surfaces taken at the same conditions
is referred to as emsemble of the random sea surface; each of which in the ensemble may be a

representative of the rough sea surface, and is referred to as a sample.

In theory, the number of the samples in the ensemble should be denumerably infinite, and
each sample should be infinite in length. Clearly, this is only conceivable but not realizable, and

therefore, an ensemble is only a conceptual object.

Owing to its stochastic nature, the description of a random surface requires the use of the
probability and statistics theories. We therefore review a few essential concepts in these subjects

in relation to the description of random processes.

Let the ensemble be denoted by {'y(k) (r)}, where 7*)(r) represents the kth sample of the
random processes as a function of range r. The variable v is a random variable representing
the deviation of the surface from a reference level. It is obvious that the random variable
v depends upon the position r. Now, select a particular position r;, and consider the set
{fy(k) (rl)}. The set of values may be used with any function, say, F, to give a function of
random variable, F' ('y(k) (rl)). Clearly, the value of the function F' is also a random number,
which can be anything within reason and each will lead to a statistic. Here we are concerned

with the function F', which is the v value itself.



The mean value of the random variable «(r;) is defined as

(y(r1)) = lim Tim W ()

2.1
N—oo N ( )

This is called ensemble average, or statistical average, or mean value. If we now choose another
location, rs, and compute the ensemble average, then, we expect that for the most general case

they are not equal, i.e.,

{(y(r1)) # (v(r2)) (2.2)

It should be stressed here that, for a general random process, the ensemble average is
completely different from the spatial average, which is defined for each sample as follows:

<’Y(k)> = lim L/R fy(’“)(r) dr (2.3)
s R—oo 2R —R

Here the subscript s stands for “spatial average”. However, there are cases in which the spatial

average may be taken as ensemble average; those will be discussed later.

The mean value is only the simplest statistics, or the first order statistics, of a random
process. The most important aspects of a random process are embedded in the correlation
among any specified number of points. A correlation function, defined as an ensemble average
of the product between the random variables, is a measure which gauges the coherence or degree
of consistency in a statistical sense, among the points under consideration. Therefore, a good
correlation would mean higher degree of coherence or less random, and vice versa. If the variables
being correlated are the same, it is referred to as auto-correlation function, and if different, it
is referred to as cross-correlation. For example, (y(ri)y(rz2)) is the two-point auto-correlation
(second-order statistics) or simply correlation, which in a sense relates what the process is doing
in the location r; to what is doing in the location ry. Likewise, there are three-point correlation
(third-order statistics) (y(ri)y(r2)y(rs)), and so on. Processes such as those described above
are of the most general kind. The governing probability functions as well as the statistics
appropriate to each instant may be different. Such very general random processes are quite
common in nature, and these are referred to nonstationary random processes; their properties

can only be calculated from the ensembles.

In practice, however, it is impossible to have a full collection of the samples, and assump-
tions will have to be made to relieve the difficulties. Suppose we have a random process whose

statistics are invariant with respect to its argument. That is to say that, for all Ar,

{(7(r1)) = (7(r2)) = (y(r + Ar)) (2.4)

and
{(v(r1)y(r2)) = (v(r1 + Ar)y(rz + Ar)) (2.5)

and similarly for high-order statistics, then this type of random processes are called stationary.

This imposes a very strong restriction on the properties of the random process, and is therefore



unlikely to exist in practice. However, if the statistics is invariant only for the first and second-

order, then it is referred to as weakly stationary, which is more likely to exist in reality.

Even under the assumption of weakly stationarity, one still faces the difficulty to obtain
the statistics from the ensembles, simply because that very often the only data available are
the one-time measurement along the process coordinate (e.g., time or spatial). Under these
circumstances, one is forced to relegate even further, and pursue the statistics based upon one-
time data. We therefore assume that the coordinate average may be used to substitute for the
ensemble average, i.e.,

(v®) =) (26)
This places an even stronger assumption, in that it implies that the entire statistics of the
random process are completely characterized by a one-time measurement. A random process
possessing such characteristics is called an ergodic process. It is noted that if a random process
is ergodic it must be stationary, as ergodicity demands that samples from a different parts of a
random process all lead to the same statistical descriptions. However, the converse is not true,

that is, stationarity does not guarantee ergodicity.

While in theory the measurement of the ocean surface roughness may be taken for a number
of times to enable calculation of the ensemble average, an attempt to repeatedly measuring
seafloor roughness to establish ensemble should not even be entertained, as evidenced by the
high cost of survey, especially in the deep water environment. As such, we shall be content
ourselves to make any assumptions whenever needed, no matter how strict it is, and very often
we find ourselves in a compulsory situation in that the very assumption we have to make is the

most stringent one, namely, the assumption of ergodicity.

2.2 Height Probability Density Function

There are essentially two aspects to the nature of a random rough surface: the spread of heights
about the reference surface and the variation of these heights along the surface. The former
may be described by the surface height probability density function, abbreviated as height p.d.f.,
and the later by the surface correlation function. In this section we shall discuss the common

models which are used to describe the height probability density function.

The likelihood for an event to occur for a random variable, say x, may be specified by
the probability density function p(x), which is so defined that p(z)dz is the probability that the
random variable x lies between z and = + dz. In the same token, the deviation of a surface
from the smooth reference surface is represented here by the random function y(r), where + is
the height of the surface from the reference surface and r is the position vector of points. The
surface is assumed to be a continuous random process. Thus, the distribution of surface heights
may be described by the height p.d.f., p(v).

It should be noted a probability density function has the following properties:
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L. p(y) > 0;
2. [% p(y)dy =1;
3. p(y)dy = Probability (v < y(r) < v+ dy);

4. The function: P(y) = [ p(vy)dy is referred to as probability distribution function, which
represents the accumulative probability for v from —oo to present value +, so that it relates

to p.d.f. as ‘fi—l; = p(7).
There are many other useful properties and theorems which are very helpful in our study; those
can be found from many standard textbooks, e.g., [36][41], therefore, we are not to reiterate

here.

In general, the mean value of a random process is extracted to result in a zero-mean

random process, so that

(7) = /_o; yp(y)dy =0 (2.7)

where (-) denotes the spatial average. We shall be following the common practice to assume that
the spatial average is the same as ensemble average, and therefore, we are implicitly to assume
that the random process is ergodic. The root mean square (RMS) height of the surface is then

equal to the standard deviation and is given by

o=/ (1%)s (2.8)

and variance is equal to o2.

2.2.1 Gaussian Height Distribution

Much of the literature on rough surfaces assumes that the probability density function of the
height distribution are Gaussian, which means that the likelihood of the surface height to appear

a given value 7y is dictated by the following function:

p(y) = ! exp l—M] (2.9)

oV 2T 202

where p is the mean value, which will be chosen to be zero in this study. This function has
a famous “bell-shaped” variation as shown in Figure 2.2. A random surface obeying Gaussian
height distribution is referred to as Gaussian random surface. It can be shown that a random
variable obeying the Gaussian distribution has 96% of its distribution within two standard
deviations of the mean. This implies that most events are occurred near the mean value of the

random variable.

Although many surfaces arising from engineering methods do not obey Gaussian distri-

bution, those surfaces with a profile that is everywhere a cumulative effect of a large number

11



p(y /o) / p(0)

ylo

Figure 2.2: A zero-mean Gaussian distribution with standard deviation o.

of local events are likely to be Gaussian. Therefore, surfaces produced by engineering methods
such as turning are less likely to obey Gaussian height statistics than those arising from natural
processes such as geographical terrain. In addition, the Gaussian function has many operational
properties which are convenient for mathematical manipulation.

There are many other probability distribution functions such as Binomial distribution,
Poisson distribution, Student’s ¢-distribution, Chi-square distribution. However, since they are

rarely encountered in an oceanic environment, they are not to be discussed here.

2.2.2 Joint Probability Density Function

In the previous section, we discuss the height p.d.f. at each individual point. Although a single-
point height p.d.f. is most often used in describing the random surface, this function alone
does not completely characterize the height distribution of a random surface. There are other
structures of the randomnesses which are embedded in the higher-order surface properties, such
as two-point height p.d.f., and three-point height p.d.f., etc. These are referred to as higher
order surface statistics. The higher-order surface statistics are often of interest in the theory of

wave scattering from such surfaces, or for the classification of measured surface profiles.

Let pa(vy1,7y2;r1,r2) denote the two-point height probability density function, where

p2(71, 7231, T2)dy1dy2

is the probability that the surface height at r; is between ~; and v + dvy; and that the surface
height at ry is between 5 and 5 + dvy2. As an example, for a Gaussian surface that is both

isotropic (see Section 2.3) and stationary, the two-point probability function takes the form

p2(71,72,R) = ! exp | 21 +73 ~217C(R)
2(71,72, 2m02,/1 — C2(R) 202[1 — C2(R)]

where C(R) is the surface correlation function to be discussed below. Equation (2.10) has the
following two limits:

(2.10)

p2(71,72,R) = p(1)p(r2), as [R| = o0 (2.11)

12



p2(71772aR) - p(71)5(71 )7 as |R| —0 (212)

It can be shown that if the single-point height p.d.f. is Gaussian, then the two-point height p.d.f.
and all higher order derivatives are themselves Gaussian. Also, the higher-order derivatives of
any two-point correlation function may be obtained from the surface height correlation (see
Section 2.3). That is to say that the single-point height p.d.f. and the surface height correlation

completely determine the height statistics and surface correlation to all orders.

The height distribution function discussed above only indicates the probability of height ~y
of any surface point, but it can’t express the relationship among any number of surface points.
The property which truly characterizes the randomnesses is embedded in its surface correlation

as will be discussed below.

2.3 Surface Correlation Function

The specification of the height distribution alone does not describe the random surface. For
example, in Figure 2.3 each surface has a Gaussian height distribution and an RMS height of 5
cm. However, the surface characteristic are very different. Such surfaces may be distinguished

by their correlation functions, which is defined as

CR) =(y(r)y(r+R))s = hm g/'y R)dr (2.13)

where S is the area of the mean surface, and R is the separation between the two points chosen
to be correlated. It should be noted that for a stationary random process C'(R) is a symmetric
function and C(0) = o2. As |R]| increases C'(R) will usually decay to zero, with the shape of this
decay being dependent on the type of surface and the rate of decay dependent on the distance

over which points become uncorrelated for truly random surface.

The theory of wave scattering from rough surfaces often assumes that surface correlations

are Gaussian which is given by

C(R) = o2 exp (—7) (2.14)

where )\ is called the correlation length, this being the distance over which the correlation
function falls by 1/e. However, this is only a nominal definition, different author may have
different definition. If the surface is isotropic, meaning that the correlation function depends
upon the separation of the points being correlated, and not the direction, then the Gaussian
surface correlation function is as shown in Figure 2.4, in which the definition of the correlation

length is as indicated.

The Gaussian correlation is often employed due to its simplicity, however, there are more
general formulations which were proposed to include broader features of the rough surface, such

as Goff-Jordan[15] correlation function which will be discussed in Section 2.4.2.
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Figure 2.3: Gaussian surfaces of the same RMS height (5 m) but different correlation lengths.
(a) )\0 =17 m, (b) )\0 =10 m, (C) )\0 =30 m.
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Figure 2.4: Definition of correlation length based upon Gaussian correlation function.

Next, we introduce an alternative description of a randomly rough surface, the power

spectrum.

2.4 Power Spectrum

In the problems of acoustic wave scattering from random rough surfaces, many formulations
of the concerned quantities are often expressed in terms of the power spectrum of the rough

surface. The power spectrum is defined as the Fourier transform of the correlation function

= ﬁ [ :dRC(R)eik'R (2.15)

The power spectrum specifies the characteristics of the rough surfaces in wavenumber
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domain as opposed to the correlation function which is the description in the spatial domain.
The power spectrum differs from all the previously defined surface functions, as it can describe
both aspects of a rough surface represented by the RMS roughness and the correlation length.

The total area under the power spectrum gives the variance, or “power”, of the surface:
[e.e]
/ P(k)dk = o2 (2.16)
—0o0
In more general case, the power spectrum may also contain parameters which are capable of

describing the non-isotropy of a random field.

In this section we shall discuss and compare various power spectra and which are commonly

employed in the study of ocean surface and bottom roughness.

2.4.1 Gaussian Power Spectrum

As was mentioned in Section 2.3, many studies on random processes frequently assume that the
correlation function is Gaussian, and as a result of Fourier transformation, it can shown that
the corresponding power spectrum is also a Gaussian. Thus, we shall often use the Gaussian
spectrum to model the random field. Also, in many cases, when other models are less illustrative,

the Gaussian model is applied and the results can be considered as a benchmark solution.

The Gaussian spectrum for a non-isotropic surface is

2 232 k2)\2
P(ky, ky) = ALY exp <—@> exp (—y—2> (2.17)

47 4 4

where A\; and Ao are the surface correlation lengths in the = and y directions, respectively. If
A1 = A9 = Ag, the spectrum reduces to an isotropic form. The Gaussian spectrum represents
an exponential decay as a function of wavenumber, which means that most “energy” of the
roughness is contained in the low wavenumer regime. The implication of this energy content

will be discussed later.

2.4.2 Goff-Jordan Power Spectrum

For the statistical model of the randomly rough sea floor, most perturbation approaches assume a
Gaussian spectrum for simplicity. In spite of its popularity, most experimental data have shown
that the spectrum of the sea floor topography tends to be a power-law rather than a Gaussian
distribution [2, 12]. Thus, we shall adopt a recently proposed model by Goff and Jordan [15]
which behaves as power law at the high frequency components. The model may well represent
a non-isotropic sea floor topography having stationarity with respect to an elliptic “window”
by five parameters: root-mean-square height H, a roughness parameter v, two characteristic
wavenumbers, ks and k,, and an orientation parameter (;. Since we use this model extensively,

This model which is based upon Ref. [15] is summarized here.
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The above-mentioned five parameters are incorporated in an autocovariance function of

the form G, (r(x))
5 Gy(r(x
= — 7 2.1
with G, (r) defined as
G,(r) =r"K,(r), 0<r<o v e |0,1] (2.19)

where K, is the modified Bessel function of the order v. This correlation function describes the

azimuthal variation through the dimensionless ellipsoidal norm

1/2
r(x) = [XTQX} = \/ quz? + 2q1271 22 + g2223 (2.20)

where () is a positive-definite, symmetric matrix whose Cartesian elements g;; have dimension
of (length)~2. In terms of its eigenvalues k2 > k2 and its normalized eigenvectors &, and &;, Q
may be expressed as

Q= k2e,el + klesel. (2.21)

The parameters k,, and k; play the same role as the correlation length in defining the topographic
characteristics; thus 27 /k, and 27/ks represent, respectively, the characteristic length of the
minor and major axis of the ellipsoidal topography. The variable (; is an orientation parameter
which is conveniently chosen to be the angle between the major axis and y-axis, measured
clockwise from y-axis. This model is capable of describing the non-isotropic feature of the sea
floor morphology such as the local strikes formed by the abyssal hills commonly found on the

ocean floor.

The roughness parameter v determines the behavior of the autocovariance function as r
approaches to zero lag, which also determines the roll-off rate of the power spectra at the high
frequencies. In the physical terms, v measures the degree of the roughness, with the limiting
cases of unity and zero corresponding to a random surface with continuous derivative and one
which is “space-filling”, respectively. All realizations of this covariance model are bounded
self-affine fractal surfaces (appendix of [15]), with the special case v = 1.0 being a bounded self-
similar. It was shown [15] that v relates to the Hausdorff-Besicovitch dimension D (or fractal
dimension[29]) as

D=3-v. (2.22)

The corresponding power spectrum may be obtained by a Fourier transform, and is given
by [15]
P(k) = 4nvH?|Q|Y?[u? (k) + 1]~ ¥+, (2.23)

where

uk) = K'Q 'K’
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Figure 2.5: Goff-Jordan correlation function and its power spectrum for H = 5 m, k; = 0.86
m~ !, k, =214 m™ !, ¢, =109.3°, and v = 0.5.

The special case of isotropic rough surface corresponds to k, = k; = kg, which simplifies

the power spectrum, Equation (2.23), to become

—(v+1)

in% 2 2
Pl = kgH l(%) +1] , (2.25)

where 27 /ky is a characteristic length similar to the correlation length for the Gaussian spectrum.
Equation (2.25) shows that the spectrum has a finite value as |k| — 0, and its decay rate for

the high spatial frequencies is k2+1),

Figure 2.5 is an example of non-isotropic Goff-Jordan correlation function with its corre-
sponding power spectrum for H = 5m, ks = 0.86 m !, k, = 2.14 m !, ¢; = 109.3°, and v = 0.5.
It is seen that the orientation of the correlation function and the power spectrum is orthogonal,
i.e., the direction of the major/minor axes is perpendicular to each other. This is an important
property of Fourier transform in that a higher coherence in spatial domain renders a narrower

band in wavenumber domain, and vice versa.
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Figure 2.6: Roughness power spectra.

2.4.3 Gaussian Versus Goff-Jordan Power Spectrum

Figure 2.6 presents two representative cases for the isotropic Goff-Jordan spectrum, Equa-
tion (2.25), for kg = 0.135 m~! (equivalent to correlation length about 18 m ), H = 0.5 m,
v = 1.0, and Gaussian spectrum, Equation (2.17), for A\g = 25 m, ¢ = 0.5 m, and their corre-
sponding representative rough surfaces. It should be noted that the correlation length may be
computed by 2/k., where k. the value of the wavenumber which corresponds to e~! percent of

the maximum value.

It is seen that the Goff-Jordan spectrum decays much slower than the Gaussian spectrum
at the high frequency components, which means that the Goff-Jordan spectrum contains much
more higher frequency components than those of Gaussian spectrum. From the representative
surfaces (lower parts of the figure), it is easily seen that the surface representing Goff-Jordan
model is much rougher than that representing Gaussian model. Thus, a surface with small-scale
features is better approximated by the Goff-Jordan model. More about this will be discussed in
Section 2.5.

2.4.4 Pierson-Moskowitz Power Spectrum

The sea surface is another important rough surface in the oceanic environment. It is more com-
plicated than the sea floor because the sea surface is rough both dynamically and geographically.

The sea surface changes shapes from moment to moment, and therefore, a complete description
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of the surface involves Fourier spectrum both in frequency domain and in wavenumber domain.

In the analysis of random sea surface, one is usually concentrated on the frequency compo-
nents of a wave height measured at a particular location. In this regard, Pierson and Moskowitz
analyzed the data for the spectra of fully developed seas obtained by Moskowitz [31], and used
the results to test the similarity hypothesis and the idea proposed by Kitaigorodskii [20]. They
proposed a spectral form for fully developed sea state with wind speed from 20 to 40knots
(about 10 to 20m/s) [37]. The Pierson-Moskowitz (PM) spectrum is

S(w) = aw_g; exp l—ﬂ (%)41 , (2.26)

where w is the angular frequency, o = 8.1 x 1073 and 8 = 0.74. The Pierson-Moskowitz power
spectrum differs significantly from the Gaussian spectrum in that the former represents a rough
surface which contains a wide range of roughness scales, and thus referring to as multiple scale

roughness, while the latter describes a single-scale rough surface.

Figure 2.7 shows the Pierson-Moskowitz frequency spectrum for several values of wind
speeds. This figure shows that the dominant frequency shifts towards lower frequency as the
wind speed becomes larger. Knowing that a lower-frequency wave represents a wave with larger
amplitude and longer wave length, it is conceivable that at higher wind speed, more energy is
input into the ocean, and as time elapsed the waves are gradually built up and eventually reach

a steady peak value.

The Pierson-Moskowitz spectrum has been universally acknowledged as the best descrip-
tion for surface wind waves, thus we use it to simulate random sea surface produced by wind
waves. Since we require the power spectrum in wavenumber form to evaluate the spatial cor-
relation of the noise field. We must transform the frequency spectrum into the wavenumber

spectrum.

The wavenumber-form Pierson-Moskowitz spectrum may be obtained from the application
of the dispersion relation for deep ocean gravity waves and the formula for transformation
between frequency domain and wavenumber domain. The results were derived by Liu and Shiao
[45, 25] as

-3 2 2
4.05x10~3 cos? § exp [_0_74 <ng2)] 16 < /2

P(k,0) = k 2.27
(5.) 0 .0 > /2 (2.27)

Figures 2.8 and 2.9 show the Pierson-Moskowitz wavenumber spectrum for wind speed
10m/s and 14 m/s, respectively. As these figures show that they are non-isotropic and have non-
zero value only in the region |#| < 7. This structure of the Pierson-Moskowitz power spectrum
is very different from either Gaussian or Goff-Jordan spectrum, in that it contains no negative
wavenumber components. It is conceivable that waves driven by winds can only propagate in
the directions within a sector encompassing the forward half plane along the direction of the

wind.
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Figure 2.7: Pierson-Moskowitz frequency spectrum as function of wind speed (in m/s).

For the case of U = 10 m/s, the maximum power occurs at k ~ 0.0Gf, corresponding to
wavelength approximately equal to 105 m. It can be found from literature [32] that in this case
the average wavelength is 89 m and significant wave height 2.5 m. As the wind speed increases,
as for the case U = 14 m/s, the spectrum becomes narrower, which implies that the most waves
are long waves with maximum occurs at k = 0.033i, corresponding to wavelength roughly equal
to 190 m, and significant wave height 4.2 m.

2.5 Artificial Generation of Random Surfaces

The power spectrum is useful in the analysis of energy contents of a random process or a
random field. However, it provides little information on the random features of the surface
itself perceptible in visualization. It is, therefore, desirable that an artificial random surface be
generated based upon a given power spectrum, with which a vivid presentation of the roughness
can easily be seen. FEach random surface thus generated represents a sample in the ensemble,

and is referred to as a realization.

The technique of generating the artificial random surfaces based upon power spectrum is

as follows. Given a one-dimensional power spectrum P(k),

1. Counsider N incremental steps of length Ar. Each step is given a random value h,, based

on Gaussian probability distribution. Note that this is a Gaussian white noise sequence
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and adjacent values are totally uncorrelated.

2. A discrete Fourier transform is taken of the random values. The Fourier coefficients are

given by
N-1 ]
Hy, = Ar Z hnez27mk/N.
n=0

Because the transform is taken of a Gaussian white noise sequence the Fourier spectrum
will be flat (the amplitudes of the |Hj| will be equal).

3. The resulting Fourier coefficients Hy, are filtered using the relation

Y, =P Hy

where P, represents the discrete form of the power spectrum P(k) with the sampling

Ak = N2£T. The square-root is taken because the power spectral density is proportional

to the amplitude squared.

4. An inverse discrete Fourier transform is taken to result a sequence of number representing

the rough surface:

1 N-—1 /
_ Y, —i2nkn/N
In NAr Ig K€

The sequence generated by the above procedure has the prescribed power spectrum as the
spectral coefficients of the random process. This can be shown to have a Gaussian probability
distribution in the limit as N — oo by the Central Limit Theorem [41].
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Figure 2.10: Three realizations for Gaussian power spectrum with RMS 5 m and correlation
length 17 m.

Figure 2.10 shows three sample realizations for a Gaussian power spectrum with RMS height
5 m and correlation length 17 m. It is seen that each surface has its own unique distribution,

but they all look similar in statistical sense.
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2.5.1 Realizations of Gaussian Power Spectrum

Figures 2.11 shows the isotropic Gaussian spectrum along with its realization for correlation
length Ag = 15 m and RMS height ¢ = 5 m. The spectrum clearly demonstrates a bell shape as
mentioned before, and the realization shows an evenly distributive roughness over the surface

without preference orientation in its distribution.

To demonstrate the non-isotropic case, the correlation lengths are chosen to be Ay = 10
m, and Ao = 60 m. Figure 2.12 shows the spectrum and its corresponding realizations. These
figures vividly display the non-isotropic nature of the random field with higher correlation, or

less random, in y-direction, and shorter correlation in z-direction.

From the above two artificially-generated rough surfaces, it can be seen that realization
offers more lively information as far as the rough surface itself is concerned, and therefore

provides a very good way for the description of a random surface.

2.5.2 Realizations of Goff-Jordan Power Spectrum

Figure 2.13 shows a power spectrum and its corresponding realization for an isotropic Goff-Jodan
model for kg = 0.15 m™', H =5 m, and v = 1.0. Comparing with Figure 2.11, it is found that
that the surface for Goff-Jordan spectrum is much rougher than that for Gaussian spectrum as

expected.

Figures 2.14 and 2.15 display a non-isotropic case for the Goff-Jordan model. The param-
eters are chosen to be ks = 0.03 m™!, k, = 0.1 m™', (, =30°, H =5mand v = 1.0. Tt is
seen that the characteristic of the roughness is quite different from that as shown in Figure 2.12
for Gaussian spectrum, with the scale of the relief described by the Goff-Jordan being smaller
than that for Gaussian model. The pattern of the local strikes are clearly demonstrated in

Figure 2.15, in which it shows that the strikes makes an angle of 30° from y-axis.

The above set of figures indicates that the Goff-Jordan model has a high adaptability for
the variations of the roughness and orientation, suggesting that it can well fit the topography of
the sea floor for the roughness scale within a few hundreds of kilometers, as the original authors

proposed.

2.5.3 Realizations of Pierson-Moskowitz Power Spectrum

The peculiar structure of the Pierson-Moskowitz power spectrum presents itself a quite different
feature in its realization in comparison with either Gaussian or Goff-Jordan as Figures 2.16 and
2.17 show. These figures indicate that the random surface contains many crests and troughs

scattered all over the surface.

Figure 2.16 is the Pierson-Moskowitz power spectrum and its realization for wind speed
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12 m/s. For this case, the sea surface is characterized by many random surface waves. However,
as the wind speed increases to 20 m/s, the sea surface is populated with a train of long waves.
These results are in consistence with the images as one can often observe on a surface of rough

sea.

2.6 Summary

This chapter has been devoted to the study of the random rough surfaces. Some most important
concepts relevant to the description of a random process are first reviewed, followed by the

discussion of the height probability density function, in particular, the Gaussian distribution.

The bulk of the chapter is to analyze the various models for the power spectrum which
are appropriate for the description of sea surface or seabed. These include Gaussian spectrum,
Goff-Jordan spectrum, and Pierson-Moskowitz. The characteristic of each model is illustrated

and analyzed.

A few words about treating the sea floor as a random field are in order. In reality, the sea
floor is a well-defined, deterministic surface which changes shape only in a very slowly manner.
Thus, to treat seabed topography as a stochastic field often raises a certain level of metaphysical
anxiety among many marine geologists. However, for marine acousticians, the study of acoustic
wave scattering from seabed such as the one we are undertaking will involve geological features
with scales comparable with the acoustic wavelengths, which in general are much smaller than
the major features of the sea floor. In this case, the number and variability of small-scale
features are so large that it becomes necessary for the morphological characteristics be averaged

over families or ensemble, which naturally leads to a statistical representation.

In the following chapters, we shall employ the roughness power spectra discussed in this

chapter to study the acoustic scattering problem.
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Chapter 3

Scattering From Perfectly Reflecting

Surfaces

The main theme of the present analysis to study the acoustic wave scattering from random
rough surfaces. The objective is to analyze the pressure scattering field due to various kinds of
rough surfaces. Our major interests are to simulate the acoustic scattering in time domain and
examine the basic scattering mechanisms. In order not to obscure our purpose, the geometry
of the problem is chosen to be simple. Here we shall consider a plane wave incident upon a

perfectly reflecting surfaces which are either flat or rough.

We begin our discussion with a simple problem as a prelude: the Rayleigh reflection
problem of a plane wave incident upon a flat interface separating two homogeneous media.
Even though, this problem may not seem to belong to the chapter entitled, it is still within the
framework of the present study, and illuminates many basic features of a plane wave interacting
with a discontinuity of a medium. We shall present the solution of this problem in a dynamic
manner using MATLAB, with a hope that it might bring up some new perspectives which are not
generally appreciable on a line graph. We then continue to study the scattering from a periodic
surface composed of a finite number of Fourier components. The problem of scattering from a
periodic surface may serve as a benchmark for the further investigation to be followed. Finally,
we consider the scattering from random rough surfaces with the power spectra which closely

resemble the sea surface or seabed.

3.1 Prelude: Rayleigh Reflection Problem

Consider the reflection of a monotonic plane wave with frequency w incident upon an interface
separating two homogeneous fluid media with density p; and ps and sound speed c¢; and ca,
respectively, as shown in Figure 3.1. The pertinent grazing angles with the horizontal in the zz-

plane are denoted by 6. Assuming the incident plane wave to have unit amplitude and denoting
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the amplitudes of the reflected and transmitted waves by R and T which are the reflection

coefficient and transmission coefficient, respectively, we can write the acoustic pressures as

z

A

\4
=

T

Figure 3.1: Plane wave reflection from and transmission across a plane interface between two

fluid media.

eilke1i-k: 1k)r eik1( cos 0;—zsin 0;)

bi = =
pr = R ei(km,1f+kz,1fc)-r - R eikl(zcosﬂT—}—zsinQr) (3.1)
pp = T 6i(km,2§7kz,2l§)-r - 7T eikQ(w cos 0y —z sin ;)

where k;; and k,; are respectively the horizontal and vertical wavenumber of the ith medium,
and k; = ‘/k?c,i + kg,i = w/c¢; is the wavenumbers of the medium 4. It is understood that in the

above expressions the time-dependent term exp(—iwt) is neglected.

The unknown quantities R,T,60, and 6; are determined from the boundary conditions
requiring continuities of pressure and vertical particle velocity across the interface at z = 0.

These boundary conditions can be mathematically stated as

Di +p7‘|z:0 = pt'z:O (32)
1 d(pi +pr) _ 1 om (3.3)
iwpr 0z 2=0 iwpa 07 |,— '

The boundary condition Equation (3.3) are derived from the momentum equation for the acoustic

wave. Substituting Equation (3.1) into Equations (3.2) and (3.3) results in

exp(ikiz cos @) + Rexp(ikizcosf,) = T exp(ikox cosby) (3.4)
inf in @
S [exp(ik1z cos 0) + Rexp(ikiz cosb,)] = y exp(ikox cos 0;) (3.5)
P1C; p2C2

From the requirement of continuity of pressure at z = 0, we find that the horizontal phase

along and across the interface are invariable. So the reflection angle is

0, = 0, (3.6)
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which expresses the specular law of reflection. Also the transmission angle is determined by the

horizontal phase matching, and is given by

cosy  cosb; (3.7)
C2 N C1 '

which expresses the law of the refraction, known as Snell’s Law. That is, both 6, and 6; are
determined via the condition that boundary moves with a phase dependence dictated by the

incident wave, which in turn dictates the horizontal phase of the reflected and transmitted waves.

With Equations (3.6) and (3.7), we can rewrite Equation (3.2) and Equation (3.3) in the

form
1+4R = T (3.8)
smH(l_R) _ sm@tT (3.9)
pic1 p2c2

The above two equations may be solved for the reflection coefficient R and the transmission

coefficient 7', which are respectively given by

msinf — v/n? — cos? 6

R = 3.10
msin@ + v/n? — cos2 0 ( )

msinf + v/n? — cos? 0

where m = pa/p1 and n = ¢1/ce, being the mass ratio and index of refraction of the interface,
respectively. It is seen that both reflection and transmission coefficients are function of mass

ratio, index of refraction, and incident angle.

In general, both R and T can be a complex number, which means that both reflection
and transmission waves have relative amplitude and phase change with respect to the incident

wave. In terms of magnitude and phase, R and T' may be represented by

R = |R|e¥r (3.12)
T = |T|e¥T (3.13)

where |R| and ¢g are, respectively, the modulus and phase of the reflection coefficient, and |T|
and ¢ are those of transmission coefficient. If n is less than unity, then there exists an incident
angle 6. such that cosf. = n. This angle is referred to as critical angle of reflection. For all
the incident angles less than 6., the magnitude of R is equal to unity, i.e., |R| = 1. Thus the
incoming wave is totally reflected. There also may have cases in which an incident wave incoming
at a particular angle completely transmits through the interface even if the media stand strong

contrast to each other.

A few examples may help to fix the idea. Figure 3.2 and Figure 3.3 show the magnitude
and phase of the reflection and transmission coefficients for the following parameters: ¢; = 1500
m/s, py = 1000 kg/m® in the water, and ¢y = 1800 m/s, po = 1800 kg/m® in the bottom. Both
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the sound speed and density of the bottom medium is larger than those of upper medium. This
is referred to as hard bottom in view of the fact that a larger sound-speed medium is generally
harder. In this case, there exists a critical angle 6, = cos ! (ka/k1) = 33.5°, so that the reflection
coefficient is unity for the grazing angle less than 6.. For the incident angle greater than the
critical angle, both the reflection and transmission coeflicients decrease as the grazing angle
increases. This means that the amplitudes of the pressure of both reflection and transmission
waves become smaller as the incident angle turns steeper. This is in consistent with our common
experience in that the glare of sun light reflected from flat roadway makes one hard view as one
faces the sun during the sunset. It is also interesting to note that the transmission coefficient
reaches a maximum value of 2, and then quickly decays to zero as the grazing angle decreases.
As for the phase is concerned, it is seen that there is no phase shift when the incoming wave
is steeper than the critical angle, and then increases to m and 7/2 for reflection wave and
transmission wave, respectively, when the incident angle decreases from the critical down to

Zero.

Another example represents a soft bottom case, in which the sound speed in the lower
medium is smaller than that in the upper medium. Figure 3.4 and Figure 3.5, respectively,
shows the magnitude and phase of the reflection coefficient and transmission coefficient for the
following parameters: ¢; = 1500 m/s, p1 = 1000 kg/m?®, and c¢; = 1300 m/s, p» = 1800 kg/m?>. It
is seen that for incident angle greater than zero the reflection coefficient is less than unity. This is
in contrast to Figure 3.2 in that Figure 3.4 shows no total reflection for incident angle lying within
the physically realizable space. Thus, for soft bottom case, the interface is always penetrable,
allowing energy to be transmitted into the bottom through refraction without having change of
phase as shown in Figure 3.5. It is also interesting to note that at the incident angle equal to
sin™! (, / %2’2:_11)’ which is amounted to 22.6° in this case, the reflection coefficient vanishes with
transmission coefficient being unity. That is to say that the incoming wave does not feel the
existence of the interface. This angle is referred to as Brewster angle, which is occurred when
m > n > 1. There are other interesting cases derivable from Equations (3.10) and (3.11); those

who are interested may consult with Reference [26].

A remark regarding the conservation of energy might be worth mentioning. Since the
incoming wave is the only energy supplier, it is obvious that the energy carried by the reflection
wave and the transmission wave should be equal to that of incident wave. This may easily lead
to conclude that p; = p, + pt, however, this is clearly mistaken. Rather, the correct statement
should be I; - 7 = I, - n + I, - n, where I is the intensity and 7 is the outward normal of the

interface. In terms of pressure, the statement of energy conservation is

2 2 2
Pising = L sing + 2L sing, (3.14)
pic1 picl p2C2

The equation is easily verified by substituting relevant parameters derived above.
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3.2 Spectral Regions

A broader perspective for the wave field in each medium may be provided by the wavenumber
spectrum, which expresses the energy contents of the wave field in terms of wavenumber. The
wavenumber spectrum is discussed in details in many textbooks. Here, we simply note that with

the expressions for the pressure fields given by Equation (3.1), the vertical wavenumber is

kai=+\/k2 — k2, (3.15)

Therefore, if the horizontal wavenumber is smaller than the medium wavenumber, i.e., kg,i < k2,
then k, ; is real in the medium 4, which means that the wave in that medium is in propagating
wave. On the other hand, if the horizontal wavenumber is larger than the medium wavenumber,
ie., kﬁ,i > k2, then the vertical wavenumber becomes complex number so that the vertical
component of the wave varies exponentially. Moreover, to satisfy physical constraints, the +
sign should be properly chosen in Equation (3.15), such that it renders wave exponential decay
in the medium. For this case, the wave in the medium becomes exponential decay away from

the interface; it is referred to evanescent wave.

According to the above discussion, the complete wave field may be divided into three
regions, in which the waves in different region possess different characteristics. To illustrate, let

consider the following two cases of the Rayleigh reflection problem:

Hard Bottom Case

For the hard bottom, the medium wavenumber in the bottom is smaller than the wavenumber

in the water, ko < k1. There are three different spectral regions as shown in Figure 3.6:
Region A : For those waves with horizontal wavenumber less than the bottom medium wavenum-

ber, i.e., k; < ko, the waves are propagating in both media, representing that the incoming

wave is reflected partially from and transmitted partially through the interface. This re-
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Figure 3.7: Spectral regions for a soft bottom, k1 < ks.

gion is called continuous spectral region for both media. It is noted that in this region,
|R| < 1.

Region B : For ko < k, < k1, waves are propagating in the upper medium, but are evanescent
in the lower medium. Physically, this means that the lower medium can not support real
wave, and therefore no energy is allowed to propagate away from the interface. This region
corresponds to total reflection, i.e., |R| = 1, so that it is referred to as total reflection region

for the upper medium.

Region C : For waves with k; > ki, waves are evanescent in both media, and therefore, all
the waves are decayed away from the interface. For an incoming wave with horizontal
wavenumber greater than the medium wavenumber, the “incident grazing angle” is larger
than 7/2, which is not a real entity in space, but is only a mathematical object which is
required to make up the complete spectrum of the wave field. This region is referred to as

evanescent spectral region.

Soft Bottom Case

A soft bottom is referred to the case that the sound speed of the upper medium greater than
that of lower medium, i.e., ¢y > co or equivalently k; < k2. Again, the wavenumber spectrum

may be divided into three different regions, as shown in Figure 3.7.

Region A : For k; < ki, waves are propagating in both media, signifying that the incoming
wave is partially reflected into the upper medium and partially transmitted into the lower

medium so that |R| < 1. This is continuous spectral region.

Region B : For k; < k; < ko, waves are evanescent in the upper medium but are propagating

in the lower medium. In this case, |R| =1 (why?).

Region C : For ko < k;, waves are evanescent in both media, and |R| < 1 (why?).
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It is noted that for soft bottom case, there is no region in which the upper medium is propagating

and lower medium is evanescent; therefore, there is no total reflection.

3.3 Dynamic Simulation for Rayleigh Reflection Problem

In this section, we shall demonstrate the plane wave reflection in a dynamic manner. In this
way, the reflection phenomenon may be vividly displayed so that the reflection characteristic
is self evident. The program is written with MATLAB computer language with the simulated
propagation driven by the functions moviein, getframe, and movie. The details can be found
from the MATLAB user guides [30].

The presentation will follow the sequence discussed in the previous section so that a
comparison with the line graphs can be made. Many results will be shown dynamically on

computer; those sections will be signified by the symbol [DEMO].

Hard Bottom Case

[DEMO]

Plate 3.1 shows a plane wave with a grazing angle 65° incident upon an interface at z = 0.
The medium properties are the same as those employed in Figure 3.2. The upper left sector
in Plate 3.1 shows the incoming wave, and the upper right sector shows reflected wave. The
lower part is for transmitted wave. This plate indicates that the transmitted wave is slightly
refracted, and the reflection pressure is much weaker than that of the transmission. It also
shows that there is no relative phase shift with the incident wave, consistent with those shown
in Figures 3.2 and 3.3. When these waves are set in motion, the speed of propagation depends

upon the sampling time in the simulation.

Plate 3.2 is the same as the Plate 3.1, except that the upper part shows the total field of
summing incident and reflection waves. The interfering pattern is indicated by the highs and
lows in the upper part of the figure. In this case, the interference is not so severe that the total

field is dominated by the incident wave.

Plate 3.3 is the results for a plane wave incident at critical angle 33.5°. In this case, the
reflected pressure is almost as strong as the incident wave, and the transmitted wave is refracted
significantly so that wave fronts are perpendicular to the interface. It is noted that the pressure
of the transmitted waves only slightly decay away from the interface. Again, there is no phase

shift in this case.

When the incident waves and the reflected waves in Plate 3.3 are superimposed, the result
is shown in Plate 3.4. In this case, the interfering is so severe that the total field becomes a
standing wave in vertical direction, and propagating wave in horizontal direction. The nodal

lines at about z=18, 50, 82 m are clearly shown in the figure.
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Plate 3.5 shows the results for a plane wave with incident grazing angle 25°, which is
smaller than the critical angle. In this case, the reflected wave has the same magnitude as the
incident wave, but there is a slight phase shift. The transmitted wave is totally different from
the previous results, with the evanescent nature clearly demonstrated in the figure. The pressure
field in the lower medium nearly vanishes except in a region closed to the interface. The total
field in the upper medium is shown in Plate 3.6, in which it shows a similar interfering pattern

as in Plate 3.4, except that the nodal lines are now slightly distorted due to phase interference.

Soft Bottom Case

[DEMO]

In this case, we choose the parameters the same as in Figure 3.4. Plate 3.7 and Plate 3.8
show the results for incident angle 60°. From Figure 3.5, it is seen that the reflection coefficient
is about 0.2 and phase angle 0, thus the total field of the upper medium is dominated by the
incident wave. For the transmitted wave, the figure shows a very slight refraction as expected

for an interface with small ratio of index of refraction.

Plate 3.9 and Plate 3.10 are for the wave incident at the Brewster angle, which is 22.6° in
this case. From Figures 3.4 and 3.5, we find that the reflection coefficient is zero and tradition
coefficient is unity. These characteristics are clearly shown in these plates, in which the total
field of the upper medium is unaffected by the interface. The incident wave simply changes

course when it travels across the interface.

Plate 3.11 and Plate 3.12 consider a low incident angle at 10°. The major difference from
Plate 3.7 is that the reflected waves are in 180° phase shift with respect to incident wave. The

total field in the upper medium is twisted by the phase shift.

Finally, we demonstrate a pathological case, in which the incoming wave incident upon
the interface horizontally. Plate 3.13 shows that the reflected wave is parallel with the incident
wave, but is completely out of phase. Moreover, the transmission field is empty. As a result,
the whole sound field is completely silent as shown in Plate 3.14. This may form the basis for

the application on counter balancing the unwanted noise as usually desired in many occasions.

3.4 Scattering From Perfectly Reflecting Rough Surfaces

In the remainder of this chapter, we shall consider plane wave scattering from perfectly reflecting
rough surfaces. These surfaces are characterized by vanishes of either the total pressure or
vertical displacement at the interface. The former is referred to as pressure-release surface, and
the latter rigid or hard surface. Although not absolutely correct, these cases fairly approximate

the sea surface and sea floor.

In this section, we shall derive the formulation which is capable of describing the scattering
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Figure 3.8: Coordinate system of a rough surface.

from single rough surface. Figure 3.8 shows the geometry of the surface. The roughness of the

surface is usually specified by the Rayleigh parameter P, which is defined as

P = 2k\/(y)? cos (3.16)

The Rayleigh parameter is to gauge the vertical scale of the roughness with respect to the
vertical wavelength of the incident wave. If P < 1, the roughness of the surface is small so that
the major part of energy of incident wave propagates in the specular direction as a coherent
wave. If P > 1, corresponding to large scale roughness, the wave will scatter into a relative
wide angle, causing the energy to diffuse all over the space. The schematic diagram was shown

in Figure 1.1.

There are essentially two approaches to deal with scattering problem from rough surfaces:
the perturbation method and the tangent plane method (also referred to as Kirchhoff approxima-
tion). The former is suitable for the roughness scale which is small, and the latter for roughness
which is large and smooth such as undulation of extensive terrain. Here we shall be empha-
sized on the rough surfaces which have roughness scale smaller than or comparable with the
wavelength so that the perturbation method will be employed. The validity of the perturbation

method will be discussed following the derivation of the formulation.

3.4.1 Formulation of the Scattered Field

The wave propagation in a homogeneous medium is governed by the wave equation:

0?%p

W = C2V2p (3]_7)

The solution of the above equation must be accompanied with the initial and boundary condi-

tions. The initial condition is specified by the phase e, which stipulates the time dependence

of the sound field. Here, w is the angular frequency of the plane wave. The boundary conditions
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for the problem we are concerned with can be expressed mathematically as

P o=~ (r) = 0, pressure-release surface
.. (3.18)
(Vp-n)|,_y = 0, rigidsurface
where n = (ny,, n,) is the unit vector of the inner normal to the rough surface, and V = (Vh, %),
where the subscript h represents the horizontal components. It is noted that the boundary
conditions, Equation (3.18), are specified at an elevated surface deviated from the mean surface.
Since we are dealing with a random surface, the application of these boundary conditions at
each individual point is horrendously difficult, if not impossible, and therefore other approaches

have to be sought.

To proceed, we perturb the boundary conditions at z = «y with respect to the roughness to
z = 0, which is the mean surface. The perturbation is accomplished by Taylor series expansion
with respect to v, and then retaining the first-order term to yield the boundary conditions for

pressure-release and rigid surface respectively as given below:

Op
P15, = O
Op 0?p
J— . = .1
a2 + ’Yazg Vip: - Vyy . 0 (3.19)

The accuracy of the above expansion is correct up to O(y).

Following the standard practice of the perturbation method, the total field may be ex-
pressed as
p(r, z,t) = po(r, 2,t) + p1(r, z,t) + higher-order terms (3.20)

In the above equation, py is the zeroth-order term, which is the solution for unperturbed surface,
and p; is the first-order term, which is the same order as . Since we have assumed that the
roughness is small so that |p;1| < |po|- The rest is referred to as higher-order terms which are
to be discarded in this approximation. Substituting Equation (3.20) into Equation (3.17) and
Equation (3.19) and equating separately the terms of the order of 4° and +y, we obtain the wave
equations and boundary conditions (BC’s) at the plane z = 0 for the zero-order and first-order

problem as follows.

Wave Equations:

321)0

D= vy (3.21)

Ih_ evy, (3.2
Pressure-Release BC’s:

po = 0 (3.23)

P = —v% (3.24)

44



Rigid Surface BC'’s:

Opo

v 2
= 0 (3.25)
opr %po

It is seen that the first-order problem involves the zeroth-order solution so that the zero-order

problem must be solved first.

To solve for the problem for monotonic wave, we first separate the time dependence by
letting
p(r,z,t) = pu(r,z)e ™" (3.27)

Substituting Equation (3.27) into Equation(3.21), we can obtain the Helmholtz equation
(V2 +k2) pow = 0 (3.28)

For simplicity, the subscript w will be dropped in the following presentations. Equation (3.28) is
subject to the undisturbed boundary conditions, Equations (3.23) and (3.25), respectively, for

pressure-release and rigid surface.

The zero-order solution for a plane wave incident upon a perfectly reflecting interface is
readily shown to be
po = exp(iky - 1) [exp(—i k,z) £ exp(i k,z)] (3.29)

where the — sign is for the solution for pressure-release surface, and the + sign for the rigid
surface. Also, k; and k, are the horizontal and vertical components of the wave vector k of the

incident wave satisfying the condition

el* + K2 =K (k= [k|)

Substituting Equation (3.29) into Equations (3.24) and (3.26), we obtain the boundary
conditions for which the first-order problem must satisfied at z = 0:

Pressure-Release BC’s:
p1(r,0) =2ik,y(r)exp(iky - 1) (3.30)

Rigid Surface BC'’s:

w =2 [kfv(r) +ike - Vp v(r)] exp(iky - 1) (3.31)

It is the common practice that the roughness y(r) be represented by its Fourier components,

which is defined as

1(t) = [ A(p)exp(ip 1) dp (332)

where A(p) is the amplitude spectrum of the roughness, and p is the wave vector components.
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Substituting Equation (3.32) into Equations (3.30) and (3.31), and introducing the factor
exp(i g, z) to account for wave propagating away from the interface, we may obtain the scattered

field solution for pressure-release rough surface as
pi(r,2) =2ik, / A(p) expli(ky + p) - T + i, 2]dp (3.33)

It is noted that ¢, = \/k? — |k, + p|? is the vertical component of the scattered wave, and
the square-root must be chosen so that Im(q,) > 0 to satisfy physical constraint. By defining
q = k, +p as the horizontal wavenumber of the scattered wave, Equation (3.33) may be written

pi(r, z) = 2ik, /A(q —ky) expli(q-r+¢,2)]dq (3.34)

Equation (3.34) is a convolution integral which clearly indicates that the scattered pressure at a
particular observation point (r, z) is the overall contribution of all scattered plane waves prop-
agating with amplitude components A(q — k;). The amplitude of each plane wave component
is dictated by the magnitude of the roughness spectrum at component p, which is the part of
wave vector to be made up for k, so that the incident wave is able to scatter into direction q.

This is the Bragg’s law of scattering.

Similar derivation will yield the scattered field solution for rigid rough surfaces as

. k2 —ky - (q—ky _

pi(r,z) = 2zkz/ l— 2 5 éq ) A(q — ky) expli(q-r + ¢.2)]dq (3.35)
VA ¥4

This equation is similar to the pressure-release surface, except now a factor (the bracket term in

the integrand) is weighted for the amplitude to account for the change of boundary condition.

3.4.2 Validity of the Perturbation Approximation

The accuracy of the perturbation approximation for scattering from one-dimensional randomly
rough pressure release surfaces with a Gaussian roughness spectrum was studied by Thorsos and
Jackson [48]. In general, the conditions given for the validity of perturbation theory are that (1)
the RMs surface height should be small compared with the wavelength, and (2) the RMS surface
slope is small compared to 1, although condition (2) is not necessary to be explicitly used in
deriving the scattering field. It was found by Thorsos and Jackson that, comparing with the
solutions obtained by the method of integral equation and high-order perturbation prediction,
the condition (1) is insufficient to ensure the accurate of first-order perturbation theory for
Gaussian roughness spectrum. Another parameter, the roughness correlation length, plays an

important role in defining the region of validity.

The study has shown that reducing the surface slope by increasing the correlation length
for a fixed RMS height actually causes the first-order perturbation predictions to fail. A numerical
calculation of the region of validity was provided in terms of k+/(y?) and kl (I being correlation

length), and the results demonstrated that increasing kI will reduce the resonance wavenumber
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for the forth-order terms (the scattering cross section), leading to a contribution larger than
the second-order terms. However, it should be noted that since their analysis is based upon the
Gaussian roughness spectrum, the results may not necessarily apply to roughness spectra that

exhibit power laws.

An explicit criterion for the region of validity for the first-order perturbation method
applying on the Gaussian spectrum was established, which stipulates that ky/(y?) < 1 and
kl < 6. In this study we shall use this criterion as an important guideline whenever the Gaussian

roughness spectrum is employed.

3.5 Scattering From One-Dimensional Periodic Surface

[DEMO]

In this section, we consider a plane wave impinging upon a one-dimensional periodic rough
surface. The surface is assumed to consist of a finite number of Fourier components, each with

a phase angle which is randomly chosen over 0 and 27. The surface may be represented by

N
v(x) =) aisin(k;z + ¢;) (3.36)
i=1
where a;, k; and ; are, respectively, the component amplitude, the component wavenumber
and the phase angle, and N is the number of Fourier components. The Fourier transforms! of
Equation (3.36) yields

N
Alw) = 7 D aildls — m) = 60 + )] (3.37)

where § is the Dirac delta function.

To obtain the scattered field due to the periodic surface, we substitute Equation (3.37)
into Equation (3.34) to get

k, & , . . .
P = i > a; {expli(ks + Ki)z + iq.2] — expli(ky — ki) + iq,2]} (3.38)
i=1

where g, = k% — (ky + k)% and ¢, = \/k? — (kg — Ki)?

Similarly, for rigid surface with the same rough surface, the scattered field solution is

1 k2 — ik K2 + ik
pr=—5-2 0 { (ﬂ) expli(kz + ki) z + ;2] — (*) expli(ky — ki) + z'q’ZZ]}
™ =1 q q,
(3.39)

A plane wave of 20 Hz incident upon a periodic surface with 45° grazing angle is con-
sidered. Plate 3.15 and Plate 3.16 with their propagation pattern shown dynamically are the

YA(k) = & J (@) exp(—ikz)da
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Figure 3.9: Sample periodic rough surfaces.

scattered field solutions for pressure-release and rigid periodic surface, respectively. The ampli-
tude components and wavenumber components are generated by the random function rand in

MATLAB, which are given by the following sequences:

a; 14.89 26.99 24.65 1935 24.54 19.81 10.26 8.69 10.24 16.02
k; 0.0254 0.0108 0.0293 0.0199 0.0130 0.0246 0.0191 0.0156 0.0243 0.0217

The sample surfaces are shown in Figure 3.9. Both plates show that there is a dominant scat-
tering angle and a few minor scattering angles. It is also shown that the scattered field is
less coherent for rigid case than pressure-release case. This may be attributable to the weight-
ing factor in Equation (3.35), with which it acts as shading function and renders a stronger

interference.

3.6 Scattering From Random Rough Surfaces

In this section, we shall present the scattering fields for random rough surfaces with power
spectra discussed in Chapter 2. The results were presented in spatial domain for the pressure
field. Although random in nature, these results give a good sense of the sound field distribution
in space, allowing comparison with the realization of the spectra generated with the procedure

given in Section 2.5.

3.6.1 Random Surface With Gaussian Spectrum

We first consider a random rough surface with Gaussian power spectrum. As mentioned before,
the simplicity of the spectrum may well serve as a benchmark problem under consideration.
For the purpose of comparison with the previous results, we first consider a one-dimensional
Gaussian spectrum, which is given as follows:

1 h? K212

2ﬁexp(— )

P(k) = (3.40)
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In this equation, h and [ are, respectively the RMS height and correlation length.

Plate 3.17 is the solution for a plane wave of 20 Hz incident at 45° upon a rough surface
with A = 100 m and [ = 50 m. It is seen that the wave front is randomly severed due to
interference of scattered waves in various directions. The dynamic demonstration will show that
increasing h or decreasing [ will make the scattered field even more random, as expected. All
the level of observation in this section is chosen to be 50 m away from the rough surface, i.e.,
z =50 m. [DEMO]

Plate 3.18 and Plate 3.19 are for the rough surface with power spectrum shown in Fig-
ure 2.12. It is a non-isotropic Gaussian with correlation length 60 m and 10 m in major and
minor axis of the spectrum respectively. Plate 3.18 shows the result for a plane wave incident at
45° grazing angle and along the direction with shorter correlation, and Plate 3.19 is for the same
condition except along the direction with longer correlation. These two results indicate that the
pressure amplitude is larger for wave coming in along the direction with shorter correlation. This
is reasonable because the surface appears to be rougher in that direction. Moreover, the results
also show that the “patches” on Plate 3.18 appear to be parallel to the strikes of the rough
surface, indicating that the plane wave is scattered sequentially as the wave front impinges the
strikes. For Plate 19, the high pressure patches are scattered more randomly, showing that there
seems no preference scattered direction, as one can imagine in view of the realization shown in
Figure 2.12.

Plate 3.20 shows a result for a plane wave incoming horizontally along the direction with
shorter correlation. The zero grazing angle makes the roughness appear to be flat so that the

pressure field is nearly zero, however, the scattering pattern seems to reserve.

3.6.2 Random Surfaces With Goff-Jordan Spectrum

Here, we consider the scattering from a rigid rough surface with Goff-Jordan spectrum as shown
in Figure 2.14. It is intended to simulate scattering from a rough seabed. Plate 3.21 is for a
plane wave incident normally. It is seen that the scattering pattern resembles the topography
of the rough surface shown in Figure 2.14. This is easily rationed because the wave is incident

symmetrically, and therefore the sound field must have the similar distribution as the roughness.

Plate 3.22 and 3.23 are for a plane wave incident upon the rough surface with 45° normal
angle, but the azimuthal direction being facing and along the strikes, respectively. The spatial
characteristics of these two plates are similar to Plates 3.18 and 3.19. That is, the scattering is
stronger and the pressure distribution is more similar to the rough surface, when the incoming

plane is incident in the direction facing the strikes.
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3.6.3 Random Surfaces With Pierson-Moskowitz Spectrum

Here we consider a plane wave impinges upon a pressure-release surface having a Pierson-
Moskowitz power spectrum. It is a good model for studying sea surface scattering. Plate
3.24 and Plate 3.25 are, respectively, for a plane wave interacts with ocean surface shown in
Figure 2.16 for wind speed of 12 m/s and Figure 2.17 for wind speed of 20 m/s. The incident
angle is 45° and is in the direction of the wind. These results show that the difference of pressure
amplitude is about one order, with that corresponding to wind speed of 20 m/s being larger.
Furthermore, these two plates maps relatively in consistent in distribution with the roughness of
the ocean surface, with Plate 3.25 showing scattering from ocean surface populated with larger

waves.

Finally, Plate 3.26 is for the same condition as in Plate 3.25, except the incident azimuthal
angle is different, where Plate 3.25 is for plane wave coming in along the direction of the wind,
and Plate 3.26 is for plane wave coming in the direction perpendicular to the wind. It is seen
that the orientation of the sound field changes accordingly as the incident angle changes. Also,

the distributions of the pressure highs are different.

3.7 Summary

The main theme of this chapter is to study the pressure sound field for a plane wave impinging
upon a rough interface. The Rayleigh reflection problem was studied first. Through the use of
modern computing and data processing language such as MATLAB, it is very helpful to illustrate

the reflection and transmission characteristics of the problem.

We then continue to investigate the plane wave scattering from rough surfaces. Under the
framework of small perturbation method, the formulation for the scattered pressure field from
perfectly reflecting rough surface was derived. The formulation was then employed to obtain
the scattered field in conjunction with various power spectra, including the Gaussian spectrum,
Goff-Jordan spectrum, and Pierson-Moskowitz spectrum. Many results for the random pressure

field were presented and analyzed.

It is interesting to note that the sound field distributions bear close resemblance with the
roughness distribution. So, in principle the scattered sound may be used to invert the sea surface

roughness as many ongoing research attempted.
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Chapter 4

Intensity and Correlation of the
Scattered Field

In the previous chapter 3, we devoted ourselves in obtaining the scattered pressure field. Since
the surface is random, so the scattered field is also random. Therefore, each solution of the
pressure field merely represents one of the infinitely many samples. Although the random field
itself is helpful in understanding the distribution of the pressure field, it does not provide firm

information in terms of deterministic quantity as we usually wish to have.

There are two quantities which characterize the random scattered field: the intensity
distribution and the spatial correlation. The former provides the expected value of the pressure
level at each point in space, and the latter presents the coherence of the random pressure. Both
quantities are important in understanding of the scattered field as well as in applications. In this
chapter, we shall concentrate on these two subjects and obtain the results which are relevant to

marine environment.

4.1 Average Intensity

The intensity of the scattered field is one of the most important parameters describing the
scattered field. Due to the assumption of zero mean for the random surfaces, the mean value of
the scattered field is also zero; however, the intensity which is proportional to the mean square

of the acoustic pressure is not zero.

The intensity of the scattered field is related to the mean square pressure as follows:

I = <p1];’{> (41)
pc
where the asterisk denotes the complex conjugate quantity. For simplicity, we use Iy = pc’I; to
denote a quantity representing the intensity of the scattered field. Here the subscript s denotes
scattered field.
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First we consider the pressure-release surface. Substituting Equation (3.33) into Equa-

tion (4.1), we obtain
I, =42 [ [(A@)A* @) exp lila ~ @) - v +ila: — ¢2)2] dadd] (4.2)

where g, = \/k? — |ky + p|? and ¢, = /k? — |k + p’|?. This formulation expresses the intensity

of the scattered field as ensemble average of the amplitude spectrum, which is related with the

power spectrum as follows:
(A(p)A*(p')) = P(p)é(p — P) (4.3)

Equation (4.3) is derived in Appendix A. It is noted that the power spectrum is defined as
P®) = gz [ O (4.4)
p—(27r)2 7oor r)e .

where C(r) is the correlation function for a stationary random rough surface. Substituting

Equation (4.3) into Equation (4.2) and integrating over p yields

1= 42 [ P(p)p = 4k (77) (4.5)
This equation shows that the intensity is merely linearly proportional to mean-square roughness,

and quadratically to vertical wavenumber.

Figure 4.1 shows the intensity as function of incident grazing angles for a plane wave
impinging upon the sea surface, i.e., pressure-release surface with Pierson-Moskowitz power
spectrum. The wind speed is shown inside the graphs. It is seen that the intensity increases as

the grazing angle increases. Also, as the wind speed increases, the intensity increases as well.

4.2 Scattering Coeflicients

The scattering coefficient, ms(60, ¢), for a scatterer with differential surface area dS is defined as

6,4
dl, = L-m(R2 ) ds (4.6)

where I; is the incident intensity, R is the distance from the observation point to the scatterer,
0 is the angle between the scattered wave and the vertical axis, and ¢ is the azimuth angle.
The coordinate system is chosen so that the incident plane wave lies on the zz-plane as shown
in Figure 4.2. Moreover, we shall assume that the observation point is far enough so that only
the propagating, non-attenuating, waves make contributions. This is called the far zone, or

Fraunhofer zone, of the scattered field, which satisfies the following conditions:
L<R, ILINXR (4.7

where L is linear dimension of the area.
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Figure 4.1: Intensity as function of grazing angles and wind speeds.

It is clear from the definition that the scattering coefficient is only function of angles, not
the distance. It represents the angular distribution of the scattered energy per unit scattering
surface, thus it is the a quantity which characterizes the roughness. If we take the incident
intensity as unity, and consider the surface as infinite extent, then the intensity due to an

infinite plane is
0 2m /2
I, — / ms(0,9) 45 _ / / ms(6, ) tan 0 de df (4.8)
R? o Jo
where the differential area dS = R?tan®df d¢ is employed. Equation (4.8) must be the same
as Equation (4.5). For pressure-release surface, Equation (4.5) can be written as

2 pw/2
I, = 4cos? 6, k4/ / P(p)sinfcosOde¢db (4.9)
o Jo

in which the relationships dp = £d€d¢ and ¢ = ksinf are applied. Equating Equation (4.8)

and Equation (4.9) yields the scattering coefficient for pressure-release surface as
ms(6, §) = 4k* cos? O cos? 6 P(p) (4.10)

where p = (ksinf cos ¢ — ksin 6y, k sin 0 sin ¢).

For rigid surface, the derivation of the scattering coefficient is more complicated due to the
fact that the boundary condition involves the surface height function and its gradients, which
is also assumed to be zero mean. The derivation may be found in Reference [34] so that it will

not to be reiterated here. The result is given as
ms(0, ¢) = 4k*(1 — sin 6y sin @ cos ¢)? P(p) (4.11)

where again it is noted that p = q — k.
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Figure 4.2: Coordinate system for the scattered field.

Examples

Here we show a few examples of the scattering coefficients for various kinds of roughness. Fig-
ure 4.3 shows the scattering coefficients for a plane incident at 45° onto a rigid rough surface
with isotropic Gaussian spectrum whose RMS height is 5 m and four different correlation lengths
are respectively 5, 15, 25, and 50 m. The frequency is 20 Hz. The results show that, for small
correlation length (A = 5 m), the energy is scattered mainly into the backward (¢ = 180°)
and horizontal direction (6 = 90°). This is because of the fact that for small correlation, the
surface is rougher so that the incoming wave is more likely to be scattered backwards. When the
correlation length increases to 15 m, the energy is gradually turned to the forward and vertical
sector, and eventually, as the correlation increases to 50 m, the scattered energy is concentrated
in the forward (0°) and specular direction (45°), which is seen in the subplot corresponding to
A = 50 m in the figure. It is noted that for large correlation length the surface is smooth so that

the wave mainly scatters into specular and forward direction as expected.

Figure 4.4 shows the scattering coeflicients for the same conditions as in Figire 4.3 except
the surface is being changed to pressure-release. The results indicate that in the large correlation
limit the two results are almost identical, but the difference occurs at small correlation length, in
which the scattering coefficient is smaller for pressure-release surface than that for rigid surface.
Also, the major scattering angle is in the normal direction. Similar interpretation for the results

prevails.
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Figure 4.3: Scattering coefficients for rigid isotropic Gaussian spectrum with RMS height of 5 m,

and four correlation lengths: 5, 15, 25, and 50 m.
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4.3 Correlation Function of the Scattered Field

An important characteristic of a scattered field is the spatial correlation function. In some cases
this function allows us to obtain the solution of an inverse problem, i.e., to find the correlation
function of the roughness. It is also the correlation function which characterizes the spatial

structure of the scattered field.

The spatial correlation function is defined as

By (T, m) = (ps(r1, 21)p5 (r2, 22)) (4.12)

Here, again we assume that the rough surface is infinite, and the incident wave is a plane wave.
We are mainly concerned with the correlation property for observation point far away from the
rough surface, i.e., far zone. Similar to the derivation of the scattered intensity in Section 4.1,

we may derive the correlation functions for pressure-release as follows:
By(t,n) = 4k; /F P(p) exp[—i(q - T + ¢.n)]dq (4.13)

where f =ry—ry, n = 20— 21, ¢, = VK2 — ¢2, and T is a domain of ¢ corresponding to real values
of g,. It should be noted that the horizontal correlation may be obtained by setting n = 0, and
compute the value of B, as function of r. Likewise, the vertical correlation is obtained by setting
r = 0, and compute B; as function of 7. Furthermore, the intensity is the value of correlation

function at zero separation of the receiver, i.e., Bs(0,0).

Examples

In this section, we demonstrate a few cases for correlation function for pressure-release rough
surface. Plate 4.1-Plate 4.4 is the two-dimensional correlation function for a plane wave incident
at 45° upon a one-dimensional Gaussian rough surface with four different correlation length. The
RMS height is taken to be 10 m, and the correlation lengths of the rough surface are, respectively,
1000, 100, 45, and 10 m. It is clear that the scattered field is very coherent for very large
correlation length (Plate 4.1), and as the correlation length decreases to 100 m, the coherent
part of the scattered field becomes narrow, with high correlation mainly in the specular direction
(Plate 4.2). As the correlation length continues to decrease to 45 m, the coherent part begins
to turn blur, and eventually when correlation length reduces to 10 m, the scattered becomes
completely diffuse. This is a very good example to show how the correlation length of the rough

surface affects the coherency of the sound field.

Figure 4.5 and Plate 4.5 show the horizontal correlation of the sound field for a plane
wave incident normally upon the sea surface with Pierson-Moskowitz spectrum for wind speed
of 12 m/s. The result indicates that the sound field is more correlated in y direction than in

z-direction, and is characterized by two low negative correlation regions.
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Figure 4.5: Horizontal correlation function for Pierson-Moskowitz power spectrum with wind

speed 12 m/s. The plane incident upon the surface normally.
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Figure 4.6: Horizontal correlation function for Pierson-Moskowitz power spectrum with wind
speed 12 m/s. The plane incident upon the surface with 45° incident grazing angle and along
the direction of the wind field.

Figure 4.6 and Plate 4.6 demonstrate the horizontal correlation function of the scattered
field for the same roughness spectrum as that in Figure 4.5, except that the incident plane wave
is coming onto the surface with 45° degree grazing angle and along the direction of the wind.
In this case, the correlation function shows two high coherent zone neighboring the major high

coherent zone.

The correlation function of the scattered field such as those shown in the above two figures
has many implications, and thus deserves further discussion. To understand the structure of
the function, it is noted from its definition that the correlation function has significance both
in scattering strength and phase interference. A low value of correlation between two points in
space may signify that the two received pressure fields have either low pressure picked up by both
or one of the receivers, or the phases between the two pressure fields are not related to each other.
With this mind, the correlation pattern shown in Figure 4.6 implies that the incoming plane
wave is scattered mostly into the forward sector of the space, so that the correlation function
has several high-value zones in the forward direction. The decaying structure of the correlation
function shows that although the scattered field is more coherent in the direction normal to the
wind, the energy scattered into that direction is less significant, while in the direction along the
wind field, there is more energy but less coherent. This is consistent with our perception of the

59



il

AL

AR AIOR S
5 3:“3:3“3‘“
SIS

Normalized Correlation

-0.5
-1,
4
4
_ : -4 - _
Y-separation/wavelength 4 X-separation/wavelength

Figure 4.7: Horizontal correlation function for Pierson-Moskowitz power spectrum with wind
speed 12 m/s. The plane incident upon the surface with 45° incident grazing angle and normal
to the direction of the wind field.

scattered field in view of the wave field distribution shown in Figure 2.16.

Figure 4.7 and Plate 4.7 presents the horizontal correlation for the same conditions as in
Figure 4.6, except that the incident azimuthal direction is normal to wind field. This figure
shows a skew symmetric distribution, indicating that most energy are scattered into direction
which makes an angle of 45° with the direction of incident azimuthal angle. The fast decaying
structure of in the direction of high energy indicates that the scattered field is even less ordered

than previous cases.

Finally, the correlation for a plane wave incident normally to a sea surface when the driving
wind speed is 20 m/s is shown in Figure 4.8 and Plate 4.8. This is similar to Figure 4.5, except
now the scattered field looks more coherent. This is conceivable in that the wave fields are
dominated by trains of large waves which appear to be less random, as a result, the scattered
field has longer correlation lengths when compared with Figure 4.8.
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Figure 4.8: Correlation function for Pierson-Moskowitz power spectrum with wind speed 20

m/s. The plane incident upon the surface normally.
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4.4 Summary

In this chapter, we have studied some of the most important properties of the scattered field,
including average intensity, scattering coefficients, and spatial correlation. These results provide

many useful information embedded in the scattered field.

Comparing with previous chapter, the quantities presented in this chapter are all deter-
ministic. Although less prominent in terms of direct visualization, these quantities characterize

the scattered fields, and serve as the basis for the applications of inversion of the rough surfaces.
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Chapter 5

Scattering From an Interface over a

Penetrable Layered Medium

The previous chapter deals with a simple environmental model in that only a single perfectly
reflecting surface is considered. This problem has illustrated the basic scattering characteristics
and mechanisms, which shed light on the general properties of scattering from a rough surface

in a more complex environment.

The sea surface is an interface between sea water and air, and because of the strong
impedance contrast between these two media, the sea interface may well be approximated as
a perfectly reflecting pressure-release surface. However, the sea floor is an interface between
water and elastic medium. Their impedance ratio is much smaller than that of sea surface, and

therefore, treating the sea floor as a perfectly reflecting surface is less justifiable.

In this chapter, we shall consider a more realistic case, in which the rough surface is being
treated as an interface overlying a penetrable layered medium. With the assumption of perfectly
reflecting being released, it opens a new realm of scattering problem. The general theory of wave
scattering from a layered medium or waveguide must be developed. It is expected that due to
the increase of complexity, analytical solution such as we obtain in the previous chapter will no

loner to exist, and numerical method must then be employed.

It is to be stressed here that we do not intend to embark on a full investigation of the
problem entitled to this chapter. Rather, we shall review the theoretical model and apply current
available software OASES to the problems of our interest. While OASES is an extensive program
which is capable of solving for many acoustic propagation problem in an oceanic environment,
it is remained to be developed for scattering from a rough interface overlying a medium with
continuously varying acoustic properties. Therefore, we shall propose a model for this problem
and attach to Appendix B. It is the intent of this author to continue investigation of this problem

following the completion of this thesis work.
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Figure 5.1: A realistic model.

5.1 A Realistic Model

Consider a plane wave impinges a rough interface overlying a nonhomogeneous medium as shown
in Figure 5.1. The medium is assumed to be horizontally stratified, which means the acoustical
properties of the medium depend upon the depth and not in range. From many geological
surveys, it has been shown that both sound speed and density vary gradually to a certain depth
and then remain constant afterwards. To solve the problem, the standard practice is to discretize
the medium into several layers in which the acoustic properties may be assumed to be constant.
This is shown in Figure 5.2

In this chapter, we shall approximate the problem shown in Figure 5.1 by a model shown
in Figure 5.2. This is reasonable if the gradients of sound speed and density is small. When
the gradients of the properties are large, it may seem probable to obtain solution by increasing
the number of layers and decrease the depth of each layer. However, the very assumption for
the perturbation method to work is that the layer depth must be much larger than the rRMS
roughness of the surface, which might be violated in some cases. As a result, for roughness
greater than the length scale of the variation, only coarse subdivision may be taken in order to
satisfy the assumption. Therefore the quality of solutions may be degraded to such a degree

that other solution method may require to be employed.
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Figure 5.2: A model for discretized horizontally-stratified medium.

5.2 General Perturbation Theory for Wave Scattering From
Rough Surfaces Over a Stratified Medium

In this section, we briefly review the perturbation theory for wave scattering from rough surfaces
over a horizontally stratified medium. Since many relevant papers may be found from literature,
such as Liu & Henrik [26], Kuperman & Henrik [23], so only the essential formulations are

summarized here.

5.2.1 Wave Equation for Nonhomogeneous Media

The wave equation in an ideal fluid can be derived from hydrodynamics and the adiabatic relation
between pressure and density. The governing equations include the equation of continuity, the

Euler’s equation, and the equation of state, which are, respectively, given by

op
i V. pv (5.1)
ov
pgy TPV Vv=-Vp(p) (5.2)
Dp kDp
Dt~ pDi (5.3)

In the above equations, p is the density, v the particle velocity, p the pressure, x for the bulk

modulus.
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A standard procedure to extract acoustic wave is by assuming that p = py + p', p =
po + p', and v is also a small quantity. The mean flow is assumed to be zero. The linear
approximations, which lead to the acoustic wave equation, involve retaining only first-order

terms in the hydrodynamic equations. These are

op'
5 = TV (pov) (5.4)
ov ,
POE = —Vp (5.5)
op’' ko [ Op'
8_]; +v-Vpy = p—z (3—/; +v- Vp0> (5.6)

Equation (5.5) can be somewhat simplified. Its right-hand side can be transformed, with the
help of Equation (5.4), to yield the equation
/

0
6—Z+v-Vpo+ﬁ0V-v:0 (5.7)

In the following sections, pg shall be considered constant throughout the fluid, i.e. term depend-
ing on Vpy shall be disregarded. Equation (5.7) then takes the form

op’'

— +kV-v=0 5.8

ot + Ko (5.8)

To derive the wave equation, it is necessary to eliminate v, which may be achieved by

taking divergence on Equation (5.4) and differentiation on Equation (5.8), with appropriate
manipulation of some parameters. The results of a subsequent subtraction will yield

1 0% 1_,
P (%Vp) 59

where we consider that the medium is of varying density. For brevity, we drop the superscript /

and the subscript 0 and Equation (5.9) can be rewritten as [4]

10%p 1

2y - —— =-Vp- 5.10
V- 5o pr Vp (5.10)

with ¢? = %. Equation (5.10) is the wave equation with density and sound speed stratification.
It is seen that the term on right-hand-side is due to the density stratification. If the density is

constant in space, Equation (5.10) is reduced to the standard form of wave equation.

1 8%
2 —
Vp — 292 =0 (5.11)

5.2.2 Solutions of Wave Equation for Homogeneous Media

For an isotropic medium, the acoustic wave field in terms of pressure can be expressed by

Equation (5.11). Define Fourier transform in time as follows:

Pu(r,z) = \/% /dt p(r, z,t)e ! (5.12)
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p(r,z,1) = %27 [ patr, e (5.13)

Then, application of the above transform on wave equation will yield Helmholtz equation as
(V2 +k*)p, =0 (5.14)

where k = w/c is the wavenumber. Since the medium properties do not depend upon the range,
the range dependence may again be removed by using two-dimensional spatial Fourier transform
defined as

_ 1 e or
Pw(ke,2) = %/er pw(r,z)eZkr (5.15)

1 . s
pulr,2) = 5 / Ly (K, 2)e 5 (5.16)

where k, = |k,| is the horizontal wavenumber. Application of the transform will lead to the
an equation which only depends on depth, thus referring to depth-separated wave equation as

follows:

d2
(s + 7)) i) =0 .17

where k2 = |k,|? is the horizontal wavenumber. The subscript w signifies the quantities being
monotonic with frequency w. Since it is implied throughout the following presentation, the

subscript w is dropped for brevity.

The depth-dependence wave equation, Equation (5.17), is a linear ordinary differential
equation in z, with the horizontal wavenumber k, being a parameter. Therefore, the general
solution for the depth dependence of the field, the so-called depth-dependent Green’s function,
takes the form

Plkr,2) = A (ke)p (e, 2) + AT (k)P (ke 2) + ke, 2) (5.18)

where A~ (k) and A% (k,) are arbitrary coefficients to be determined, and p(ky, z) is a particular

solution to account for the source field if a source is present in the medium.

For a stratification of isovelocity layers with the propagation in each layer governed by
Equation (5.17) with k(z) = k;, the solutions of Equation (5.17) are of exponential form. Thus

the homogeneous solution for the layer ¢ has the integral representation:
1 iker [ oy ,
pi(r,z) = 5 /kore JkeT [pi (ky)e %* +p2—(kr)e+mz] (5.19)

where o; = 1/k2 — k?. The subscript 7 stands for it" layer. Equation (5.19) may be interpreted
as decomposition of the acoustic field into up- and down-going plane waves with horizontal

wavevector k, and amplitudes p; (k) and p; (k,), respectively.

Equation (5.19) is the general solution of the Helmholtz equation for isovelocity layer
with the unknown amplitudes p;” and pz‘-" yet to be determined from the physical constraints of

the problem. In the present context, these constraints are continuities of pressure and vertical
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displacement at the interface. Using a differential operator notation B; introduced in Ref. [23],

these conditions can be expressed as:
Bi(pisi+1) =0,i=1,2,...,N—1 (5.20)

where N is the total number of layers, including the upper and lower half-spaces. Again,
the Fourier transform is applied to the boundary conditions, Equation (5.20), replacing the

differential operators by algebraic operators

I ~ ~F .
Bi(ke) [511 () + Brigi ()| = 0,i=1,2,..., N =1 (5.21)
with p';FZ +1(kr) being a vector containing the unknown plane-wave amplitudes for the homogenous

solution in the layers ¢ and ¢ + 1, and ﬁ:i +1(ky) is added to account for the amplitudes of the

source field in the two layers.

It should be noted that the linear system, Equation (5.21), cannot be directly solved locally
at interface ¢ since the number of unknowns ﬁf’FZ 41 is larger than the number of equations. How-
ever, these local systems may be assembled to form a global system, which when supplemented
by the radiation conditions for z — 0o may be directly solved for the unknown plane-wave
amplitudes, and the solution of the Helmholtz equation is then determined by carrying out the
wavenumber integral, Equation (5.19). The above procedure is known as direct global matriz

(DGM) approach and has formed the backbone of the OASES code.

5.3 Solution for Rough Boundaries

Here, we review the boundary perturbation approach developed in Reference [23] for the model
geometry shown in Figure 5.1, which extends the application of the spectral field representation

in Equation (5.21) to a stratification with small interface roughness.

Assume that the interface at depth z; between two layers 7 and ¢+ 1 is randomly rough with
elevation y(r) = z — z;, with mean zero, (y(r)) = 0, as sketched in Figure 5.3. Since boundary
conditions must be applied at z = 7(r) + z;, the boundary conditions can be expressed in a

rotated system defined by the local tangent plane of the rough interface.

Let the capital letters W, U, N, and T represent the displacements and stresses in the
rotated coordinate system, corresponding to the unperturbed parameters w, u = (ug,uy), n =
02z, and t = (0g;,0y;), respectively. Further assuming the slope of the surface is small, i.e.
|7'| < 1, where 7/ is the gradient of the surface defined as

9v(r) 9(r)
!
() = (Var V) = (a—xa B—y) (5.22)

then the rotation transformation of displacements and stresses is [23]
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Figure 5.3: Coordinate system of a rough surface

W = w—9"-u

U = ut+yw

N = n—2¢-¢ (5.23)
T = t+(Veloz — 0za] = VyOay: Yy (022 — Oyy] — V00wy)

where only terms to the first order in the roughness have been retained. The rotated boundary
conditions can now be expressed as a perturbation of the original boundary conditions, Equation

(5.20) , in the operator form
B} (pii+1) = Bi(pii+1) +7' 0 bi(pisiv1) (5.24)
where the operator symbol o represents the various vector operations in Equation (5.23).

Now, the total field in layer number ¢ is decomposed into a coherent or mean field (p;)

and an incoherent, scattered field, s;

pi = (pi) + si (5.25)

where the scattered field is assumed to be of order . Following the development in Reference
[23], one then arrives at a set of equations which must be satisfied by the solutions of mean
and scattered fields at the average interface depth z;, respectively. Thus, we obtain boundary

condition for the mean field as follows:

Bi(ky) @8—23(k)+1(k)+1(k) (551 (kp)) =
t\Br 9 92 T I\ Br 2\Br pi;i—l—l( r)) =0 (5.26)
where
hky) = —%/quP(q—kr)aBgiq)
x5 (a) [OBT(“) a0 Ez-(kr)] (5.27)
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2
hie) = ) [Pap@-k)jla k) ol

xB; ! (q) [% —jla—ke)o Ei(kr)] (5.28)
The equation for the scattered field is
Bi@siin(@) = —5- [ Pheila—ki)
x [83(9—(“) —jla-Tk)o &(kr)] (B4 (ce)) (5:29)

In the above expressions, (57, (kr)) and ;41 are vectors containing the unknown plane-wave
amplitudes in layers ¢ and 74 1 for coherent and incoherent components, respectively. The power
spectrum, P(q), is defined by Equation (2.15). It is also noted that the above equations are
based upon the expansion of the rotated boundary condition, Equation (5.26), in a Taylor series

to second order in the roughness parameter . Thus, the results are correct to O [kvZs]

5.4 Numerical Examples

Based upon the formulation described in the previous section, a numerical code SAFARI — Seismo-
Acoustic Fast Field Algorithm for Range-Independent Environment was developed by Henrik
Schmidt [44], and later is upgraded to improve stability and subsequently renamed to as OASES.
The 0ASES includes many moduli which allow to carry out many applications of wave propa-
gation in an oceanic environment. For example, Module oasr allows computation for reflection
coefficient for stratified medium up to 200 layers (default), Module oast for transmission loss,

Module oass for scattering, and many other more.

In this section, we shall apply the scattering module to a problem shown in Figure 5.2,
and analyze the scattering spectrum. It is the limitation of OASES that only one-dimensional

Gaussian and Goff-Jordan power spectra are built in the software.

Here we consider the problem shown in Figure 5.2. The environment consists of upper layer
which is water (sound-speed 1500 m/s, density 1000 kg/m?3), an intermediate layer which has
sound-speed 1725 m/s, and density 1400 kg/m3, and a lower layer with sound speed 2000 m/s,
and density 1800 kg/m3. The thickness of the intermediate layer is 100 m, and the frequency
is taken to be 100 Hz. The one-dimensional Gaussian spectrum is employed to describe the
roughness. A sequence of commands built in OASES, including oasr and oass are invoked to

initiate computation.

Figure 5.4 — Figure 5.6 are the scattering spectra corresponding to correlation lengths 1,

5, 10 m, respectively.

It is clear from these results that the major scattering is in the backward direction when

the correlation is small (1 m), and as the correlation increases, the major scattering gradually
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Figure 5.4: Scattering spectrum for correlation length 1 m.

shifts towards forward direction. The energy level is larger for larger correlation length. This is

in complete consistence with the results obtained in the examples shown in Section 4.2.

Remark

There are much more features which can be found in OASES. We make no attempt and also
definitely assume no needs to list all of them, except feel obligated to directing the readers who
are interested in this software to a public domain where a complete package may be obtained
without any charge. The ftp address is ftp@keel.mit.edu. Just login with your username as

password, and get the file oases-export.tar.Z in the pub directory. The rest is yours.
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Figure 5.6: Scattering spectrum for correlation length 10 m.
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Chapter 6

Conclusions

This thesis project has accomplished the following:

1. Various rough surfaces relevant to oceanic environment are studied in terms of their statis-
tics, including height probability function, correlation function, power spectrum and its

realization. Many graphs were generated to facilitate analysis and discussion.

2. The Rayleigh reflection were examined using dynamic simulation with MATLAB. This
exercise allows us to generate virtual reflection and refraction waves, and thus provides a

much better means than traditional line graphs.

3. Scattering from perfectly reflected surfaces were studied. This problem closely resembles
acoustical wave scattering from sea surface and seabed. The distributions of the random
pressure field corresponding to various power spectra for pressure-release and rigid surfaces

were generated. The results provide a good sense on how the pressure field distributes.

4. The statistics of the scattered field in terms of average intensity and correlation function

were obtained and analyzed.

5. A model for further pursuit of scattering from a penetrable surface was proposed and
formulated. A few examples using sc oases were given, which demonstrates the capacity

of the current state-of-the-art software in this realm.

Of course, there still have many issues remained to be cultivated. This project attempts
to develop a MATLAB-based toolbox which solves for acoustic wave propagation problems in an
oceanic environment, and the present analysis serves as an initiation of the project along this
line. It is expected that, with time, the versatility of the MATLAB language will offer a very
convenient, if not dominant, means for problems-solving in many communities, academic or
industry, including ocean acoustic community. For this matter, the author look forward to the

day when all such practices are produced.
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Appendix A

Derivation of Correlation For

Amplitude Spectrum

The purpose of this appendix is to prove the relation
(A(p)A*(P")) = Ps(p)d(p — P) (A.1)

where )
Pp) = oz / C(F)e T di (A.2)

From Equation (3.32), the amplitude spectrum of the roughness is

1 ipr
AP) = gz [ Ay (43)
Likewise,
1 -
A0 = G [ o) rdr, (A4)
The correlation of the amplitude spectrum is given by
1 .
(AR (B) = Goys [[ )7 @) explip -1 o mldrides (A5

Now, let ¥ = ro — rq, so r9 = r + rq, and with the definition of the correlation function,
Equation (2.13), Equation (A.5) becomes

(AR)A () = gyt [ CE expl-itp —p) - il explip! - +31)  (A6)
Applying the identity
n o 1 . '
5o~ P) = gz [ expl-i(p ) ralds

and note that )
o7 | COE e = P (-p)
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where d(f + r1) = dr, the integration results in
(A(p)A*(P')) = 6(—p' + P)Ps(-P') (A7)
Because 7(r) is a real function, we have
F{y(r)} = A(p) = A*(-p) (A.8)

Therefore,

(A*(-p)A(-p"))
é(p — p')Ps(p) (A.9)

(A(p)A*(p"))

The above result says that the Fourier components themselves of any function are no correlation,

i.e., they are totally incoherent to each other.
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Appendix B

Scattering From an Interface Over a
Medium With Continuous Varying
Sound Speed and Density

B.1 Introduction

In this appendix, we shall derive the formulation which is appropriate for solving scattering from
a rough surface overlying a medium with continuous varying sound speed under the framework

of perturbation. The environment is shown in Figure 5.1.

The reasons for this exercise are two folds. First, as we mentioned in the beginning of
Section 5.1, if the gradients of the medium acoustic properties is large, then subdividing the
medium into thin layers may violate the basic assumptions of perturbation method, and as a
result, OASES or any other similar methods may not be able to obtain good solutions. Therefore,
fitting the layers with non-constant function so that analytical solutions for depth-dependent
equation may be obtained should be an alternative. Secondly, the boundary operators such as B
and b employed in Section 5.2 may seem esoteric without appropriate demonstration. Therefore,
the later part of this appendix uses the problem shown in Figure 5.1 as an example and then
derives all the relevant operators. This serves as an example for demonstrating the derivation

of the boundary operators.

B.2 Solutions for Unperturbed Problem

In a medium of varying sound speed and density, the frequency-domain wave equation or mod-

ified Helmholtz equation is

[V2 + kQ(z)] P = . 7) Vp(r,z)-Vp (B.1)
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Assuming that the density depends only on the vertical coordinate z, Equation (B.1) becomes

1 dp(z) 9p
p(z) dz 0z (B-2)

[V + K (2)] po =

By applying the forward Fourier transform with respect to range on Equation (B.2), the depth-

dependent wave equation for p, (ky, z) is obtained

{d_2 1 dp(z) d

A2 plz) dz a+[k2(z)—’“?]}ﬁw<sz>=0 (B.3)

The depth-dependent equation may be simplified by introducing the variable transforma-
tion

———DPw(kr, 2) (B.4)
Equation (B.3) is transformed to

dzq 2 2
E‘F {k (Z) _kr +

2ps(z) dz?

B.2.1 Density Stratification

If the density distribution is of the form

P = s (B5)
then it can be shown that the density distribution satisfies the following equation
1 d&plz) 3 ( 1 dps(z))Q _ B (B.7)
205(2) dz? 4 \ps(z) dz 4
Substituting the above equation into Equation (B.5) will yield
% + lk2(z) .~ %] q=0 (B.8)

It is worth noting that Equation (B.7) is valid for any value of the parameter “as” in
Equation (B.6), and Equation (B.8) does not contain “as.” Thus the same solution for ¢ will be
obtained for a family of density profiles, defined by Equation (B.6), in which b is held constant
while ao varies. In such case the effect of the density profile, on acoustic pressure in the transition
layer, is manifested only via Equation (B.4). In general, however, the value of b, as well as as,
must be altered to model a variety of density profiles of practical interest, so the solution for
g will usually be directly affected. Next, we will present the solutions of the depth-dependence

wave equation for the three sound speed profiles.
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B.2.2 Sound Speed Stratification

The depth-dependence wave equation, Equation (B.3), is a second-order linear ordinary differ-
ential equation with variable coefficients, in which the horizontal wavenumber %, is a parameter.
In the most general case, even though the solution may be obtained by the standard method
such as power series expansion or numerical method, it must be noted that in order to carry out
the inverse transform, the depth-dependence wave equation must be solved for each value of k,,
and therefore, the key to the success heavily relies upon the efficiency of the solution method
employed. As a result, the search for the distributions of the sound speed and the density which
render analytical solutions to the equation becomes an important issue. In this aspect, Robins
[38, 39, 40] attempted to investigate various types of profiles which permits the existence of
exact solutions, and the results were documented in [40]. These functions were used to fit the

existing geo-acoustical data and were found reasonable agreement in a wide range of depth.

The sound-speed variation in the sediment may take any of three forms. These are:

e constant value, c;.

e “linear k%" profile in which the square of the wavenumber varies linearly with depth:

1 1+mz
= B.9
c3(z) t (B.9)

e inverse-square profile described by the equation:

1 b? 1 b 1
_b 1 by 1 B.10
20) c%+<c% 3 ) T2 (B.10)

By suitable choice of the constants A, ao, b1, bo, ¢g, ¢1, and +y it is possible to achieve a close fit

to typical measured density and sound-speed profiles in marine sediments.

B.2.3 Solutions of the Wave Equation

In the following, we derive the solutions for wave equation corresponding to the sound-speed
and density distributions discussed in the previous section. The density profile is given by

Equation (B.6), and the sound-speed will be presented below.

A. Constant Sound Speed

The simplest case is that of a constant sound speed ¢; in the transition layer. Equation (B.8)

becomes
d2q
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where

2 2 b3
a=1\ki—k -I-Z

The solution of depth-dependence wave equation for this case is
Pu(ke, 2) = g (ke)y/ps(2)e™ " + B (ke )/ ps(2)e®

B. Linear k? Sound-Speed Profile

With sound-speed profile given by Equation (B.9), the equation for ¢ becomes

2 2

q 2 2 b _
@+[(1+mz)k1—kr—zlq—0

Defining the variable n by
b2
=~k 2 1kt - 12 - %)

it is easily shown that Equation (B.14) becomes

d2q_
d—772—77q

The solution of depth-dependence wave equation for this case is

Pu(kr, 2) = Py, (kr) Ps(Z)Ai(n)JrﬁI(kr) ps(2)Bi(n)

C. Inverse-Square Sound-Speed Profile

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

For the sound-speed profile of Equation (B.10), the solution may be written in terms of Hankel

function. By introducing a new variable { as

(=1—7z

Equation (B.8) then takes the form

dq w2 (1 b w? b3
2 1 2 2 2
Vet S [ S -2+ S -k - 2)¢=0
a¢z = (2 (c% c 2 ! T4

It is shown that the solution to Equation (B.19) is given by

g =VC[E HD(BO) + F HP (B0)]

where E’, F' are arbitrary constants and the parameters 3, v are defined by
,82 — i wa_Z o k2 _ @
Y\'g T4
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(B.18)

(B.19)

(B.20)

(B.21)



1 w21 b
R (B.22)
4 A2\t

The solution of depth-dependence wave equation for this case is
Puo(ke, 2) = 55 (ke )y/ps(2)C(2) HSD (B) + 5 (ke) o/ ps(2) (2) HP) () (B.23)
With the above solutions, the pressure has the following integral representation
pule,2) = 5o [ dleee 7 [, (k)G e, 2) + 5 (), )] (B.24)

where G and H are to represent the solutions for depth-dependent equation, and 7, (k), 5, (kr)

could be determined from the matching conditions discussed in next section.

B.3 Linear Systems

The linear systems governing the mean and scattered field, Equations (5.26) and (5.29) are
expressed in terms of the boundary operator B(k;) and the rotational operator b(k;). In this
section we gives a detailed derivation for these operators for the case of an isovelocity water

column overlying an transition layer.

B.3.1 Wavenumber Integrals

The present analysis considers the scattering from a one-dimensional rough surface, and the
resultant scattered fields generated by an incoming wave with horizontal wavenumber k; is two-
dimensional. For the homogeneous media, layer i, the solution of pressure has the following

integral representation
pilz, 2) = / dkg €% 57 (k)™ + 5 (ko) 7] (B.25)

In the transition sediment layer, layer 7 + 1, the solution of the pressure for varying density and

sound-speed has the following integral representation
pini(@2) = [ dboe 7[5 (62)G e, 2) + By (ko) (o, 2)] (B.26)

where o; = /k2 — kf with k; being the wavenumber in the layer i. The amplitudes p; are
arbitrary functions of the horizontal wavenumber k,. The solutions of depth-dependence wave

equation for varying density and sound-speed, respectively, are

Doy (kz)/ps(z)e %% + b (ko) \/ps(2)e®? Case A
Pu(ks,2) = Doy (ko)V/ps(2) Ai(n(2)) + 55 (kz)/ps(2) Bi(n(2)) Case B

55 (k2)v/ps ()R HSY (B (2)) + 55 (ko) v/ ps (2)C(2) HSY (B( () Case C
(B.27)
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The displacement components are obtained from the pressure by

1 op
- i B.28
Uj pr B:L'Z ( )
Carrying out the tensor operation yields

1 Op
= — = B.29
“ pw? Oz ( )

1 Op
= — = B.30
v pw? Oz ( )

For the present environment, the integral representation of the existing wavefield pressures

are
pile,z) = / kg e F= 25 (ky)et o (B.31)
po@,2) = [ dboe 7 (5 (k)G ke, ) + i (e b, 2)] (B.32)
p3(z,2) = / d kg e T2 (ky)e™ 3 (B.33)

where the radiation conditions are applied to eliminate the downgoing waves in the layer 1 and

upgoing components in the layer 3.

It should be noted that if a source is present in a particular layer, the wavefield should be
supplemented by a particular solution. Here we assume the source is in the water column, layer
1, at depth z;, thus the source field is

(@, 2 25) = / dky e %75, (ky, 2) (B.34)
where s
51(1%,@ - ﬁeﬂmﬁm (B.35)

B.3.2 Unperturbed Problem

The unknown wavefield amplitudes are determined from the boundary conditions. For an inter-
face separating two layers, the normal displacement w and pressure p must be continuous. Thus

for the three-layer problem the conditions are:

(wi—wi+1)i;i+1 =0 (B36)
(Pi —pit1)izis1 = 0 (B.37)

When the above displacements are written in terms of pressure, and related kernels are

inserted, these conditions result in a linear system of equations in the wavefield amplitudes

Bg(kx)ﬁ;:(kw) = é(kw) (B.38)
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where p7 (k;) is a column vector containing the unknown amplitudes

{p§ (ke)Y" = {5 (ka), 55 (a), 55 (ko) B3 (ka)} (B.39)
and
ay 1 9g(0) 1 9H(0) 0
prw? p2(0)w? Oz p2(0)w? 9Oz
) ] ~G(0) ~H(0) 0
Bg(kw): 1 9G(h) 1 OH(h) as
0 .
p2(R)w? Oz p2(h)w? Oz paw?
0 G(h) H(h) -1

The column vector C (kz) representing the integration kernel for the source field for a source in

the wave at depth zg, is

Sw
dmprw
_S_we_a1|zs|
C(k.z) — 47ra10

0

—a |zs|

26

B.3.3 Perturbed Problem

For two-dimensional wave propagation in the presence of a one-dimensionally rough surface, the
rotated boundary conditions simplify significantly, since all rotation operations become scalar
and 0p, Oy, Ogy = 0

W = w—7yzu

N o (B.40)

The total field in the layer number 4 is decomposed into a coherent or mean field (p;) and

an incoherent, scattered components, s;. So for the problem at hand, we have:

;Z{@n+§

' () + s

The global vectors containing plane-wave amplitudes are
(b5)" = {pl.bz,P3.53} (B.41)
50 = {81,%,55,53) (B.42)

where the radiation condition has eliminated the downgoing waves in the layer 1 and upgoing

components in the bottom halfspace.

Next, the expression for the local operators B,(kw) for the smooth boundary, and rotation
boundary operator I;,(kz) will be presented. In the previous section, we have derived the global

system, Bg(kz), for all three layers.

The rotation boundary operator b;(k;) is derived in a similar way, representing the dis-

continuous of the following field parameters according to Equation (B.40):

MMﬁﬂwz{”j%} (B.43)
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By inserting the wavenumber kernel for the horizontal displacements, we get

) iky _keG(0)  _ikaH(O)
bo(ke) = m(t)u2 pz(()O)w2 p2(()0)w2 . (B.44)

B.4 Summary
This appendix formulates a problem which describes a realistic model. Solutions may be pursued

following the baM method. Although not completed in this thesis, the research group to which

this author belongs will soon undertake this project.
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