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This dissertation applies a Bayesian framework for making quantitative statistical infer-

ences about geoacoustic properties from ocean acoustic data using matched-field process-

ing techniques. Data acquired during the ASIAEX 2001 East China Sea experiment are

used to infer the geoacoustic properties.

In a Bayesian approach, information and uncertainty regarding model para-

meters obtained from the measurements are summarized in the posterior probability

distribution. This posterior distribution is proportional to the product of a prior dis-

tribution (which incorporates information on model parameters before the measure-

ments) and of a likelihood function (which quantifies how well a model fits the measure-

ments). From this posterior distribution of model parameters, we obtain all information

about the model parameters, such as maximum a posteriori estimate (best-fit model),

mean as well as standard deviation.

The quality of the best-fit model is checked using matched-field processing for

source localization. In the less than 1 kHz frequency band, the effect of environmental

mismatch on source tracking can be reduced by using inversion techniques to estimate

geoacoustic parameters, resulting in improved source localization performance. The

parameter uncertainty (in terms of mean and standard deviation) given by the Bayesian

approach is validated by comparing the variabilities of the estimated parameters inverted

from multiple independent data sets.

A Bayesian approach to inverse problems requires estimation of the uncertain-

ties in the data. An extension of the Bayesian parameter uncertainty analysis to include
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the uncertainty of data errors is carried out. Following a full Bayesian methodology, we

derive the analytic expressions for the posterior probability distribution of the model

parameters for both single and multi-frequency data.

The impact of uncertainty embedded in the geoacoustic inversion results on

the estimation of transmission loss is investigated. An approach for estimating the

statistical properties of transmission loss is developed using information on the model

parameters obtained from the inversion. The utility of this approach is that one can

compute the probability distributions of transmission loss at all frequencies, ranges and

depths. Examples demonstrate the use of transmission loss probability density functions

to extract characteristic features such as median and lower/upper percentiles.
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Chapter 1

Introduction

1.1 Background and Objectives

Inferring geoacoustic properties indirectly from the measured sound fields in

an oceanic environment using various signal processing schemes, referred to as ocean

geoacoustic inversion, is an important application of underwater sound. This subject

has attracted the attention of several researchers in the past decade, resulting in both

theoretical [10,21,22,24,27–35,38,39,41] and experimental [13,25,29,40,42,57,75] work.

Many studies have shown that even though the inversion results may present some de-

gree of uncertainty, the techniques still prove to be a valuable and promising means of

estimating environmental parameters. In particular, geoacoustic inversion is most useful

for estimating those environmental variables that are difficult to approach directly on

site, such as the density and sound speed (compressional or shear) profiles of the sea

floor.

The primary objective of this dissertation is to carry out an analysis of geo-

acoustic inversion, based upon field data obtained in the Asian Seas International Acoustics

EXperiment (ASIAEX). ASIAEX was an international scientific endeavor involving ocean

acousticians from the United States and several countries surrounding the west Pacific

Rim, including the People’s Republic of China, the Republic of Korea, Japan, Taiwan,

Russia, and Singapore. The major field experiments of ASIAEX were conducted from

May to August of 2001 and consisted of two parts: the South China Sea (SCS) experi-

ment and the East China Sea (ECS) experiment. The SCS experiment placed emphases

1
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on acoustic propagation over the continental shelf and acoustic interactions with a dy-

namic oceanographic environment (specifically, internal waves), while the ECS experi-

ment concentrated on boundary interactions, reverberation, and geoacoustic inversion.

The complete program and some results to-date have been published in the IEEE Journal

of Oceanic Engineering Special Issue on the Asian Marginal Seas (2004) [59].

As a part of the ASIAEX ECS program, data were collected to invert for

the geoacoustic properties in the ECS using acoustic measurements over the frequency

range of O(100 − 1000) Hz. The data obtained are analyzed in this thesis. These data

supplemented by the comprehensive oceanographic and geophysical measurements also

obtained during the experiment are used to assess quantitatively the reliability of the

inverted parameters and the employed seafloor model.

During the past decade, substantial effort has been devoted to the development

of computational algorithms for inversion [27–29, 32, 33]. Among others, the SAGA

program for geoacoustic inversion [34] has been widely accepted and is used in this

research. The state-of-the-art has reached the point that many important issues such

as uncertainties due to measurement noise and modeling errors as well as robustness

for a posteriori estimation are now worthy of more consideration. These subjects also

constitute another part of the objectives of this dissertation.

1.2 Basic Concepts

Matched-Field Geoacoustic Inversion

In this thesis, matched-field (MF) geoacoustic inversion techniques are applied

to estimate seafloor properties. The concept of MF processing where a passive array of

receivers is used to locate in range and depth (and bearing) an acoustic source traveling in

a known oceanic environment was introduced to the underwater acoustics community by

Bucker [10]. Many studies [10, 21, 30, 39, 41] have shown that MF processing for source

localization is sensitive with respect to the variations of, or the “mismatch” of, the

environmental parameters, such as sound speed profiles, water depth, seabed properties,

etc. As a result, the concept of employing the procedure “inversely” by treating the

environment, and/or source position itself, as unknowns and obtaining them from the
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Figure 1.1: Bayesian approach to matched-field geoacoustic inversion.

sound field has been conceived and developed [25,31,40,42].

MF geoacoustic inversion uses measurements of the acoustic field made at an

array of hydrophones to extract information on the parameters that determine sound

propagation in the ocean. The procedure is shown schematically in Figure 1.1. Given

some measured data and some prior information on the values of a parameterized en-

vironmental model (e.g., the ocean and sediment sound speeds, attenuations and their

thicknesses), a theoretical relationship (the forward model) is constructed to relate the

predicted data to the environmental model parameters. Then, by minimizing an ap-

propriate objective function that measures the difference between the measured data

and the predictions from the forward model, a set of parameters that best describes the

environment is obtained.

Due to the fact that inversion problems make inferences about the environmen-

tal parameters using a finite set of noisy data, one always faces the problem of nonunique-

ness, i.e., more than one solution can represent the data at hand. The Bayesian approach

is adopted in this analysis. The solution of the inverse problem is not only to find a sin-

gle model parameter vector that fits the measurements best, referred to as the best-fit
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model, but also to assess the uncertainty of the estimated model parameter.

Bayesian Approach

Since the analysis of geoacoustic inversion always involves errors (noise) and

uncertainties in the observed data and model parameters, which may be characterized

by probability density functions, probability theory is thus invoked in this study.

There are, however, two different interpretations of probability [76, p. 16][60,

p. 25]. In the “frequentist” interpretation, probability is used to describe the likelihood

of a particular event occurring in a series of repeated experiments; the higher the value,

the more it is likely to occur. On the other hand, in the “Bayesian” interpretation [50],

probability is simply used to describe the degree of belief of a predicted value, based

upon a single experiment. Here, the Bayesian framework of probability is adopted.

The probabilistic approach in geophysics was pioneered by Tarantola and Valette

[78], and Tarantola [76]. The formulation presented in the Tarantola’s book is general

enough to cover a wide variety of problems in applications. Recently, the Bayesian

framework has been adopted in underwater acoustics by some researchers [22,32,38].

The fundamental objective of Bayesian inference is to obtain the posterior prob-

ability distribution (PPD) of the model parameters. This posterior distribution consists

of the product of two probability density functions. The first, the likelihood function,

defines what it means for a model to fit the data. The likelihood function quantifies the

misfit between the measured data and the modeled data generated by a forward model.

Thus, this function takes into account the noise in the measured data as well as the error

in the forward modeling procedure. The second, the prior density function, incorporates

our a priori understanding of model parameters before having access to the measured

data.

Using a Bayesian approach to inverse problems requires estimation of the un-

certainties in the data due to ambient noise as well as modeling errors. The variance

parameter of the Gaussian error model, referred to as error variance, is assumed to de-

scribe the data uncertainties. In practice, this parameter is often poorly known a priori,

and choosing a particular value is often problematic. Hence, to account for the uncer-

tainty in the error variance, several methods are introduced to implement both the full
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and the empirical Bayesian approaches. A full Bayesian approach permitting uncertainty

of the error variance to propagate through the parameter estimation processes is a nat-

ural approach. However, the computational effort is substantial. Thus, several methods

using an empirical Bayesian approach were developed in which the posterior distributions

of model parameters are conditioned on a point estimate of the error variance.

Using the Inversion Results: A Posteriori Analysis

In Bayesian inference, all information on the model parameters is derived from

the PPD. Such information can be expressed in many ways, for instance, as error bars

on the parameter estimates, or marginal PPDs of the model parameters. All of these are

explored in this work.

The variability in the geophysical properties of the ocean bottom has a signifi-

cant impact on sonar performance in shallow water. A key element in the sonar equation

is transmission loss (TL) which requires the information on the geoacoustic properties

at site.

Recent work related to translating the environmental uncertainty to sonar per-

formance predictions has been undertaken by Abbot and Dyer [1]. In their approach,

a probabilistic description of TL was estimated at a given range where many acoustic

measurements were made. Then the TL probability density function is assumed to apply

universally for all ranges. It does not account for the spatial variations of TL due to

multi-path propagation.

Here, we use a Bayesian probabilistic approach to estimate the statistical prop-

erties of TL in the presence of geoacoustic inversion uncertainty. Since TL is estimated

from a full wave solution, the resulting probability density function of TL should be more

representative.

1.3 Scope of the Dissertation

The major contents of this dissertation consist of four chapters, Chapters 2

to 51. Chapter 2 is devoted to the analysis of ASIAEX ECS experimental data. The
1Each chapter has been written in a paper format. As of this date, they either have been accepted

for publications or published in a professional journal or conference proceeding.
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experimental geometry, acoustic, oceanographic, and seismic measurements are first de-

scribed and analyzed. A parameterized environmental model is proposed to describe

the experimental region. Then the inversion procedure based on MF processing using

low-frequency data (195, 295, and 395 Hz) is applied to estimate the model parame-

ters. The quality of the inversion results are gauged by two different approaches. First,

the best-fit model is confirmed by continuous source localization over a period of time.

Second, a comparison of the uncertainties of the parameter estimation provided by the

Bayesian procedure with those obtained by separate inversions at many different ranges

(a frequentist approach) is made and analyzed [46].

In Chapter 3, the analysis is extended from low-frequency to include mid-

frequency data (805, 850, and 905 Hz) in the inversion procedure. First, a test run

of mid-frequency MF source localization is carried out using the best-fit model derived

from lower frequency data. Motivated by the increased ambiguity in the estimated source

position, a refined estimate of the environmental model is obtained by incorporating the

mid-frequency data in the inversion. The quality of the refined model is again confirmed

by continuous source localization over the same period of time as in the low frequency

data case [45].

Chapter 4 addresses the issue of uncertainty estimation using the Bayesian

statistical treatment. The uncertainty of each estimated parameter is quantified by the

variance associated with it, and analysis is then carried out by several methods based

upon both the full and the empirical Bayesian approaches [44].

In Chapter 5, a posteriori analysis is undertaken using the inverse solution as

an intermediate step to estimate TL. TL is estimated by first solving for an ensemble

of relevant environmental model parameters and then using this ensemble to map into

the TL domain. The probability distribution of TL is presented along with its statistical

properties such as median and lower/upper percentiles [37].

Finally, Chapter 6 addresses the conclusions of the thesis and suggestions for

future research.



Chapter 2

Geoacoustic Inversion of

Low-Frequency Data

Geoacoustic inversion results based on data obtained during the Asian Seas

International Acoustics Experiment (ASIAEX) 2001 East China Sea experiment are

presented. The inversion process uses a genetic-algorithm-based matched-field-processing

approach to optimize the search procedure for the unknown parameters. Inversion results

include both geometric and geoacoustic variables. To gauge the quality of the inversion,

two different analyses are employed. First, the inversion results based upon discrete

source-receiver ranges are confirmed by continuous source localization over an interval

of time. Secondly, separate inversions at many different ranges are carried out and the

uncertainties of the parameter estimation are analyzed. The analysis shows that both

methods yield consistent results, ensuring the reliability of inversion in this study.‡

2.1 Introduction

Probing geoacoustic properties indirectly from acoustic sound fields in an oceanic

environment is an important application of underwater sound and has attracted the at-

tention of several authors in recent years [35, 40, 42, 75]. Many studies have shown that

even though the inversion results may present some degree of uncertainty, the techniques
‡The contents of this chapter are adapted from the paper entitled “Matched field geoacoustic inversion

of low frequency source tow data from the ASIAEX East China Sea experiment” by Chen-Fen Huang
and William S. Hodgkiss, IEEE Journal of Oceanic Engineering, Vol. 29, 952–963, 2004.

7
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still prove to be an efficient and promising way to estimate environmental variables, par-

ticularly for those that are difficult to measure directly on site.

The purpose of this chapter is to present the geoacoustic inversion results based

upon source tow data obtained during the Asian Seas International Acoustics Experiment

(ASIAEX) 2001 East China Sea experiment. The experimental site, as depicted in the

upper panel of Fig. 2.1, is in the East China Sea, and is located roughly at 500 km off

the coast of the Zhejiang Province in east China. The thick curve in the figure illustrates

the ship track of R/V Melville from Julian day (JD) 149 to 162 of 2001.

During the experiment, both acoustic and oceanographic data were collected.

These data are analyzed to invert for the geoacoustic properties of the waveguide. In

this analysis, matched-field (MF) inversion techniques are applied to estimate the envi-

ronmental parameters. The basic principle of the MF inversion technique is to estimate

the unknown parameters by minimizing an objective function that quantifies the mis-

match between measured acoustic fields and simulated replica fields derived from an

acoustic propagation model in a parameterized environment. The best estimates for the

unknown parameters then correspond to the lowest mismatch. Since the dimension of

the search space depends upon the number of unknown parameters which sometimes

may be large, an efficient algorithm is needed to optimize the global search procedure.

In this regard, a few methods geared to global optimization, such as simulated annealing

and genetic algorithms, have been developed [18,19,25,27,32]. Furthermore, in the past

decade, several authors, e.g., [34,73,80], have implemented inversion procedures in terms

of computational software. Among others, the genetic-algorithm-based software SAGA

developed by Gerstoft [34] has been widely applied and is used in this analysis along with

the normal-mode propagation model SNAP [52] for a range-independent environment.

To ensure the robustness of the inversion, two different analyses were employed

and both have yielded consistent results. The chapter is organized as follows: Sections

2.2 and 2.3 provide, respectively, the descriptions of the data acquisition and the data

processing. Section 2.4 outlines the MF inversion procedure, and Section 2.5 presents

the inversion results, followed by a conclusion in Section 2.6.
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Shanghai

China
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China
Sea
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Figure 2.1: Plan view of the ASIAEX 2001 East China Sea experiment. Upper panel:

the thick line illustrates the track of R/V Melville during the Julian days (JD) 149 – 162.

Lower panel: the line is the ship track where the source energy was transmitted, and

the plus signs mark 10-minute intervals starting from the acoustic measurement. The

triangle signs represent the locations where the CTD measurements were taken. The star

sign indicates the location of the vertical line array (VLA). All times are in Coordinated

Universal Time (UTC).
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Figure 2.2: Side view of the experimental geometry.

2.2 Data Acquisition

In the following subsections, a few details of the experiment as well as the

characteristics of the acquired data are described. These include experimental geometry,

oceanographic and seismic measurements.

2.2.1 Experimental Geometry

The map of the region where the acoustic and oceanographic measurements

were taken is shown in the lower panel of Fig. 2.1. On JD 158, acoustic energy was

transmitted from the J-15 source towed near 47 m depth by R/V Melville with a speed

of about 3 knots. The ship track is indicated by the line in the figure, on which the

distances between the source and the receiver range from 0.5 to 6 km. The experi-

mental geometry is illustrated schematically in Fig. 2.2. A 16-element, 75-m aperture,

autonomous recording vertical line array (VLA) was moored up from the seafloor at lo-

cation 29◦38.927′ N, 126◦48.892′ E where the measured water depth was approximately

105.5 m. The lowermost element (element #1) was approximately 6 m above the bottom;

Element #4 failed during deployment.

Continuous-wave (CW) tonals at 95, 195, 295, 395, 805, 850, and 905 Hz were

transmitted and the sound field was recorded from 0313 to 0443 Coordinated Universal

Time (UTC). In this study, only the low frequency data at 95, 195, 295, and 395 Hz are

employed for inversion analysis.
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2.2.2 Oceanographic Measurements

The current profile in the water column from 30 to 100 m was measured by a

ship-mounted ADCP system on board R/V Melville. The ADCP measurement from JD

158 to 158.25 is shown in Fig. 2.3. The upper and lower panels illustrate, respectively,

time-series plots of current speed and current vector stick at different depths. The

time window of the acoustic transmissions is indicated by the two white lines on the

upper panel and the shaded area on the bottom. It is noted that there existed a strong

eastward tidal current with magnitude greater than 0.5 m/s around the middle of the

water column. This results in a tilt of the VLA.

The sound-speed profile in the water column was measured by CTD. Three

measured sound-speed profiles on JD 158 are shown in Fig. 2.4, on which the times

when the measurements were taken are labeled. CTD0123 (solid line) was the profile

when the VLA was deployed; CTD0547 (dashed line) and CTD0820 (dashed-dotted

line) were the profiles measured roughly 1 and 4 hours after the acoustic tonals were

transmitted, respectively.

The locations of CTD measurements are indicated in the lower panel of Fig.

2.1. These sound-speed profiles show that higher sound speed near the surface and, in

the thermocline layer, time-evolving sound speed fluctuations were observed, while below

75 m the sound speed remained the same. Note that for a sound source at about 47 m

as in the present case, the sound speed structure will result in a downward-refracting

propagation pattern, so that strong interactions of the sound fields with the seafloor

might be expected.

2.2.3 Seismic Measurements

Geoacoustic ground truth measurements of the region covered by 28◦ – 30◦N

and 126◦30′ – 128◦E were made in 2000 and 2001 as part of the ASIAEX East China

Sea field program. The surveys include gravity and piston cores and water-gun and

chirp sonar generated subbottom profiles. The detailed discussion on geoacoustic mea-

surements are presented in Miller et al. [67]. In short, these data suggest that the

sedimentary bottom presents a layered structure. The thickness of the upper layer from

seafloor to Transgressive Systems Tract (TST) is about 0 to 2 m, and that of the lower
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(a)

(b)

Figure 2.3: Time-series plots of current speed (upper panel) and current vector stick

(bottom panel) at different depths from JD 158 to 158.25. The time windows of the

acoustic transmissions are indicated by the two white lines on the upper panel and the

shaded area on the bottom.
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Figure 2.4: Measured sound-speed profiles by the CTDs on JD 158. Each sound-speed

profile is labeled by the time when the measurement was taken. The locations of the

CTD measurements are indicated in Fig. 2.1.
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layer from TST to Sequence Boundary (SB) is about 5 to 7 m at the site of towed source

propagation experiments. Moreover, the sediment coring analysis indicates this region

spanned a surficial sediment “front” consisting of mud-and-sand type of sediment to the

west and sand to the east. The acoustic experimental site was located to the west of the

front; a mean grain size (in phi scale) of 4.3 φ consistent with mud-and-sand-like sedi-

ment. The coring data also show a sound speed going from approximately 1575 m/s at

the water-sediment interface to 1600–1675 m/s at approximately 1 m into the sediment.

2.3 Data Processing

The entire 90-minute time series data were processed using 262,144-point FFTs

with 50% overlap. With a sampling rate of 20470.8 samples/sec (the bin width is 0.0781

Hz), the time duration of each FFT (snapshot) is 12.805 sec and the interval between

consecutive snapshots is 6.40 sec. The long length of the snapshot is to ensure high

signal-to-noise ratio (SNR). Due to the narrow bin width and the Doppler shift resulting

from ship motion, the frequency bin selected for the inversion needs to be chosen with

care. For each snapshot and frequency, the bin chosen corresponds to the bin containing

the highest average power across the array. Since there are 15 functioning array elements,

there are 15 complex pressure values sampling the acoustic field across the water column

for each snapshot. Figure 2.5 shows the calibrated time-evolving signal power across the

array for 95, 195, 295, and 395 Hz, and the corresponding noise floor which is estimated

by averaging over the 15 adjacent bins separated from the signal bin by 5 bins. In

this figure, the vertical axis is the element number with element #1 being the deepest

transducer. Note that at 95 Hz the SNR is very low and this frequency is not used in

the inversion. In contrast, the SNR is high for the frequencies 195, 295, and 395 Hz.

The estimated normalized cross-spectral density matrix (CSDM), R̂, for a signal

frequency is given by

R̂ =
〈dd†〉

Tr [〈dd†〉] , (2.1)

where d is the vector containing the measured complex pressures, and 〈·〉 and † denote,

respectively, the average over several snapshots and the complex transpose operation.

The covariance matrix is normalized by its trace. The maximum obtainable Bartlett
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frequencies 195, 295, 395 Hz, and the thick line is the Bartlett power averaged over all

three frequencies.

power from the MF inversion is defined as

PBT, max = max EIV[R̂], (2.2)

where EIV denotes the eigenvalues of the matrix. Due to noise contamination in the

data, the value of PBT, max must be less than one. In the following analysis, we shall use

this value as a measure of SNR.

Under the assumption of statistical stationarity, each value of CSDM was esti-

mated from 4 snapshots which span a time interval of 32 sec and cover about 48 m in

source range. Figure 2.6 shows PBT, max as a function of time on a linear scale for each

single frequency 195, 295, and 395 Hz (thin lines), as well as for all three frequencies

(thick line) for which the power is defined as the average of PBT, max over the three

frequencies. During the first 10 minutes of the acoustic transmissions, the ship was sta-

tionary and high values of PBT, max are seen in the figure. As the ship began to move

away from the VLA, the SNR decreased resulting in the values of PBT, max being lower.
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2.4 Matched-Field Geoacoustic Inversion

In this section, the procedure and the required components for the MF geo-

acoustic inversion are addressed. To prepare for the inversion, an acoustic propagation

model and a parameterized environmental model must be chosen. An appropriate ob-

jective function and an optimization algorithm must also be defined or selected. The

sensitivity of the objective function with respect to environmental variability needs to

be tested and the quality of the inversion should be measured.

2.4.1 Acoustic Propagation Model

For ranges greater than several water depths, the acoustic pressure field may

be expressed as a finite sum of normal modes. A general bathymetric and geological

survey has indicated that in the neighborhood of the experimental site the environment

is nearly range-independent. Therefore, the acoustic pressure at a depth z and range

r produced by a time-harmonic e−iωt point source at depth zs in an environment with

arbitrary sound speed distribution may be expressed as [53]

p(r, z) =
ie−iπ/4

ρ(zs)
√

8πr

N∑

n=1

Ψn(zs)Ψn(z)
eikrnr

√
krn

(2.3)

where Ψn is the n-th normal mode corresponding to the horizontal wavenumber, krn. The

calculations of the modeled acoustic pressure fields were performed by the SACLANT-

CEN Normal-mode Acoustic Propagation program (SNAP) [52].

2.4.2 Environmental and Array Parameterizations

As mentioned previously, the experimental area is characterized by a fairly flat

bottom. The environment is modeled as a waveguide with a constant water depth over

a two-layered seafloor as shown schematically in Fig. 2.7. The water depth is known to

be approximately 105.5 m. The seafloor is modeled as a uniform sediment layer with

sound speed csed, density ρsed, attenuation αsed, and thickness d, overlying a semi-infinite

subbottom. The sound speeds in these two layers are related by

csub = csed + ∆c (2.4)
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Figure 2.7: Geoacoustic model and experimental configuration for the ASIAEX 2001 East

China Sea experiment. Thick lines indicate schematically the sound speed distribution

in the water and in the bottom. For the nomenclature, see Table 2.2.

where ∆c is the sound speed difference between the two layers and is a positive value.

The above-mentioned unknown parameters are estimated in the inversion along with

the water depth (although it is known from direct measurement). As for the density

and attenuation of the subbottom, separate simulations suggest that the inversion result

is relatively insensitive to these parameter values. Therefore, rather than inverting for

them, they were set at nominal values of density 2.4 g/cm3 and attenuation 0.01 dB/λ.

For optimal array-processing, it is necessary to determine the relative positions

of the sensors. To achieve a loss of less than 1 dB in conventional array-processing gain

requires that the element positions be prior known within a distance of λ/10, where λ is

the wavelength at the frequency of interest [43]. Due to the effects of a nonuniformly-

distributed tidal current over the water column as indicated in Section 2.2.2, the VLA

might be tilted and curved. To account for the array curvature, a parabolic VLA shape

is assumed and the geometry of the VLA is specified in terms of the bow b at the mid-

point of the array as shown in Fig. 2.7 and the length of the undisturbed straight array

Ls. Note that the value of Ls is known and equals 75 m. According to this geometry,

the location of each array element (assuming θ = 0) becomes

(xp, zp) =
(

4b

L2
s

(Ls − zs) zs,

(
1− 8

3
b2

L2
s

)
zs

)
(2.5)
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Figure 2.8: Empirical Orthogonal Function (EOF) analysis for the 2001 ASIAEX CTD

casts. (a) sound-speed profiles measured from R/V Melville and the average sound-speed

profile (thick black line); (b) Residual sound-speed profiles; (c) Percent of total fit energy

with limited sets of EOF’s; (d) First 6 EOF’s.

where the subscripts s and p denote the straight and the parabolic arrays, respectively.

Then, the tilt of the array is determined by the angle θ. A negative value of θ indicates

the array is tilting away from the source. (A 1◦ tilt corresponds to a approximately

1.3-m horizontal displacement at the topmost array element.)

Because the sound speed difference in the thermocline layer was significant

between CTD0123 and CTD0547, an Empirical Orthogonal Function (EOF) analysis of

the sound speed measurements [58] was carried out. Figure 2.8 summarizes the EOF

analysis for the sound-speed profile measurements. Figure 2.8(a) shows the ensemble

of CTD casts from JD 149 to 162 and the average sound-speed profile (thick line); Fig.

2.8(b) shows the variations of residual sound-speed profiles; Fig. 2.8(c) shows the percent

of total fit energy, i.e., eigenvalues, within the first 15 EOF’s; the shape of the first 6

empirical orthogonal functions is shown in Fig. 2.8(d). It shows that the first 4 EOF’s

contain about 95 % of the energy.
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Table 2.1: The EOF Coefficients for the Measured Sound-Speed Profiles Listed on Fig.

2.4.

Measured SSP eof 1 eof 2 eof 3 eof 4 eof 5 eof 6

CTD0123 9.39 −0.63 −0.80 1.97 2.20 −0.27

CTD0547 6.77 −2.50 0.52 2.79 0.03 −0.28

CTD0820 11.95 −4.04 −2.73 1.45 0.21 0.68

eof i denotes the i-th EOF coefficient.

Table 2.1 shows the EOF coefficients for three CTD’s taken on JD 158. The

search bounds in the estimate of the ocean sound-speed profile are based on this table.

The ocean sound-speed profile is modeled by the first three EOF’s with CTD0547 as the

baseline model.

The forward model parameters can be divided into three subsets: geometrical,

geoacoustic and ocean sound speed parameters. Table 2.2 lists each inversion parameter

along with their search bounds. These values were selected based upon a priori knowledge

about the environment.

2.4.3 Objective Function

The objective function measures the discrepancy between the measured acoustic

field and replica fields calculated for likely values of the unknown parameters. The data

misfit objective function chosen here is based on the incoherent multi-frequency Bartlett

processor [63]. Under the assumption of no spatial coherence across frequencies, the

misfit objective function can be expressed as

φ(m) =
1
L

L∑

l=1

[
1− d†l (m)R̂ldl(m)

]
(2.6)

= 1− 1
L

L∑

l=1

PBT,l(m) (2.7)

where d(m) is the replica field generated for the vector of unknown parameters m,

normalized to have unit length, R̂ is an estimated CSDM as given in Eq. (2.1), and

L is the number of source frequencies. The misfit objective function can be re-written
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Table 2.2: Inversion Parameters with Search Bounds

Model parameter Search bounds

Description Symbol Lower Upper

Geometrical

Source range (m) sr 1650 1800

Source depth (m) sd 46 51

Water depth (m) wd 104 108

Bow of parabola (m) b 0.5 2

Array tilt (deg) θ −7 −5

Geoacoustic

Sediment

Comp. speed (m/s) csed 1550 1650

Attenuation (dB/λ) αsed 0.01 0.5

Density (g/cm3) ρsed 1.3 2.2

Subbottom

Increase comp. speed (m/s) ∆c 10 200

Depth of subbottom (m) d 1 20

Ocean sound speed

eof 1 5 10

eof 2 −5 0

eof 3 −3 3

The search interval for each parameter was discretized into 128 points.

The array tilt refers to the angle with respect to the vertical axis.
(negative in the direction away from the source).
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as a function of the Bartlett power as shown in Eq. (2.7), in which the second term is

the arithmetic mean of Bartlett powers over the selected frequencies. By minimizing the

misfit objective function, the most likely values of the environmental parameters can be

found.

2.4.4 Sensitivity Analysis

To investigate the relative importance of the parameters, a sensitivity study was

carried out. Figure 2.9 summarizes the sound-field sensitivity for the selected frequencies

195, 295, and 395 Hz for the model parameters given in Table 2.2. The sensitivity of

the Bartlett power for the given frequency and the given parameter was computed by

correlating the data vector generated by the “true” parameter value with replica vectors

computed by varying the parameter value. In each case, the parameters that are not

varied are held at their nominal values (the values taken from the best-fit model at

T = 29 min) and the search bounds of each parameter were as shown in Table 2.2. A

sensitivity index (SI) for a particular parameter mi is obtained by incorporating the

minimum point in the sensitivity curve, PBT(m′
i)/PBT(mi), in the following expression:

SI (mi) = 1− min
li≤m′

i≤ui

PBT(m′
i)/PBT(mi) (2.8)

where m′
i denotes the values taken from the search interval between the lower bound li

and the upper bound ui. PBT(mi) is always one due to no noise in the simulation. For

highly sensitive parameters, SI is almost one which means that the correlation degrades

rapidly as the parameter value departs from the “true” value. For less sensitive or the

so-called non-identifiable parameters, the correlation remains about the same even with

some changes in such parameters. Note that the value of SI for each parameter is also

dependent on the corresponding search bounds. However, this measure of sensitivity is

useful for inter-frequency comparison.

2.4.5 Genetic Algorithms

Genetic algorithms (GA’s) are robust search mechanisms based on underlying

genetic biological principles. The complete description is well documented in [34]. The

values of the GA parameters used in this analysis are as follows: the population size was
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set to 64, reproduction size was 0.5, crossover probability was 0.8, mutation probability

was 0.05, and number of forward model computations for each population was 2500.

However, to collect statistical information in order to estimate the parameter uncertainty,

the number of parallel populations was set to 45. Approximately 112,500 forward models

were run.

2.4.6 Uncertainty Estimates

Because of the ambiguity imposed by data incompleteness, measurement noise,

and theoretical simplifications of the environment, a range of model parameters may

explain the data equally well. The global optimization method in SAGA is used to

obtain the samples of the search space. To estimate the parameter uncertainty, the

obtained samples are then used to calculate the posterior probability density (PPD) as

follows [76]:

P (m) =
L(m)

∑Nobs
j=1 L(mj)

(2.9)

where Nobs is the total number of observations (forward model runs). Under the assump-

tion of Gaussian errors, the likelihood function L(m) is related to the objective function

φ(m) through an exponential L(m) ∝ exp(−φ(m)). From the PPD, the mean model

parameter 〈m〉 and the model covariance matrix Cov(m) can be estimated, respectively,

as follows:

〈m〉 =
∑

mP (m) (2.10)

Cov(m) =
∑

mmTP (m)− 〈m〉〈m〉T (2.11)

where T denotes the transpose operation, and the sum is taken over the total observa-

tions. A measure of the accuracy of the inversion is defined as standard deviations of

the model parameters computed by the square roots of the diagonal terms of Cov(m).

2.5 Results and Discussion

Matched-field geoacoustic inversion using the selected frequencies 195, 295, and

395 Hz was carried out at T = 29 min over a parameter space of 13 parameters including

the geometrical, geoacoustic, and ocean sound speed EOF coefficients. Based upon
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the GPS measurement on R/V Melville, the source was approximately 1.7 km away

from the VLA. Figure 2.10 shows the marginal dot diagrams for the model parameters.

The vertical axis is the achieved misfit (i.e., Eq. (2.7)) with respect to the parameter

sampled during the SAGA optimization. The thick line superimposed on each scatter

plot was obtained by using the best-fit model corresponding to the optimal value of

the objective function as a baseline and computing the sensitivity for the optimized

parameter. We see that the sampled values for the array bow and tilt parameters (b

and θ) are spread mainly inside the sensitivity curve and align mostly with the best-fit

values. A similar behavior is observed for the ocean sound speed EOF coefficients but

with a wider span. The consistency between the local (line) and global (dots) searches

shows that this set of parameters is weakly correlated with the other parameters. For

the geoacoustic parameters, most sampled values wander outside the curve. This reveals

the more complicated structure in the multi-dimensional search space. Note that the

sampled values for the source range (sr) and the water depth (wd) are spread uniformly

throughout the range of the parameter interval. This is due to the strong coupling

between these two parameters.

Parameter coupling is another factor that determines the degree of uncertainty

in the model parameter estimates. Figure 2.11 shows the two-dimensional cross-sections

of Bartlett power for the selected parameters. The colorbar next to each plot indicates

the dynamic range in terms of dB. The two-dimensional dependence of Bartlett power

on sr and wd (Fig. 2.11(a)) exhibits a long narrow ridge indicating a strong correlation

between these two parameters. Similar correlations between csed and wd, and csed and d

are illustrated in Figs. 2.11(c) and (d), respectively. In each case, similar Bartlett power

would be achieved with increases in both parameters. As a result, high values of one

parameter tend to occur consistently with high values of the other parameter during the

SAGA optimization. Physically, the positive correlation between the water depth (wd)

and the source range (sr) can be explained by the waveguide invariant [26].

The SAGA-determined best-fit parameters and the mean estimated from the

PPD along with their standard deviations are tabulated in Table 2.3. Note that SAGAbest

and SAGAmean estimated model parameters are not necessarily equal. This is due to

the nonlinear relation between the data and the model parameters, a data set with a
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The vertical axis represents the attained misfit on a linear scale. The thick line is the

sensitivity curve of the multi-frequency misfit function using the best-fit model as a

baseline.
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Table 2.3: Parameter Estimates at sr = 1.7 km

Parameter SAGAbest SAGAmean ± σ

sr (m) 1714 1714± 16

sd (m) 48.3 48.4± 0.2

wd (m) 105.4 105.4± 0.6

b (m) 1.3 1.3± 0.1

θ (deg) −6.02 −6.02± 0.08

csed (m/s) 1585 1588± 7

∆c (m/s) 74 43± 24

d (m) 10 10± 3

αsed (dB/λ) 0.28 0.2± 0.1

ρsed (g/cm3) 1.8 1.8± 0.2

eof 1 6.3 6.1± 0.6

eof 2 −2.2 −2.0± 0.6

eof 3 −1.6 −1.7± 0.7

σ indicates the standard deviation.
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Figure 2.12: Comparison of the observed and modeled fields on the vertical array for

each of the frequencies used in the inversion. The solid and dashed lines indicate the

magnitude of the observed and modeled fields, respectively. Note that element #4 has

been deleted.

Gaussian error law in general is mapped onto a estimator of the model having a non-

symmetric density function.

It shows that the geometrical parameters (sr, sd, wd, b, θ), sediment sound

speed (csed), and the sediment thickness (d) all are well-determined. However, the pa-

rameter ∆c isn’t well-determined (the SAGA best-fit value is outside the mean plus one

standard deviation). Although the sediment attenuation and density have low sensi-

tivity, the standard deviation also is relatively small due to the narrow search bounds

selected for these two parameters.

Figure 2.12 shows the comparison of the observed and modeled fields on the

vertical array for each of the frequencies used in the inversion. The solid line represents

the magnitude of the observed field normalized by the total power registered at VLA and

the dashed line represents the magnitude of the modeled field computed by the best-fit

model and similarly normalized. The comparison shows good agreement between the

observed and modeled data for the frequencies 195, 295, and 395 Hz.
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2.5.1 Source Localizations

The inversion quality also is checked by using MF processing for source local-

ization. The replica pressure field computed by the best-fit model from the inversion

carried out at sr = 1.7 km was used in this subsection. To avoid search grid mismatch

in the frequency band of interest [56], the grid spacings ∆r and ∆z were set to be 10

m and 1 m, respectively. Figure 2.13 shows the source range-depth ambiguity surfaces

for each source frequency and the multi-frequency average at sr = 1.7 km. The multi-

frequency ambiguity surface is defined as the arithmetic mean of MF correlations over

the selected frequencies. We see the distinguishing mainlobe/sidelobe structure and the

high MF correlations for both single and multiple frequencies.

An environmental model that localizes the source at one range may not localize

the source at another range. In order to confirm the applicability of the environmental

model estimated at sr = 1.7 km, this model was also applied to the data from a greater

range. Figure 2.14 shows the ambiguity surface at T = 42 min using the environmental

parameters listed in Table 2.3. The grid spacing (∆r,∆z) was the same as before. The

results in Fig. 2.14 show that the peak on each ambiguity surface still remains at a high

correlation level and the peak locations for the different frequencies are located at the

same range/depth and agree with the experimental configuration.

Encouraged by the consistency of the geoacoustic model at two different ranges,

we then applied this model on the acoustic data over the time interval from 20 to 50

minutes. First, an exhaustive search was conducted over three of the geometrical pa-

rameters (sr, sd and θ) at 295 Hz. Figure 2.15 shows the MF correlations over time

for different array tilts. As mentioned in Section 2.4.2, the accuracy to which sensor

positions should be known has to be better than λ/10. A priori information showed that

the array was not purely vertical and it had some tilt on the order of −5 or −7 degrees

from vertical. Due to the current force on the VLA, the source and the VLA are not in

the same vertical plane in which the r-axis is defined by the source and the deepest array

element. Therefore, from the perspective of the source, the apparent tilt of the array

changes over time. In Fig. 2.15, the bow of the array was taken to be the estimated value

from the inversion and θ varies from −5 to −7 degrees in 0.5 degree increments. The tilt

is such that the uppermost part of the array is farther away from the source than the
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Figure 2.13: Range-depth ambiguity surfaces at sr = 1.7 km. The replica pressure field

is computed using the environmental parameters listed in Table 2.3.
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computed using the environmental parameters listed in Table 2.3.
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lower part of the array. As expected, the highest MF correlation appears at the range

where the inversion was carried out.

MF-derived source-receiver range and source depth using 195, 295, and 395

Hz over the time interval from 20 to 50 minutes are displayed in Figs. 2.16 and 2.17,

respectively. The peak tilt correlations shown in Fig. 2.15 were used as a guide for

which tilts to use in this time period. Based upon the GPS measurements, the data in

this time interval cover the range from 1 to 3.5 km. The source depths measured by

the depth sensor are indicated by the plus signs in Fig. 2.17. Compared with the GPS

and the depth sensor measurements, MF-derived source position is consistent with the

experimental configuration. Source localization based on the best-fit model tracks the

actual source positions well.

2.5.2 Inversion Results over Time

As a final example, separate inversions were carried out using the acoustic data

at each range over the time interval from 20 to 40 minutes. The GA parameters and the
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The plus signs indicate the true measured values.
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search bounds were taken to be the same as the inversion conducted at T = 29 min except

for sr. Approximately 107 forward models were computed for a total of 98 inversions.

The purpose of inverting the data at many ranges is to consider a large enough

number of separate measurements to provide an indication of the consistency of the

inversion results for the various model parameters. Figure 2.18 shows the lowest misfit

objective function and the corresponding model parameters (best-fit model) determined

in all inversions plotted as a function of time.

The best-fit model at each range was obtained by minimizing the misfit ob-

jective function φ between measured and modeled fields. The lowest misfits obtained

by the SAGA inversions (the cross signs connected by a solid line) are shown in Fig.

2.18(a). The solid line represents the best possible value of misfit for the available SNR

(i.e., 1 − PBT, max, see Eq. (2.2)). We see that low misfit values were obtained for all

ranges. The best-fit results for sr and sd (Figs. 2.18(b) and (c), respectively) closely

track the source position. The estimated water depth (Fig. 2.18(d)) exhibits the mild

variation from inversion to inversion. The estimated array bow (Fig. 2.18(e)) shows a

small amount of variation. The reason is that the current essentially was constant in

direction and magnitude over this 20-minute time interval. The inversion results for

the array tilt shown in Fig. 2.18(f) are in good agreement with the tilts determined by

searching over only three geometrical parameters: sr, sd, and θ using 295 Hz (Fig. 2.15).

Figures 2.18(g)–(k) show the inversion results for the geoacoustic parameters: sediment

sound speeds csed, ∆c, and sediment thickness d, attenuation αsed, and density ρsed.

Consistent values were obtained for geometrical parameters and sediment sound speed,

attenuation, and thickness. Figures 2.18(l)–(n) show the inversion results for the first

three ocean sound speed EOF coefficients

The parameter uncertainty was estimated using the best-fit models determined

at each range over the time interval from 20 to 40 minutes. The mean and standard de-

viation for each of the parameters is indicated by the solid and dashed lines, respectively.

Compared with the SAGA parameter estimate at sr = 1.7 km, the mean and standard

deviation for each of the parameters is in excellent agreement. Table 2.4 summarizes the

results of the comparison.

Since separate inversions were carried out for the acoustic data at each range
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Table 2.4: Comparison of the Parameter Uncertainty Estimates

Multiple Range Inversions Single Range Inversion
Parameter

Mean± Std SAGAmean ± σ SAGAbest

csed (m/s) 1582± 9 1588± 7 1585

∆c (m/s) 55± 32 43± 24 74

d (m) 11± 3 10± 3 10

αsed (dB/λ) 0.2± 0.1 0.2± 0.1 0.28

ρsed (g/cm3) 1.9± 0.2 1.8± 0.2 1.8

eof 1 6.4± 1.1 6.1± 0.6 6.3

eof 2 −2.2± 0.8 −2.0± 0.6 −2.2

eof 3 −0.7± 0.9 −1.7± 0.7 −1.6

Multiple Range Inversions: the means and standard deviations (Std) of the inversion

results of Fig. 2.18.

Single Range Inversion: the best-fit model, and the PPD mean and standard deviation

estimated at sr = 1.7 km.
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over the 20-minute duration, a comparison of the measured and modeled acoustic fields

at selected array elements was made. Figure 2.19 demonstrates the agreement between

the observed and modeled fields. The measured field (solid line) was normalized by the

total power registered at VLA at each range and the modeled field (dashed line) was

computed using the best-fit model at each range and similarly normalized. It shows that

the model fields reproduce the major features of the measured field reasonably well.

The variation from inversion to inversion in each parameter is used to examine

parameter coupling. The coupling between model parameters can be quantified using

the correlation coefficient matrix ρ, defined by

ρij =
CMij√

CMiiCMjj

(2.12)

where the covariance matrix CM is calculated by

CM = 〈(mbest − 〈mbest〉)(mbest − 〈mbest〉)T 〉 (2.13)

with mbest is the best-fit model found at each inversion. Values of ρij are bounded

between −1 and +1, with −1(+1) indicating a perfect negative (positive) correlation

between parameters i and j, and 0 indicating uncorrelated parameters. For the purpose

of demonstrating parameter coupling, only the absolute value of the correlation coefficient

is considered. Figure 2.20 presents the magnitude of the linear correlation coefficient

computed using the inversion results shown in Fig. 2.18. A strong coupling was observed

for the following parameter pairs (wd, d), (wd, csed), and (d, csed), which is consistent

with the observations in Fig. 2.11.

2.6 Conclusions

This chapter reports the geoacoustic inversion results based upon source tow

data obtained during the ASIAEX 2001 East China Sea experiment. The source tow

data recorded on a VLA were used to estimate the geoacoustic properties of the seafloor.

The waveguide was assumed to be range-independent, and the seafloor was modeled as

a homogeneous sediment layer overlying a semi-infinite subbottom.

Matched-field geoacoustic inversions using frequencies 195, 295, and 395 Hz

were carried out by a genetic-algorithm-based optimization approach. The environmental
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Figure 2.18: The inverted environmental

parameter values versus time. (a) the solid

line shows the best possible value for the

available SNR and the cross signs con-

nected by a solid line represents the low-

est misfit attained by SAGA. (b)–(f) show

the results for the geometrical parameters.

The solid lines in (b) and (c) indicate the

true measured values.
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Figure 2.18: (cont’d) (g)–(k) show the re-

sults for the geoacoustic parameters; (l)–

(n) show the results for the ocean sound

speed EOF coefficients. The crosses con-

nected by a solid line indicate the SAGA

best-fit results. The solid and dashed

lines indicate the mean and plus/minus

one standard deviation of the mean, re-

spectively. The vertical axis represents the

search bounds.
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Figure 2.19: Normalized received levels for the measured (solid line) and normalized

modeled (dashed line) fields as a function of time for the array elements 1, 6, 11, and 16

and for the frequencies 195, 295, and 395 Hz. The modeled fields were computed using

the best-fit model found at each range.
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parameters were estimated by two different analyses to ensure the robustness of the

inversion. These two analyses are summarized as follows:

1. The inversion was first performed with the set of data obtained at range

of sr = 1.7 km. The accuracy of the inverted parameters was measured

by the mean and the standard deviation of the posterior probability dis-

tribution. The results indicated a good agreement between the measured

and the modeled sound fields. Furthermore, the inverted model quality was

checked by using MF processing for source localization over the entire 30-

min time interval. The predicted source positions track the measurements

well.

2. A total of 98 separate inversions were carried out for the acoustic data

at each range over the time interval from 20 to 40 minutes. The best-fit

model at each range is the inversion result at that range. The data in this

time interval covers a 1.5-km range. With the assumption that the seabed

properties are range-independent, the resulting variations from inversion to

inversion were used to analyze the parameter uncertainty. Low misfit values

were obtained for all ranges, and consistent values were obtained for geo-

metrical parameters and sediment sound speed, attenuation, and thickness.

Also, a comparison of the measured and modeled fields was made and shows

good agreement.

The parameter uncertainty (the mean and standard deviation) estimated from several in-

versions are in excellent agreement with the results at sr = 1.7 km. Parameter coupling

was examined using the correlation coefficient matrix derived from the multi-range in-

version results. The observed parameter correlations were consistent with our sensitivity

results at sr = 1.7 km.
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