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Abstract In this work we develop a method to perform
simultaneous design and tolerance allocation for engineering
problems with multiple objectives. Most studies in existing
literature focus on either optimal design with constant toler-
ances or the optimal tolerance allocation for a given design
setup. Simultaneously performing both design and tolerance
allocation with multiple objectives for hierarchical systems
increases problem dimensions and raises additional computa-
tional challenges. A design framework is proposed to obtain
optimal design alternatives and to rank their performances
when variations are present. An optimality influence range is
developed to aid design alternatives selections with an influ-
ence signal-to-noise ratio that indicates the accordance of
objective variations to the Pareto set and an influence area that
quantifies the variations of a design . An additional tolerance
design scheme is implemented to ensure that design alterna-
tives meet the target tolerance regions. The proposed method
is also extended to decomposed multi-level systems by inte-
grating traditional sensitivity analysis for uncertainty prop-
agation with analytical target cascading. This work enables
decision-makers to select their best design alternatives on
the Pareto set using three measures with different purposes.
Examples demonstrate the effectiveness of the method on
both single- and multi-level systems.
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Introduction

Design is a multi-objective decision-making process con-
sidering manufacturing, cost, aesthetics, usability and many
other product attributes. Often time decisions have to be made
under various operating and environmental uncertainties. For
example, consider the design of a three-story structure com-
posed of several beam elements in supporting a load. The
design objectives of this structure are minimizing the overall
weight while at the same time minimizing the maximal dis-
placement when carrying the load. These two objectives are
contradicting to each other since a lighter structure, with-
out changing the material, generally means smaller cross
section areas, and therefore larger displacement. Designers
are not only require to provide specifications of all beams
in the structure, but also determine the tolerances to these
specs due to uncertainties in operation conditions, in mate-
rial properties, and in manufacturing processes. Impacts of
these uncertainties on products’ performances in-use result
in perceivable product qualities to consumers. An optimal
design therefore needs to be determined while ensuring per-
formance requirements are met under uncertainty with the
minimal manufacturing cost.

Motivated by the robust design concept in Fowlkes and
Creveling (1995), this work aims to obtain the optimal design
first and then assign the optimal tolerance to these selected
parameters. The optimal design and tolerance allocation for
multi-objective engineering problems can be formulated as in
Eq. (1). n f objectives are optimized simultaneous in Eq. (1b)
while design variables x are subjected to variations.

given �fT = {� f T
1 , . . . , � f T

n f
} (1a)

minimize f(X) = { f1(X), . . . , fn f (X)} (1b)

minimize tolerance cost (1c)

123



J Intell Manuf

with respect to {x,�x} (1d)

subject to X(x,�x) ∈ F (1e)

The uncertainties X are uniquely determined via input design
variables x and tolerances �x as shown in Eq. (1e). The input
uncertainties X due to manufacturing or assembly tolerances
result in output performance variations including objectives
f and constraints g. A set of maximal acceptable objective
variations, �fT in Eq. (1a), are given to the designers. �fT

and the inequality constraints g form the feasible space F .
The tolerance design cost in Eq. (1c) is the cost to meet the
desired performance variation ranges. In this study, we con-
sider constraints being satisfied in the worst-case scenario
such that max{g(X)} ≤ 0.

Discussions on Eq. (1) in the literature can be categorized
into different focuses, namely tolerance synthesis, tolerance
allocation, robust design, and multi-objective design optimi-
zation. Table 1 summarizes the domains of interests between
this work and similar studies in the literature. In what fol-
lows, we will use an output performance characteristic y as
a nonlinear function of input variables x such that y = f (x).
The uncertainties X within the tolerance region result in the
variation in y.

Tolerance synthesis considers the impact of uncertainties
X on objective functions, Eq. (1b), or on constraints, Eq. (1e).
The choices on the tolerance models determine the method
in accessing the impacts of these uncertainties on the out-
put performances. When tolerances are specified as intervals
(Parkinson 2000; Wu and Rao 2004), a sensitivity matrix is
generally applied (Lin and Zhang 2001), resulting in either
the worst case formulation in Eq. (2a) or the statistical anal-
ysis in Eq. (2b).

�y =
n∑

i=1

∣∣∣∣
∂ f

∂xi
�xi

∣∣∣∣ (2a)

�y =
[

n∑

i=1

(
∂ f

∂xi

)2

�x2
i

]1/2

(2b)

Equations in (2), also referred to as tolerance stackup in
the literature, imply the function f is relatively linear and
may yield large errors when apply to nonlinear problems.
Methods such as Monte Carlo simulation or advanced sam-
pling techniques have then be used for tolerance analysis with
significant computational expenses; for example, see Early
and Thompson (1989),Skowronski and Turner (1997). When
tolerances are modeled as random distributions (Martosell
et al. 2007; Xu et al. 2005), predominately Gaussian, proba-
bility functions of y = f (X) are generally studied. Martosell
et al. use Monte Carlo sampling in obtaining these probabil-
ity functions (Martosell et al. 2007). Xu et al. (2005) and
Savage et al. (2006) use the first order reliability method in
estimating the propagated variations.

With the tolerance analysis methods in the literature, one
can study the best assignments to set the tolerance level
of each design variable or parameter such that the overall
product performance is satisfactory. From Table 1, tolerance
allocation treats input tolerances as design variables and min-
imizes the tolerance cost in Eq. (1c). Various tolerance cost
models have been proposed with the main concept being that
the manufacturing cost generally increases with smaller tol-
erances (Cheng and Maghsoodloo 1995; Yeo et al. 1998).
Common cost models include reciprocal model Eq. (3a),
reciprocal-power model Eq. (3b), exponential model Eq. (3c)
and combinations of above, for example the exponential-
reciprocal model Eq. (3d). A, B, C , and r in Eq. (3) are
parameters to be fitted with on-site data.

Tolerance Cost = A + B/� (3a)

= A + B/�r (3b)

= A + B/ exp[C�] (3c)

= A + B/ exp[C�]�r (3d)

Cost minimization in tolerance allocation results in a non-
linear programming problem that can be solved by methods
such as standard optimization techniques (Ye and Salustri
2003) or genetic algorithms (Martosell et al. 2007; Xue and
Ji 2004; Chen and Fischer 2000). Zhou et al. (2001) develop
a tailored algorithms using number theoretical method in
obtaining the global optimal solutions for NLP in tolerance
allocation. Jordaan and Ungerer (2002) use response sur-
face to improve the efficiency of assigning dimensional tol-
erances.

In addition to tolerance cost, some research in tolerance
allocation also considers the loss function as a monetary
expression for the cost of product off-the-target quality loss
and the variation of the performances from consumers’ per-
spectives. Assuming a target performance ytarget is also given
to the designer. The loss function was first proposed by
Taguchi et al. (1989) to quantify product quality degradation.
Loss functions of various forms have been used in tolerance
allocation, for example see Vasseur et al. (1997), Choi et al.
(2000), Caleb Li (2004), Jeang (2007), Cheng and Magh-
soodloo (1995)

Quality Loss Cost = k(y − ytarget)2 (4)

The multi-objective formulation in Eq. (1b) has been stud-
ied extensively in optimization literature; however, the appli-
cation of multi-objective on multi-level complex systems
received relatively less attentions. Many studies use weighted
sum to combine several objective into one for complex sys-
tems (Tappeta and Renaud 1997; McAllister and Simpson
2003; Berrichi et al. 2009; Subramaniam et al. 2001). Li and
Haimes (1987) developed a hierarchical generating method
with envelop analysis in generating Pareto set of complex
systems. Multi-objective genetic algorithms have also been
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Table 1 Taxonomy on related
research Eq. (1a) Eq. (1b) Eq. (1c) Eq. (1d) Eq. (1e)

Tolerance synthesis � �
Tolerance allocation � � �
Robust design � � �
Multi-objective optimization � � �

used for Pareto generation in robust design problems (Giassi
et al. 2004) and in manufacturing processes (Cheng et al.
2009; Turkcan and Selim Akturk 2003).

Albeit a large quantity of studies have been conducted,
they are either insufficient in handling Eq. (1) or have dif-
ferent focus than what we intended to achieve in this work.
Recently Li and coworkers developed a sensitivity analy-
sis based uncertainty propagation approach in obtaining the
robust optimal design (Li and Azarm 2008). Given acceptable
objective ranges, a portion of the original deterministic Pareto
set without considering uncertainty will be identified as the
robust results. This method is later extended to multi-objec-
tive design with tolerance allocation for uncertainty reduc-
tion in single and multi-level systems (Li et al. 2009, 2010).
However, their method is focused on uncertainty reduction
of a given design point on the Pareto set. Design alterna-
tives are not compared and as a result one will have diffi-
culty apply existing methods to select their optimum. Our
method, on the other hand, provides decision-makers design
alternatives on the Pareto set with different ranking systems
such that they can use their own judgements in selecting
their optimal design. In what follows, we will describe three
main steps of our method in section “Methodology” section,
namely the Pareto generation and uncertainty analysis step
in section “Pareto generation and uncertainty analysis”, the
uncertainty reduction with tolerance design step in section
“Uncertainty reduction with tolerance design”, the uncer-
tainty impact analysis in section “Uncertainty impact anal-
ysis via optimality influence range”. In section “Extensions
to multi-level system”, we will extend the proposed method
to complex multi-level systems. An anchor design example
is demonstrated in section “Anchor design examples” with
concluding remarks in section “Conclusion”.

Methodology

One of the important concepts in multi-objective optimiza-
tion is that multiple optimal solutions are generally obtained
resulting in a Pareto set. Decision-makers are then able
to ‘pick’ his/her own optimum based on personal prefer-
ences or past experiences. Although variations change the
Pareto set, the same concept should be maintained: design-
ers should be able to access different design alternatives and

Pareto Generation and 
Uncertainty Analysis

Uncertainty Reduction with 
Tolerance Design 

Uncertainty Impact Analysis

Construct 
Optimality 

Influence Range

Influence 
Area

S/N 
Influence 

Tolerance 
Cost

Acceptable 
Designs Exist?

no
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More 
Alternatives 

Needed?
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Select An 
Optimal Design

no
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END
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Fig. 1 Flowchart of the proposed method

investigate their performances and cost in compliance with
given acceptable variation ranges.

Figure 1 illustrates our proposed approach in multi-objec-
tive optimization with tolerance allocation when uncertain-
ties exist in design variables or parameters. Shadows in these
figures represent uncertainties in reality to be considered.
A worst-case Pareto set is first generated using the Eq. (5)
with input uncertainty ranges considered as parameters. To
ensure a possibly non-convex Pareto set be obtained cor-
rectly, we use constraint method in Pareto set generation.
The worst-case constraint violations can be approximated as
g(x) + |∂g/∂x| �x.
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given �x

minimize
x

f(x) = { f1(x), . . . , fn f (x)} (5)

subject to max{g(x,�x)} ≤ 0

The performance variation of the points on the Pareto set,
denoted as Pareto points, will then be investigated via uncer-
tainty analysis. We introduce the optimality influence range
to quantify objective functions variations with details to be
discussed in section “Uncertainty impact analysis via opti-
mality influence range”. Results of the optimality influence
range are the influence areas as well as signal-to-noise influ-
ence ratio to determine the performance of a Pareto point
under uncertainty. If one or more Pareto points and their
influence ranges are acceptable, we will provide selection
sequence for decision-makers. However, if the variations of
the Pareto points are not acceptable, we then go to the next
stage to tolerance design.

given x∗ ∈ P
minimize

�x
Cost(�x) (6)

subject to �f ≤ �fT

Equation (6) shows the constrained optimization in toler-
ance design for each point in the Pareto set P . This method
is inert to the choice of cost model in Eq. (6) and in this work
we use exponential function from the literature. Theoretically
Eq. (6) should include original constraints g. However, such
an inclusion will result in significant increase in computation
cost to calculate sensitivity of all constraints with respect to
all design variables for all subsystems as will be seen in
section “Extensions to multi-level system”. We experienced
great computation cost increase with little gain in the toler-
ance by including original constraints; therefore in this study
we remove all constraints g in Eq. (5) assuming that toler-
ance reductions only ‘shrink’ the influences of uncertainties
on constraints with initial tolerances being assigned properly.
Unless a much larger tolerances are obtained, our proposed
method provides a better resolution especially dealing with
complex multi-level systems. A larger tolerances also imply
poor initial engineering practice in assigning initial toler-
ances and is factored out in our study.

After tolerance cost for each x∗ ∈ P to satisfy �fT is
determined, it will become an additional judgement for a
design. Designers now have three measures in selecting their
optimum, namely

Criterion 1: how much tolerance cost to bring the design to
desired objective ranges;

Criterion 2: how well the objective performances vary:
influence area;

Criterion 3: how well a design remains optimal: signal-
to-noise influence ratio.

Design A

Design B

Design C

Design D

Design E

Fig. 2 Pareto set and design alternatives for Eq. (7)

If none of the existing Pareto points are acceptable, more
optimal alternatives are generated until at least one is present.
The proposed method is general for single- and multi-level
systems. Additional challenges raised with multi-level sys-
tems will be discussed in section “Extensions to multi-level
system”. In what follows, we will use an example with two
nonlinear objective functions and two design variables and
describe each step in more details.

Pareto generation and uncertainty analysis

This step in Pareto generation and uncertainty analysis
involves Eqs. (1b-1e) given current design tolerances �x and
acceptable objective variation ranges �fT = [0.03, 0.1] in
Eq. (1a). We use the bi-obejctive optimization example in
Eq. (7) with two design variables as a demonstration of our
proposed approach.

given {�x = 0.01, �fT = [0.03, 0.1]}
min { f1 = R1 + R2, f2 = −R1 R2}
w.r.t x = [x1, x2]T (7)

s.t. g1 = max{0.8X1 − X2 + 0.2} ≤ 0

g2 = max{−X1 + X2 − 1.6} ≤ 0

R1 = −0.1 + (4 − 2.1x2
1 + 0.25x4

1 )x2
1 (8)

+x1x2 + (4x2
2 − 4)x2

2

R2 = (x1 − 1)2

−1 ≤ x ≤ 1

The constraint method is used in generating design alter-
natives on the Pareto set, resulting in five Pareto points
as shown in Fig. 2. As can be seen the Pareto set is con-
cave, using weighted-sum method will not get the complex
Pareto set. This constraint method in generating Pareto set
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Table 2 Five design
alternatives on the Pareto set f ∗

1 (� f1) f ∗
2 (� f2) x∗

1 x∗
2

A 6.0609 (0.0523) −8.3193 (0.1334) −0.9900 −0.1279

B 5.1692 (0.0611) −6.0628 (0.1491) −0.8358 −0.1069

C 4.1688 (0.0643) −3.8063 (0.1327) −0.6788 −0.0858

D 2.8879 (0.0593) −1.5498 (0.0866) −0.4749 −0.0598

E −0.1847 (0.0012) 0.7065 (0.0289) 0.1321 0.6987

Table 3 Tolerance cost of
design alternatives Cost � f1 � f2 �x1 �x2

Design A 62.7348 0.0300 0.0763 0.0058 0.01

Design B 91.4635 0.0300 0.0730 0.0049 0.01

Design C 102.2000 0.0300 0.0618 0.0047 0.01

Design D 85.1231 0.0300 0.0437 0.0051 0.01

Design E 13.4759 0.0012 0.0289 0.0100 0.01

is also used for problems with multi-level structures. Since
constraints in Eq. (7) are both linear, worst case robustness
can simply obtained using interval arithmetic (Hanss 2004).

Variations of each design alternatives are obtained using
linearization with finite differences given input �x as in
Eq. (9). Although Eq. (9) can yield large error for nonlinear
objective functions, �x are generally small for most engi-
neering problems with respect to the function nonlinearity,
making Eq. (9) a better compromise between accuracy and
efficiency than much more expensive sampling techniques. In
addition, the variation ranges obtained via Eq. (9), as shown
in Table 2, also enable us in different quantification metrics
in section “Uncertainty impact analysis via optimality influ-
ence range”.

� f j ≈
∣∣∣∣∣

n∑

i=1

∂ f j

∂xi
�xi

∣∣∣∣∣ (9)

Uncertainty reduction with tolerance design

Step 1 in section “Pareto generation and uncertainty analysis”
provides design alternatives on the Pareto set that are robust
with their objective variation ranges. If �f > �fT for all
Pareto design points, a tolerance design scheme as shown in
Eq. (10) is then needed to find the minimal cost in bring
all design alternatives within acceptable variation ranges.
For demonstration purpose, the exponential cost model in
Eq. (10) with A =1,000 and B = 500 is used.

given {x,�fT }
minimize tolerance cost =

∑

�x

Ae−B�x (10)

with respect to {�x}
subject to �f ≤ �fT

Pareto Set

Pareto 
Point

variations in the 
object space

optimality 
uence range

Fig. 3 Optimality influence range

Table 3 lists the tolerance costs for all design alternatives
in Fig. 2 to meet target variation range in Eq. (7). As can be
seen Design C has the highest tolerance cost while Design E
has the lowest. All design alternatives except Design E has
� f1 reaching the maximal acceptable tolerance 0.03. The
input tolerance �x1 is reduced in Design A to Design D to
meet �fT . Design E allows both input tolerances to their
maximal value 0.01 without violating �fT .

Based on the result in Table 3 one might expect Design E
being the best choice among all design alternatives. However
in this work we suggest that performances of design alter-
natives under uncertainty be considered as well as cost in
judging a design. In the following, we will introduce other
measures in analyzing the performance of a design under
uncertainty.

Uncertainty impact analysis via optimality influence range

Design alternatives on a Pareto set are preferred if a design
has good tendency to remain on the Pareto set within the
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prescribed tolerance regions. In this research we define the
optimality influence range in Fig. 3 that quantifies the conse-
quences of design variations on the objectives. For a Pareto
point, its objective variations due to �x in the design space
are shown with shadows representing uncertainty. The opti-
mality influence range is a hyper-rectangle that encloses all
the objective variations with an angle. Although the objective
variations rarely have rectangle shapes due to nonlinearity of
the functions, the optimality influence range is able to cap-
ture behaviors of objective functions under uncertainty. The
unit vector �s is tangent to the Pareto set on the design point
and �n is the vector perpendicular to �s. Since variations along
�s direction tend to ‘stay’ on the Pareto set while along �n
tend to deviate from the Pareto set, we define �s as signal
vector and �n as noise vector. The lengths �s = �s · �f and
�n = �n · �f are the signal variation and the noise variation,
respectively.

An important criterion to describe the objective function
variations is that differences in objective variations should
be captured. In Fig. 4, two design scenarios, A and B, on
the Pareto set are shown with their variations in the object
space. Both designs have different performances variations
and different tendencies to remain on the Pareto set: Sce-
nario B has better optimality ‘signal’ and less ‘noise’ than
scenario A. In previous work (Li and Azarm 2008), these
two design will end up having the same objective variation
range (OVR) due to the the fact that mathematical defini-
tion of OVR is unable to describe their variations away from
the optima. This indicates the inability of OVR in quantify-
ing variations in the objective space due to uncertainties in
the variables/parameters. Our proposed optimality influence
range extends the concept of OVR with better quantification
of the variations of a Pareto point in the objective space. In
this work we assume all problems have been properly scaled
such that the difference between Fig. 4a and b are not results
of improper scaling.

Table 4 Optimality influence ranges of design alternatives

−→s −→n �s �n

A (0.36,−0.93) (0.93,0.36) 0.1433 0.0003

B (−0.38,0.93) (0.93,0.38) 0.1612 0.0001

C (−0.44,0.90) (0.90,0.44) 0.1475 0.0002

D (−0.57,0.82) (0.82,0.57) 0.1049 0.0003

E (−0.01,1.00) (1.00,0.01) 0.0289 0.0014

Table 4 list the optimality influence ranges for all design
alternatives. Two important criteria can be extracted from
Table 4, namely the optimality influence area for the output
variations and the optimality influence signal-to-noise ratio
for the tendency to remain on the Pareto set. These two crite-
ria will be introduced in sections “Influence area” and “Sig-
nal-to-noise influence ratio”.

Influence area

Area covered by the optimality influence range, denoted as
the influence area, is used to compare two Pareto design alter-
natives. A design with smaller influence area generally means
smaller objective variation and should be preferred by design-
ers. This criterion can simply be computed using Eq. (11)
based on the influence range information in Table 4.

influence area = �s × �n (11)

Signal-to-noise influence ratio

The unit vector �s is defined as the signal direction since vari-
ations along �s tend to stay on the Pareto set while variations
along the noise vector �n move away from the Pareto set.
With the signal and noise unit vector being defined, we intro-
duce the optimality influence signal-to-noise (S/N) ratio in

Fig. 4 Comparisons between
OVR in Li and Azarm (2008)
and influence range. a Scenario
A, b scenario B

OVR

uence range

Pareto Set

OVR

uence range

Pareto Set

(a) (b)
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Table 5 Influence area and S/N ratio of design alternatives

Area (×10−4) SN (×103)

Design A 0.4750 0.4324

Design B 0.1097 2.3685

Design C 0.3513 0.6191

Design D 0.3102 0.3549

Design E 0.4042 0.0206

Eq. (12) as the third criterion in selecting design alternatives.

influence S/N ratio = �s

�n
(12)

The influence S/N ratio differs from allowable increase/
decrease in linear programming literature in that we focus
on the compliance of a design to remain optimal (Neufville
1990). By doing so, we allow the design to be varied
and a design considering good performance is one that
remains on the Pareto set under uncertainty. The allowable
increase/decrease, on the other hand, focus on the limit of
uncertainty by which the optimal design starts to change. A
design with a large S/N ratio tends to remain on the Pareto
set: they remain optimal but at different design point. There-
fore our S/N ratio provides a better performance indication of
how design behaves under uncertainty and how much atten-
tion designers should pay to alter the design.

Table 5 lists the influence area and S/N ratio of all design
alternatives A to E. As can be seen Design B has the small-
est influence area with the largest S/N ratio. Design A, on
the other hand, has the largest influence area while E has the
worst signal-to-noise ration given the same input variations.
Figure 5a and b shows the influence range of Design B and
E, respectively. As can be seen the variations in �x result in
good accordance to the Pareto set for B but a much larger

Table 6 Design alternatives on the Pareto using ATC

f ∗
1 (� f1) f ∗

2 (� f2) x1 x2

A 6.0608 (0.0530) −8.3193 (0.1360) −0.9900 −0.1279

B 5.1691(0.0617) −6.0628 (0.1503) −0.8358 −0.1069

C 4.2131 (0.0631) −3.8962 (0.1298) −0.6860 −0.1100

D 3.2683 (0.0169) −1.5498 (0.1133) −0.6019 0.9900

E −0.1350 (0.0095) 0.4179 (0.0254) 0.2366 0.6918

objective variations in E, resulting in a large influence area
and poor S/N ratio. If E is selected, one might expect a large
portion of design outcomes that are not ‘optimal’.

Short summary

Three measures in selecting design alternatives to meet
Eq. (7) have been constructed. Decision-makers can now use
these criteria in choosing their design based on their own cri-
teria. With data from Tables 3, 4, and 5, comparisons between
design alternatives can be made. Figure 6 list three criteria
side-to-side to show their relative importance. Each criterion
list design alternatives from left to right as A to E. Directions
of arrows in three criteria means whether the criterion is the
larger the better ↑ or the smaller the better ↓.

A designer with cost as the number one concern might
choose Design E. Unfortunately Design E is also the one with
the worst influence S/N ratio. On the other hand, if whether
the system remains optimal is the number one interest, one
will eventually select Design B over the rest of the design
alternatives. In this method we develop selection criteria for
designers and leave the final design choice to the decision-
maker.

4.9 5 5.1 5.2 5.3 5.4

-6.4

-6.3

-6.2

-6.1

-6

-5.9

-5.8

(a) (b)

Fig. 5 Optimality influence ranges. a design B, b design E
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(a) (b)

(c)

Fig. 6 Comparisons of design alternatives. a cost (↓), b influence area (↓), c influence S/N ratio (↑)

Table 7 Optimality influence range, area, S/N ratio, and tolerance cost of ATC design alternatives

−→s −→n �s �n Area(×10−4) S/N Ratio(×104) Cost � f1 � f2 �x1 �x2

A (0.36,−0.93) (0.93,0.36) 0.15 1.00e−4 0.2141 0.0996 65.8670 0.0300 0.0769 0.0057 0.0100

B (−0.38,0.93) (0.93,0.38) 0.16 1.39e−5 0.0225 1.1735 94.7718 0.0300 0.0731 0.0049 0.0100

C (−0.44,0.90) (0.90,0.44) 0.14 1.53e−5 0.0220 0.9461 93.3756 0.0300 0.0610 0.0049 0.0100

D (−0.57,0.82) (0.82,0.57) 0.10 5.04e−2 51.7992 0.0002 16.3149 0.0119 0.1000 0.0100 0.0093

E (−0.01,1.00) (1.00,0.01) 0.03 9.30e−3 2.3740 0.0003 13.4759 0.0095 0.0254 0.0100 0.0100

Table 8 Anchor design
parameters

E Ftallow ρ σallow �m �δ1

70 GPa 400 N 270 kg/m3 127 MPa 0.04 Kg 0.075 m

Although we use an analytical example to demonstrate
our proposed method step by step, this method can readily be
applied to much more complex systems. In what follows, we
will discuss the challenges and solution methods in extending
the proposed work to complex multi-level systems.

Extensions to multi-level system

Large-scale design problems are high dimensional and
deeply-coupled in nature. The complexity of such large-scale
systems prevents designers from solving them as a whole.
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Elements

...

Levels

0

1

i

0 1

Fig. 7 Hierarchical structure of ATC

Analytical target cascading (ATC) is a systematic approach
in solving decomposed large-scale systems that has solvable
subsystems (Kim et al. 2003; Michelena et al. 2003). Let a
large-scale system be decomposed into subsystems of differ-
ent hierarchies (levels) as shown in Fig. 7, which has i levels
with j elements at each level. Design targets T are assigned
to the top-level system. Design variables of the element i j ,
also called local variables, are xi j . Local constraints of ele-
ment i j are gi j and hi j for inequality and equality constraints,
respectively. Ri

i j are the responses from the element i j to the

(i − 1)th level while Ri−1
i j are the targets to the element i j

from the (i − 1)th level where Ri
i j = ri j (xi j ). yi

i j are linking
variables between elements at the same level i . Sk is a binary
selection matrix to define which linking variables in yi

(i+1) j

are elements of yi
(i+1)k in child k.

minimize
{x̄i j ,yi

(i+1) j ,ε
R
i j ,ε

y
i j }

‖R0
0l − T‖ +

N−1∑

i=0

∑

j∈Ei

εR
i j +

N−1∑

i=0

∑

j∈Ei

ε
y
i j

s. t.
∑

k∈Ci j

‖wR
(i+1)k ◦ (Ri

(i+1)k − Ri+1
(i+1)k)‖2

2 ≤ εR
i j

∑

k∈Ci j

‖Skwy
(i+1) j ◦ (Skyi

(i+1) j − yi+1
(i+1)k)‖2

2 ≤ ε
y
i j (13)

gi j (x̄ij) ≤ 0, hi j (x̄ij) = 0, Ri
i j = ri j (x̄ij),

x̄ij =
[

xi
i j , yi

i j , Ri
(i+1)k1

, . . . , R(i+1)ki
Ci j

]T

∀ j ∈ Ei , i = 0, 1, . . . , N

The decomposed problem in Fig. 7 tries to solve each
subproblem individually while at the same time ensures
the consistency between subsystems. Equation (13) shows
the overall optimization formulation of ATC as a whole.
The objective of Eq. (13) includes minimizing the Euclid-
ean norm of the difference between targets and responses
as well as minimizing the consistency between levels and

handled by the
parent level

Fig. 8 Subsystem i j within ATC

between components. The feasibility of Eq. (13) requires
satisfying the relaxed consistency constraints to the original
undecomposed problem. This relaxation can be imposed as
designers’ preferences by assigning different weights wR

(i+1)k

and wy
(i+1) j via weighting update method in Michalek and

Papalambros (2005).
Figure 8 shows the information flows in and out of each

subsystem i j in Fig. 7. In addition to the local design vari-
ables xi j , the responses from the (i + 1)th level, the targets
passed down from the (i − 1)th level , and the linking vari-
ables are all the inputs to subsystem i j . Outputs from i j are
the responses to the upper level, the targets to the lower level,
and the linking variables values.

The goal for the element i j is to match the target from
the (i − 1)th level while keeping the consistency between
itself and the (i +1)th level. After assuming all equality con-
straints are removed explicitly or implicitly, we can obtain
the optimization problem for element i j as shown in Eq. (14).
The consistency constraints in Eq. (14) have been moved to
objective function by applying monotonicity principals with
respect to εR

i j and ε
y
i j . x̄i j in Eq. (14) is the vector of all inputs

for element i j .

minimize
{x̄i j ,yi

(i+1) j }
‖wR

i j ◦ (Ri
i j−Ri−1

i j )‖2
2+‖S j w

y
ip ◦ (S j y

i−1
i p −yi

i j )‖2
2

+
∑

k∈Ci j

‖wR
(i+1)k ◦ (Ri

(i+1)k − Ri+1
(i+1)k)‖2

2 (14)

+
∑

k∈Ci j

‖Skwy
(i+1) j ◦ (Skyi

(i+1) j − yi+1
(i+1)k)‖2

2

subject to gi j (x̄i j ) ≤ 0, Ri
i j = ri j (x̄i j ),

x̄ij =
[

xi
i j , yi

i j , Ri
(i+1)k1

, . . . , R(i+1)ki
Ci j

]T

Let us use the decomposed problem of Eq. (7) and
describe the challenges might encountered in each step of
our proposed method in Fig. 1 when integrating with ATC.
Figure 9 shows the decomposed bi-level structure of
Eq. (7) with one top level supersystem and two lower level
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Table 9 Anchor design alternatives on the Pareto set

AIO (ATC) m δ1 d1 d2 d3 dr1 dr2

A (A′) 6 (6) 0.0367 (0.0336) 0.0321 (0.0327) 0.0322 (0.0262) 0.0272 (0.0325) 0.0041 (0.0027) 0.0025 (0.0021)

B (B′) 7 (7) 0.0270 (0.0240) 0.0346 (0.0356) 0.0348 (0.0278) 0.0294 (0.0353) 0.0046 (0.0028) 0.0028 (0.0021)

C (C′) 8 (8) 0.0207 (0.0176) 0.0370 (0.0384) 0.0372 (0.0286) 0.0314 (0.0382) 0.0050 (0.0033) 0.0031 (0.0021)

D (D′) 9 (9) 0.0164 (0.0134) 0.0392 (0.0412) 0.0394 (0.0292) 0.0333 (0.0410) 0.0055 (0.0029) 0.0034 (0.0021)

E (E′) 10 (10) 0.0133 (0.0153) 0.0413 (0.0394) 0.0415 (0.0300) 0.0351 (0.0435) 0.0060 (0.0192) 0.0037 (0.0021)

Table 10 Optimality influence range, area, S/N ratio, and tolerance cost of anchor design alternatives

�m �δ1(×10−4)
−→s �s �n(×10−4) Area(×10−6) SN Cost

A (AIO) 0.0409 5.6581 (−1.00,0.0138) 0.0409 1.5979 6.5325 255.8366 465.9257

A′ (ATC) 0.0410 5.6257 (−1.00,0.0138) 0.0410 2.3957 9.8180 171.0655 481.2533

B (AIO) 0.0440 4.1348 (−1.00,0.0094) 0.0440 1.5220 6.6911 288.8578 461.4271

B′ (ATC) 0.0441 4.1312 (−1.00,0.0094) 0.0441 2.1153 9.3214 208.3197 479.9802

C (AIO) 0.0469 3.0520 (−1.00,0.0065) 0.0469 1.2830 6.0218 365.8516 456.6822

C′(ATC) 0.0470 3.0583 (−1.00,0.0065) 0.0470 1.8060 8.4954 260.4751 470.2197

D (AIO) 0.0494 2.5615 (−1.00,0.0052) 0.0494 1.3798 6.8137 357.8867 452.4890

D′(ATC) 0.0495 2.5966 (−1.00,0.0052) 0.0495 1.7861 8.8385 277.0628 468.5949

E (AIO) 0.0539 1.9631 (−1.00,0.0042) 0.0539 1.2084 6.5144 446.1132 447.6505

E′(ATC) 0.0540 1.9268 (−1.00,0.0042) 0.0540 1.4120 7.6266 382.5386 453.7727

Fig. 9 Bi-level structure of Eq. (7)

subsystems. Responses between levels are R1 and R2. x1 is
the linking variables between subsystems.

Pareto set generation

The constraint method in generating Pareto set with all-
in-one structure can be applied to the top level of the decom-
posed system. If some objectives are from subsystems, one
can either apply the constrained method to these subsystems
or consider these objectives are ‘rebalanced’ up to the top

Design A

Design B

Design C

Design D

Design E

Fig. 10 Design alternatives on the Pareto set using ATC

level and apply constrained method on the top system only.
Figure 10 shows the ATC design alternatives with values in
Table 6 compared with the all-in-one Pareto set. Although
such an extensions can be straightforward, direct implemen-
tations might cause several difficulties including

1. Design alternatives obtained using ATC might deviate
from the all-in-one Pareto set: theoretically ATC will
yield identical results as AIO (Michelena et al. 2003),
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small inconsistency might cause large deviations between
responses and result in unignorable deviations. Design D
in Fig. 10 shows such a case. Although one might keep
increasing the inconsistency weights in D, the design pro-
gression can be very slow.

2. Inconsistency might result in infeasible design alterna-
tives: the choice on the weighting update convergence
tolerance is crucial between obtaining a feasible design
and reaching an optimal solution. If weighting update tol-
erance is very small, large weights are required to reduce
inconsistency resulting in slow design progressing of the
entire system toward the true optimum. On the other
hand, small weights comes from larger acceptable con-
vergence tolerance. High inconsistency level will make
design infeasible. In this work we use 10−4 times the
objective variation range as the weighting update toler-
ance as a balance between inconsistency and optimality.

3. Objective function weights and inconsistency weights
needs to be assigned separately: weights between objec-
tive functions result in a single ‘composite’ objective that
can be implemented into Eq. (14). One should separate
these objective weights from inconsistency weights since
they have completely independent functionalities. Incon-
sistency weights are assigned to obtain a convergent and
consistent design while objective weights are used to
obtain one Pareto point in the pareto set. Altering objec-
tive weights will result in different Pareto solutions and
their corresponding inconsistency weights still need to be
computed using weighting update method in Michalek
and Papalambros (2005). In this work we use constraint
method to avoid possibly non-convex Pareto set and also
eliminate the need to assign objective weights.

Uncertainty analysis

The linking variables in multi-level systems create addi-
tional challenges in analyzing the accumulation of tolerances
through levels. In Sobieszczanski-Sobieski (1990), a set of
sensitivity equations is formed for systems with linking vari-
ables with the solutions being the final sensitivity of the sys-
tem. These sensitivity equations are used in parallel with ATC
in this work. For the element i j in Fig. 8, the system responses
Ri

i j are functions of input variables xi j , linking variables yi j

and its lower level responses Ri
(i+1)k . The variation of the

output Ri
i j from all input uncertainties can be obtained using

Eq. (15). This equation is implemented when ATC conver-
gent results are available. Given subsystem models, all partial
derivatives in Eq. (15) are known. The variations of the link-
ing variables �yi j , the variation of the lower level responses
�Ri

(i+1)k and the variation of the output responses for subsys-

tem i j , �Ri
i j are unknown to subsystem i j . These unknown

quantities are the responses of other subsystems, resulting in

a set of sensitivity equations with only one solution. Equation
(16) is the sensitivity equation of the ATC problem in Fig. 9
after unknowns are aggregated into a matrix form.

�Ri
i j = ∂ri j

∂xi j
�xi j + ∂ri j

∂yi j
�yi j + ∂ri j

∂Ri
(i+1)k

�Ri
(i+1)k

(15)
⎛

⎜⎜⎝

� f1

� f2

�R1

�R2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1 0 − ∂ f1
∂ R1

− ∂ f1
∂ R2

0 1 − ∂ f2
∂ R1

− ∂ f2
∂ R2

0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎠

−1 ⎛

⎜⎜⎜⎝

0 0
0 0

∂ R1
∂x1

∂ R1
∂x2

∂ R2
∂x1

0

⎞

⎟⎟⎟⎠

×
(

�x1

�x2

)
(16)

Optimality influence range and tolerance cost

Obtaining the optimality influence range requires the unit
vector �s tangent to the Pareto set at the design point. In most
practical cases �s needs to be calculated using finite differ-
ences. Although weighted sum approach in Pareto generation
have the tangent vector being the weights, weighted sum suf-
fers from the inability to obtain the complete Pareto set and
therefore not suggested in this work. Alternatively, one can
also use the method described in Utyuzhnikov et al. (2008).

Table 7 and Fig. 11 show the results of optimality
influence range as well as results of tolerance cost to meet the
desired variation ranges. Similar conclusions to AIO can be
made using ATC with Design E being the most economical
design and Design B being the design with the best perfor-
mances at the optimal.

Anchor design examples

In this example we consider the design of an anchor sys-
tem from Allison et al. (2005) with three cantilever beams
of equal length L = 1 m with solid circular cross section of
diameters d1, d2, and d3, for beam 1, 2, and 3, respectively.
Two solid circular rods with diameters dr1 and dr2 attached
to the beam with pin joints as shown in Fig. 12. A downward
force F is applied at beam 1 with F =1,000 N. This three-
level anchor system is capable of distributing extensive loads
to prevent failure.

The optimal design of the anchor system tends to find
the cross sections of all beams and rods with the minimal
overall anchor weight and the minimal beam 1 deflection
without static failure. In addition, manufacturing and assem-
bly variations result in dimensional instability such that all
cross sections are subjected to variations �x = 0.1 mm.
Equation (17) shows the mathematical representation of the
anchor design with a known target performance variation
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(a) (b) (c)

Fig. 11 Comparisons of design alternatives in ATC. a cost (↓), b influence area (↓), c influence S/N ratio (↑)

Fig. 12 Anchor design

range �m = 0.04 kg and �δ1 = 7.5 mm.

min f = {m, δ1} (17)

w.r.t {x,�x}
s.t. g1i (x,�x) = max{σbi (x,�x)} ≤ σallow i = 1, 2, 3

g2i (x,�x) = max{σr j (x,�x)} ≤ σallow i = 1, 2

g3i (x,�x) = max{Fti (x,�x)}≤Ftallow i=1, 2, 3

where x = [d1, d2, d3, dr1, dr2]

Inequality constraints are formulated as the worst case
considering both beam stress σb and rod stress σr . Ft are
transmitted force at each beams. Material properties are listed
in Table 8. The stiffness of beam i , Kbi , the stiffness of rod
i , Kri . the beam area moment of inertia Ibi , and the beam
deflections δi are computed using

Ibi = π

64
d4

i , Ar j = π

4
d2

r j , Kbi = 3E Ibi

L3
b

,

Kr j = E Ar j

Lr j

δi = 1

Kbi
(Fi − Fi+1), δi+1 = δi − Fi+1

Kri
,

σbi = 32Kbiδi Lb

πd3
i

supersystem (beam 2, rod 2)

subsystem1 
(beam 1, rod 1)

subsystem2 
(beam 3)

Fig. 13 Anchor design decomposed

σri = Fi+1

Ar j
, mi = π

4
(d2

i Lb + d2
r j Lr j ),

Fti = Fi − Fi+1

In this design problem, decision-makers are interested in
the solutions to the following questions:

Q1). Given current manufacturing tolerances, do acceptable
design exist?

Q2). If more than one acceptable design exist, which one is
the best?

Q3). If no acceptable design exist, which one is the most
beneficial to achieve the target performance varia-
tions?

For demonstration purpose, this problem is also decom-
posed as a bi-level system shown in Fig. 13 with beam 2 and
rod 2 being at the top level as the supersystem, beam 1 and
rod 1 being the subsystem 1 at the lower level, with beam 3
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ATC Pareto 
Points

All-in-One Pareto 
Points

A'

B'

C'

D'

E'

A

B

C

D

E

Fig. 14 Anchor design alternatives on the Pareto set

be the subsystem 2 at the lower level. The design problem
for each subsystem is shown as Eqs.(18–20).

The top level supersystem tries to achieve the target T
in Eq. (18a) while minimizing the inconsistencies between
the top and lower subsystems in terms of deflections (18b),
forces (18c) and structural mass (18d). The constraint (18i) is
created to obtain the Pareto point with minimal anchor mass
by varying the values of mallow. dr j = 0 and Fi+1 = 0 at the
top level.

supersystem

min (δ1 − T )2 (18a)

+w1(δ1−δL
1 )2+w2(δ2−δL

2 )2+w3(δ3−δL
3 )2 (18b)

+w4(F2 − F L
2 )2 + w5(F3 − F L

3 )2 (18c)

+w6(m1 − mL
1 )2 + w7(m3 − mL

3 )2 (18d)

w.r.t x = [d2, dr2, F2, F3, m1, m3, δ1] (18e)

s.t. g1(x) = σb2 − σallow ≤ 0 (18f)

g2(x) = σr2 − σallow ≤ 0 (18g)

g3(x) = Ft2 − Ftallow ≤ 0 (18h)

g4(x) = m1 + m2 + m3 − mallow ≤ 0 (18i)

The lower level subsystem 1 has the consistency objective
function in Eqs. (19a) and (19b) with design variables being
the size of beam 1 and rod 1. Subsystem 1 also have incon-
sistency as objectives in Eqs. (20a) and (20b) with stress and
force constraints in Eqs. (20d) and (20e), respectively.For
both all-in-one and ATC models, exponential cost models as
in Eq. (10) with A = 100 and B = 1,500 are used.

Results and comparisons

Using constraint method, five Pareto points are generated
using both all-in-one (AIO) and ATC formulations with

results shown in Fig. 14. In all cases, both ATC convergence
and weighting update method convergence requirements are
set to 10−6. The corresponding values of anchor mass and
mean 1 deflections are listed in Table 9 along with design
variable values at these optimal design alternatives.

subsystem 1

min w1(δ1 − δU
1 )2 + w2(δ2 − δU

2 )2 (19a)

+w4(F2 − FU
2 )2 + w6(m1 − mU

1 )2 (19b)

w.r.t x = [d1, dr1, F2] (19c)

s.t. g1(x) = σb1 − σallow ≤ 0 (19d)

g2(x) = σr1 − σallow ≤ 0 (19e)

g3(x) = Ft1 − Ftallow ≤ 0 (19f)

subsystem 2

min w3(δ3 − δU
3 )2 + w5(F3 − FU

3 )2 (20a)

+w7(m3 − mU
3 )2 (20b)

w.r.t x = [d3, F3] (20c)

s.t. g1(x) = σb3 − σallow ≤ 0 (20d)

g2(x) = Ft3 − Ftallow ≤ 0 (20e)

As can be seen in Fig. 14 the tradeoff between overall
structural weight and beam 1 deflection form a convex Pareto
set. The design alternatives A to E using AIO formulation and
A′ to E′ using ATC formulation have inconsistency between
them. This inconsistency between subsystems result in dif-
ferent design alternatives.

None of the design alternatives in Table 9 satisfy the �fT

requirement and therefore a tolerance design stage is neces-
sary for target variation reduction. Table 10 lists the optimal-
ity influence ranges and the corresponding tolerance cost to
meet the target variations. As can be seen the AIO and ATC,
although solving different mathematical problems, yield sim-
ilar results. Based on Tables 9 and 10, we can then have the
answers to our original design questions:

Answer 1). Given current manufacturing tolerances, none
of the design alternatives are acceptable.

Answer 2). The comparisons between five design alterna-
tives show that Design E using AIO or Design
E′ using ATC have the smallest influence area
and biggest influence S/N ratio with comparable
cost. Therefore suggested as the optimal design
alternative.

Conclusions

In this work we demonstrate the integration of design
under uncertainty with tolerance allocation for single- and
multi-level systems with multiple objective functions to be
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optimized simultaneously. Our goal is to enable designers
to choose among various design alternatives on the Pareto
set. In addition, we also investigate the integration of Pareto
generation and sensitivity equations with analytical target
cascading for design of hierarchical systems. The proposed
work can be applied to the dimensioning and tolerancing code
in ASME Y14.5 (ASME Standards Committee Y14 2009)
and its mathematical representations in ASME Y14.5.1M
(ASME Standards Committee Y14 2004).

The scales among different objectives are an important
issue as they are in standard optimization techniques. Scal-
ing is often used to resolve numerical difficulties with large
differences in the values of computed quantities (Papalam-
bros and Wilde 2000). In this work, proper scaling will not
only ensuring the search of optima in Pareto generation, they
also make the resulting Pareto set more reasonably presented
using constrained methods. However, scaling will not affect
the result by the proposed method in that we compare design
alternatives that have identical scales. In other words, if one
select improper objective function scales, he/she will still end
up with the same conclusions compared with proper scaling.
We have added one paragraph in the concluding remark to
convey this point.

The ‘true optimal solutions to Eq. (1) can be obtained via
iteratively applying the proposed method in Fig. 1. By doing
so, one has implicitly conducing alternating variable optimi-
zation that is “usuallyvery inefficient andunreliable”Fletcher
(2001). We intends to follow the concept of robust design in
engineering such that decisions are made first to determine
the optimal values of all design variables and then assign the
optimal tolerances to these determined values. This two-step
decision-making process resembles the current engineering
practice. Although such a design may not be mathematically
optimal, they generally leads to the optimal design one can
obtain within given resources and time. However, if one pre-
fers the true optimal design, he/she can iteratively perform the
proposed work until a convergent result is obtained.

Based on the work, we found that integrating existing
methods might look straightforward, one must be cautious
about details in implementation. The numerical error in tar-
get matching might accumulate to large system deviations
especially for design of complex hierarchical engineering
systems. Engineers will need to trade-off the solution accu-
racy with the computation cost in obtaining such solutions.
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