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Abstract Design is a multi-objective decision-making pro-
cess considering manufacturing, cost, aesthetics, usability
among many other product attributes. The set of optimal solu-
tions, the Pareto set, indicates the trade-offs between objec-
tives. Decision-makers generally select their own optima
from the Pareto set based on personal preferences or other
judgements. However, uncertainties from manufacturing
processes and from operating conditions will change the per-
formances of the Pareto optima. Evaluating the impacts of
uncertainties on Pareto optima requires a large amount of data
and resources. Comparing multiple Pareto solutions under
uncertainty are also very costly. In this work, local Pareto
set approximation is integrated with uncertainty propaga-
tion technique to quantify design variations in the objective
space. An optimality influence range is proposed using lin-
ear combinations of objective functions that creates a more
accurate polygon objective variation subspace. A set of ‘vir-
tual samples’ is then generated to form two quantifications of
the objective variation subspace, namely an influence noise
to indicate how a design remains optimal, and an influence
range that quantifies the overall variations of a design. In
most engineering practices, a Pareto optimum with a smaller
influence noise and a smaller influence range is preferred.
We also extend the influence noise/range concept to non-
linear Pareto set with the second-order approximation. The
quadratic local Pareto approximation method in the literature
is also extended in this work to solve multi-objective engi-
neering problems with black-box functions. The usefulness
of the proposed quantification method is demonstrated using
a numerical example as well as using an engineering problem
in structural design.
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Introduction

Engineering design is multidisciplinary across mechanics,
economics, and ecology, among many other research fields.
For example, the optimization of an electronic packaging
problem consists of both electronic and thermal subsystems
(Du and Chen 2002); the optimal design of an air flow sen-
sor requires both structural and aerodynamics considerations
(Allison et al. 2007); an appropriate aircraft modeling com-
bines aerodynamics, structural weight, and many other per-
formance measures (Tappeta and Renaud 1997a,b). This type
of cross disciplinary considerations is a common practice in
the design of various engineering products (Giassi et al. 2004;
Allison et al. 2007; Li and Azarm 2008).

In this work, multiple disciplines are considered through
the existence of multiple objective functions in optimization.
Each discipline has its own goal to achieve. The general-
ized multiobjective formulation is shown in Eq. (1) with n

objective functions to be minimized simultaneously. Design
variables x have to be in the feasible domain F . All design
constraints and bounds of x are implicitly included in F .

min
x

{f1(x), f2(x), . . . , fn(x)}
s.t. x ∈ F

(1)

The optimal decisions of Eq. (1) will likely be on the
boundary of the feasible space. Small variations of these
uncertainties changes the performances of these ‘optimal’
design resulting in undesired output variations. Assume the
uncertainties in the design variables are in the forms of man-
ufacturing tolerances that can be modeled as X = [x ± Δx],
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and the multiobjective optimization with uncertainty can be
modified to Eq. (2).

min
X

{f1(X), f2(X), . . . , fn(X)}
s.t. X ∈ F

(2)

Different focuses have been addressed for the formulation in
Eq. (2). One focuses on the feasibility of constraints under
uncertainty, also referred to as risk assessment (Rachev et al.
2008). The other one studies the optimality of objectives
under uncertainty. In this work, we focus more on the change
of optimality in the objective space when uncertainties are
present. If the feasibility of a design under uncertainty is
the main concern, the proposed method can be extended to
general reliability-based design optimization(RBDO) frame-
work (Enevoldsen and Sørensen 1994). Depending on how
the uncertainties are modeled, constraints can be reformu-
lated in probabilistic forms or in the worst-case as in Hung
and Chan (2011).

The design decisions will also deviate from the original
optima. Quantifying the variation in the objective space is as
important as selecting a Pareto optimum as the final result
might not perform as expected. In fact, these uncertainty
quantifications should be included in the decision-making
process to ensure an optimal yet reliable outcome.

Robust design concept is another common approach when
dealing with uncertainty. Most studies in robust design
literature quantify the output uncertainty using mean and
variance to describe the nominal objective value and the
output uncertainty variation (Doltsinis and Kang 2004; Lee
and Park 2001; Jung and Lee 2002). Decision-makers should
find a balance between mean performance and its variance.
To account for both mean and variance, a single objective
problem is transformed into a bi-objective problem. With n

original objectives to be considered simultaneously, under-
standing the trade-offs between objective performances and
objective variations become a challenging task for decision-
makers.

In Hung and Chan (2011), the authors developed an opti-
mality influence range to quantify design variations in the
objective space. Optimal design alternatives are compared
with not only their performances in the Pareto set but also
their variations in the optimality influence range. Compared
to the robust design method, optimality influence range help
decision-makers understand how trade-offs between multiple
objectives change under uncertainty without overwhelming
the decision-makers with excessive information. An influ-
ence signal-to-noise ratio was created to indicate the accor-
dance of objective variations to the Pareto set and an influence
area was calculated to quantify the variations of a design.
The extensions of the optimality influence range to complex
hierarchical systems were also demonstrated. However the
proposed method in Hung and Chan (2011) has two major

challenges yet to be resolved. The first challenge is the exten-
sion of the optimality influence range to general n number of
objective functions. When the objective space has n degrees-
of-freedom, the optimality influence range can exist in infi-
nite number of forms. This is due to the fact that the original
optimality influence range is created using a vector normal to
the Pareto set at a design point and a vector perpendicular to
it. For n = 2, we can use these two vectors to create a unique
optimality influence range. However, for n > 2, additional
information is needed to yield an optimality influence range
without ambiguity. The second challenge is that the optimal-
ity influence range using only the first order Taylor series
expansion may not be accurate enough for highly nonlinear
Pareto set.

In this work we resolves both challenges of the optimal-
ity influence range in Hung and Chan (2011) such that they
can readily applicable to general nonlinear problems with
n objective functions. In what follows, we will discuss the
details of building an optimality influence range in “Opti-
mality influence range in objective space”. The new updated
optimality influence range with higher-order Pareto approx-
imation is developed in “Generalized optimality influence
range in Pareto uncertainty quantification”. The proposed
method is demonstrated using a structural problem in
“Engineering case study”, followed by the conclusions in
“Conclusions”.

Optimality influence range in objective space

Design alternatives on a Pareto set are preferred if a design
has good tendency to remain on the Pareto set within the
prescribed tolerance regions. In this research we define the
optimality influence range (OIR) in Fig. 1 that quantifies the
consequences of design variations on the objectives. For a
Pareto point, its objective variations due to Δx in the design
space are shown with shadows representing uncertainty. The
optimality influence range is a tilted rectangle that encloses
all the objective variations. Although the objective variations
rarely have rectangle shapes due to nonlinearity of the func-
tions, the optimality influence range is able to capture behav-
iors of objective functions under uncertainty. The unit vector
�s is tangent to the Pareto set at the design point and �n is the
vector perpendicular to �s. Since variations along �s direction
tend to ‘stay’ on the Pareto set while along �n tend to deviate
from the Pareto set, we define �s as signal vector and �n as
noise vector. The lengths Δs = �s · Δf and Δn = �n · Δf are
the signal variation and the noise variation, respectively.

An important criterion to describe the variations is that dif-
ferences in objective variations should be captured. In Fig. 2,
two design scenarios, A and B, on the Pareto set are shown
with their variations in the objective space. These two designs
have different objective variations and different tendencies
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Fig. 1 Optimality influence range

to remain on the Pareto set: Scenario B has better optimal-
ity ‘signal’ and less ‘noise’ than scenario A. In a previous
work (Li and Azarm 2008), these two design will end up
having the same objective variation range (OVR) due to the
the fact that mathematical definition of OVR is unable to
describe their variations away from the Pareto set. This indi-
cates the inability of OVR in quantifying variations in the
objective space due to uncertainties in the variables/param-
eters. Our proposed optimality influence range extends the
concept of OVR with better quantification of the variations
of a Pareto point in the objective space. In this work we
assume all problems have been properly scaled such that the
difference between Fig. 2a, b are not the results of improper
scaling.

Design selection assisted by optimality influence range

Once OIR is constructed, two important criteria can be
extracted, namely the influence range for the output varia-
tions and the influence signal-to-noise ratio for the tendency
to remain on the Pareto set. Area covered by the OIR, denoted
as the influence range, is used to compare two Pareto design
alternatives. A design with smaller influence range generally
means smaller objective variation and should be preferred
by designers. This criterion can simply be computed using
Eq. (3) based on the OIR.

influence range = 2Δs × 2Δn (3)

The unit vector �s is defined as the signal direction since
variations along �s tend to stay on the Pareto set while vari-
ations along the noise vector �n move away from the Pareto
set. With the signal and noise unit vector being defined, we
introduce the influence signal-to-noise (S/N) ratio in Eq. (4)
as the second criterion in selecting design alternatives.

influence S/N ratio = Δs

Δn
(4)

The influence S/N ratio differs from allowable increase/
decrease in linear programming literature in that we focus

on the compliance of a design to remain optimal (Neufville
1990). By doing so, we allow the design to be varied
and a design considering good performance is one that
remains on the Pareto set under uncertainty. The allowable
increase/decrease, on the other hand, focus on the limit of
uncertainty by which the optimal design starts to change.
A design with a large S/N ratio tends to remain on the
Pareto set: they remain optimal but at a different design point.
Therefore our S/N ratio provides a better performance indica-
tion of how design behaves under uncertainty and how much
attention designers should pay to improve the design.

Challenges for nonlinear Pareto set in multiple dimensions

The previous method creates an unique optimality influence
range only in two-dimensional objective space. Engineer-
ing problems with more than two objective functions require
additional modifications for the method to be applicable. In
addition, the existing optimality influence range assumes a
relatively linear Pareto set. Significant errors might exist
when applying the proposed method to highly nonlinear
problems that result in Pareto sets with obvious curvatures.

More specifically, when using optimality influence range
for general nonlinear multiobjective decision-making, we
encounter the following limitations:

– OIR is constructed via an axis that is parallel to the first
order approximation of the Pareto set at a given Pareto
point. When the Pareto set is curvy or when the objective
variation is not along the Pareto set, OIR will over-esti-
mate the objective variation. Figure 3 show two rectan-
gles that encloses the same variations. As seen, the OIR in
Fig. 3a is larger than that in Fig. 3b. This outcome shows
that the OIR constructed by the tangent and normal vec-
tors might not fit the objective variation. As a result, the
noise in OIR is not a true measure of the objective varia-
tion. A new way to measure OIR noise is needed.

– For problems with n objective functions, the number of
independent vectors required to construct OIR is n. The
normal vector to a Pareto point is generally the only
available vector. The rest independent vectors need to be
determined judiciously. When inappropriate vectors are
chosen, the OIR will not be representative and could be
over conservative.

Generalized optimality influence range in Pareto
uncertainty quantification

To ensure that the OIR appropriately quantifies the variation
of a Pareto optimum with multiple dimensions, we develop a
new method in constructing the OIR. The proposed method
consists of the following steps:
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Fig. 2 Comparisons between
OVR in Li and Azarm (2008)
and the optimality influence
range. a Scenario A,
b scenario B

(a) (b)

Fig. 3 Impact of independent
weights on OIR. a Scenario A,
b scenario B

(a) (b)

Step 0. Select a Pareto optimum.
Step 1. Generate nw number of n-dimensional vectors to

form a convex objective variation space to repre-
sent OIR.

Step 2. Generate virtual samples in OIR from Step 1.
Step 3. Calculate the overall variation via the ‘range’ of

these virtual samples.
Step 4. Perform quadratic approximation of the Pareto set

at the Pareto optimum in Step 0.
Step 5. Calculate the noise via a distance measure from vir-

tual samples to the Pareto approximation surface.
Step 6. Make engineering decisions using these quantifica-

tions.

Steps 1–3 relate to the range of an uncertainty in objective
space while steps 4 and 5 relate to how well the objective
variations comply to the Pareto set. In what follows, we will
use the two-dimensional problem with two objective func-
tions in Eq. (5) for presentation purpose. Both linear and
nonlinear objective functions are included. The design space
is formed by variable bounds as shown. Using the bi-objec-
tive demonstration does not restrict the proposed method to

the general case. The extensions to general n-dimensional
objective space will be described. The variations in x are
Δx = [0.1, 0.1]T in Eq. (5)

min
x

f1 = −5x1 − 6x2

f2 = 3x2
1 + 2x1x2 + 4x2

2

s.t. − 5 ≤ x ≤ 1

where x = [x1, x2]T
(5)

Step 1. Generate OIR
The original OIR rotates the variation range in the objective
space with an angle tangent to the Pareto set at a given design
point. When dealing with nonlinear problems, the OIR still
contains unattainable areas in the objective space. In addi-
tion, the tangent plane in the original OIR can not justify an
OIR with more than two objective functions.

The idea of the proposed OIR generation method is that
the actual objective functions vary within a convex set of all
possible sums of individual objective function with different
weights. Let f + be the sum of the objective functions with
weights w. The weighted variation of the objective functions
due to the variations Δx in the design space results in the
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f 2
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w=[0.31,0.94] and [−0.94,0.31]
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w=[0.94,0.31] and [−0.31,0.94]

Fig. 4 Example of the convex objective variation space and the OIR

Δf + as in Eq. (6).

Δf + =
n∑

i=1

wiΔfi (6)

In the ideal case with infinite number of different weights
w, the OIR is the intersection of the convex set formed by:

OIR :
∞⋂

k=1

{(
wkf + Δf +

k

) (
wkf − Δf +

k

)
< 0

}
, (7)

where k indicate the kth set of weight.
For each k, the weights should satisfy ‖wk‖ = 1. Instead

of generating infinite number of weights, we create nw num-
ber of different vectors in the n-dimensional objective space.
Each set of {wk,Δf +

k } in Eq. (7) results in two parallel hy-
perplanes enclosing the real uncertainty variations. Figure 4
shows the convex objective variation space with eight dif-
ferent weights of the mathematical problem Eq. (5) at the
Pareto optimum [−5.5, 2.25]. The final OIR is also shown
as the shaded area.
Step 2. Virtual samples
The OIR constructed using Step 1 helps us refine the vari-
ation range in the objective space. Quantifiable metrics are
necessary in decision-making with OIR. We have developed
the influence range and the influence signal-to-noise ratio in
Hung and Chan (2011) to represent the overall variation and
the compliance of the variation to the Pareto set, respectively.
Since a new OIR is defined and the direct implementations
of the methods in Hung and Chan (2011) are not practical,
we propose to cast virtual samples in the OIR to quantify
influence range. The original influence S/N ratio has been
changed to focus on the noise only since the number of inde-
pendent signal directions increases from 1 to (n − 1).

We first generate ns number of virtual samples from the set
of [f ±Δf] uniformly. Virtual samples that violate Eq. (7) are

then filtered out. The remaining virtual samples with size nsf

will be evenly spread in the OIR. Figure 5a shows the 500
virtual samples before filtered and the remaining 80 sam-
ples after filtered are plotted in Fig. 5b using the example in
Eq. (5).

These virtual samples are ‘free’ in the sense that their gen-
eration does not require any simulation of the original prob-
lem. They only represent the convex set of OIR in Eq. (7).
Once virtual samples are available, we use these samples to
obtain necessary information of the space they represent.
Step 3. Range calculation
The range of objective variations, Ir, can be calculated using
the Monte Carlo integration as shown in Eq. (8), where Δfi

is the individual objective variation of the ith objective func-
tion.

Ir = nsf

ns

n∏

i=1

Δfi (8)

Step 4. First and second-order Pareto approximation
The original OIR quantifies how well a design remains opti-
mal under uncertainty using a signal-to-noise ratio with the
first order approximation of the Pareto set. The accuracy of
the quantification can be improved if a higher order approx-
imation is employed. This approximation does not require
to be globally accurate. Therefore we adopt the local Pareto
approximation techniques by Utyuzhnikov et al. in Utyuzh-
nikov et al. (2008). To make the paper self-contained, we
brief the procedures developed in the literature as follows.

Let the true Pareto set be S. The Taylor-series expansion
of S at f∗ = [f ∗

1 , f ∗
2 , · · · , f ∗

n ], denoted as Ŝ is:

Ŝ : fn = f ∗
n +

n−1∑

i=1

∂fn

∂fi

(fi − f ∗
i )

+1

2

n−1∑

j,k=1

∂2fn

∂fj ∂fk

(fj − f ∗
j )(fk − f ∗

k ) + h.o.t. (9)

where h.o.t. represents higher order terms, and the fn is a
function of f1 to fn−1 mapping the nth objective function
on the Pareto set. In other words, we can select one objec-
tive function and treat it as a dependent function of the rest
of independent objectives. We use f̃ to represent the set of
independent objectives. fn in Eq. (9) is then a function of f̃
on the Pareto set.

Once the optimum on the Pareto f∗ is selected as the
expansion point, the values of partial derivatives ∂fn/∂fi and
∂2fn/∂fj ∂fk in Eq. (9) will need to be calculated to obtain
the local Pareto approximation. The Pareto set follows the
direction of ∇f and along the active constraints g. Gradient
projection method is used to obtain the vector of ∇f pro-
jected on g. Let P be the projection matrix and J = ∇g be
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Fig. 5 Virtual samples of of Eq. (5)

the Jacobian matrix of g. P can be calculated via:

P = I − J
(

JJT
)−1

J. (10)

The projection of f̃ onto the active constraints is denoted
as P∇ f̃ = (P∇f1, P∇f2, . . . , P∇fn−1). We then use P∇ f̃
to represent partial derivatives of f̃ as

∂ f̃ = (P∇ f̃)T ∂x (11)

Define a matrix A such that

A∂ f̃ = ∂x (12)

(P∇ f̃)T A∂ f̃ = ∂ f̃ (13)

After rearranging, we have

A = P∇ f̃[(P∇ f̃)T P∇ f̃]−1 = ∂x

∂ f̃
(14)

Let the ith column of A, Ai , be ∂x/∂fi , the partial deriva-
tives of the dependent objective function fn with respect to
the independent objective fi as required in Eq. (9) can then
be calculated via:

∂fn

∂fi

= AT
i ∇fn (15)

and

∂2fn

∂fj ∂fk

= AT
j ∇

(
AT

k ∇fn

)
. (16)

Figure 6 shows the first and the second order Pareto
approximation results compared with the original Pareto set.
The design point is at [−5.5, 2.25]. As can be see includ-
ing the quadratic terms improves the approximation. When
functions are highly nonlinear, the differences between the
linear and the quadratic approximations will be more clear.
Step 5. Noise calculation
The local Pareto approximation and the virtual samples
enables the quantification of noise of a Pareto optimum. We

define the noise In as the deviation of the objective varia-
tions away from the Pareto. Therefore the shortest distance
between the Pareto approximation surface and the virtual
samples are summed up in Eq. (17) as the noise measure in
this work.

In =
√√√√ 1

nsf

nsf∑

k=1

[
d

(
Pfk, Ŝ

)]2
(17)

where d(P, Ŝ) is calculated via the optimization process in
Eq. (18). Although Eq. (18) needs to be calculated as many
times as the number of virtual samples, it is a simple math-
ematical calculation that does not involve complex simula-
tions. Both objective functions and the constraints in Eq. (18)
are in at most quadratic forms, therefore the computation cost
added with Eq. (18) is negligible.

d(P, Ŝ) : min
f

‖f − P ‖2

s.t. Ŝ(f) = 0
(18)

Step 6. Decision-making
From the Steps 0–5, we can obtain two uncertainty quantifi-
cationsIr andIn. Decision-makers can then use these metrics
along with other performances such as the objective function
values to select an optimum from the Pareto set. With uncer-
tainty quantification, the optimal selection will not only have
an ideal performances but also ensure the ideal performances
are within acceptable ranges under manufacturing uncertain-
ties. Three optimal designs are selected from the Pareto set
of Eq. (5) as shown in Fig. 7. The design values, the objective
function values, the objective variations as in OVR, the influ-
ence range, and the influence noise of the optima are listed
in Table 1. If the variation in the objective space is the main
concern, the design C with the smallest influence range and
the influence noise should be selected. These values can be
taken into account in a more comprehensive decision-making
with f1 and f2.
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Fig. 6 Pareto approximation of Eq. (5)
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Fig. 7 Pareto points

Table 2 compares the influence range with OVR at three
designs. As seen with different number of weights (8 for
w(8) and 38 for w(38)), the influence range will be differ-
ent. The OVR with individual objective variation often leads
to misunderstanding of the actual objective variations. If we
compare the influence noise with the first and the second
order approximations (I1

n and I2
n ). We see that the first order

approximation seems to yield better results compared to 104

Monte Carlo simulation of the design variants. This is in
fact true when a relatively linear Pareto set with a symmet-

ric tolerance are encountered. We will show the case with
nonlinear Pareto set and asymmetric tolerances in the engi-
neering example to show the advantages of employing the
second-order Pareto approximation.

Engineering case study

The three-bar structural problem as shown in Fig. 8 is studied.
The ends of all bar members are pin joints. The cross-section
of the bars are a1, a2, and a3 with their length being l1, l2,
and l3, respectively. A horizontal force F1 = 105 psi and
a force F2 = 106 psi directly downward are applied on the
point P . The point P is determined by the distance b between
the fixed point of bar 1 and 2. All dimensions are shown in
the figure. The engineering design problem as adopted from
Mattson and Messac (2005) uses the cross-section areas of
all bar members and the distance b as design variables at ini-
tial point x0 = [1, 1, 1, 720] with constraints on geometric
layout and stress requirements. Three objective functions are
optimized simultaneously, namely the structural volume, the
nodal displacement at the point P , and the fundamental fre-
quency. Cross-section areas are constrained between 0.8 and
3.0 inch square due to materials available. b is limited within
0.5–1.5 L withL = 720 inches. Stress constraints require that
the maximal stress of each members, denoted as σi , can not
exceed the material strength σmax = 5.5 × 105 psi. Eq. (19)
shows the overall problem formulation. All bar members are
of the same material with Young’s modulus E = 2.9 × 107

Table 1 Comparisons of three
Pareto optima x∗ f∗ Δf(OVR) Ir In

Design A [0.79, 0.73] [−8.36, 5.19] [1.10, 1.37] 1.08 0.12

Design B [0.52, 0.48] [−5.50, 2.25] [1.10, 0.90] 0.66 0.09

Design C [0.25, 0.23] [−2.64, 0.52] [1.10, 0.43] 0.27 0.05
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Table 2 Comparisons with
OVR and Monte Carlo results Ir OVR I1

n I2
n IMCS

n

Design A
w(8) 1.0231 1.5037 0.1194 0.1207 0.0078

w(38) 0.0920 0.0109 0.0243 0.0080

Design B
w(8) 0.6569 0.9893 0.0923 0.0956 0.0100

w(38) 0.0016 0.0002 0.0228 0.0100

Design C
w(8) 0.2672 0.4748 0.0443 0.0530 0.0115

w(38) 0.1134 0.0187 0.0286 0.0118

Fig. 8 Truss design example

psi and density ρ = 7.324 × 10−4 lbs2/in4.

min
a,b

{f1(a, b), f2(a, b), f3(a, b)}
s.t. σi ≤ σmax, i = 1, 2, 3

0.8 ≤ ai ≤ 3, i = 1, 2, 3

0.5L ≤ b ≤ 1.5L

(19)

The first objective function, the overall structural volume,
is expressed as

f1(a, b) =
3∑

i=1

aili . (20)

Finite element method is required to construct the objective
functions f2 and f3. The reduced stiffness matrix K and the
reduced mass matrix M of the truss structure are:

K =
3∑

i=1

Eai

li

[
cos2 θi cos θi sin θi

cos θi sin θi cos2 θi

]
(21)

and

M =
3∑

i=1

ρaili

6

[
2 0
0 2

]
, (22)

respectively where θi is the angle between the bar member i

and the x-axis as shown in Fig. 8. Assuming all bars are two-
force members and ignore the impact of the weight of bars,
the displacement of P in x and in y direction, denoted as
Q = [

Qx,Qy

]T , due to the external loading F = [F1, F2]T ,
the displacement Q can be obtained using Eq. (23).

KQ = F (23)

The second objective function, the overall nodal displace-
ment, can then be calculated via:

f2(a, b) =
√

Q2
x + Q2

y (24)

The maximal stress required in the constraint to prevent fail-
ure can be calculated using

σi = E

li
(Qx cos θi + Qy sin θi). (25)

The third objective function, the fundamental frequency, first
uses the eigenvalue(s) of the free vibration equation in

KU = λMU. (26)

to get the frequency ω = λ1/2. The corresponding eigen-
vector U is the mode shape. The objective function f3 is to
maximize the minimal fundamental frequency as in Eq. (27).

f3(a, b) = −ωmin

2π
(27)

Three Pareto optima are selected as shown in Table 3.
As can be seen in Fig. 9a, the second-order Pareto approx-
imations of all three designs are reasonably accurate. With
variations from design variables being 5% of initial point,
Δx±5% = [±0.05,±0.05,±0.05,±36]T . The virtual sam-
ples in the objective space are compared with the propagated
Monte Carlo samples from the design space to the objective
space. For a three-dimensional space, different views should
be provided to avoid any misleading. Therefore in this exam-
ple we select design B and show the accuracy comparisons
using different view angles in Fig. 9b–d. The influence range
Ir and the influence noise In for three design are also listed
in Table 3. From the comparisons, we can see that design C
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Fig. 9 OIR of three Pareto design with symmetric uncertainties

Table 3 Three Pareto optimal
anchor design x∗ f∗ Δf Ir In

Design A 2.2589 7.6131 0.0574 3.8421 0.0139

1.7752 5, 577.7682 145.1157

1.9674 −33.3364 1.0720

700.1611

Design B 1.5898 8.3634 0.1170 3.9782 0.0127

1.9728 4, 248.8346 146.7401

1.1978 −30.8129 1.0922

679.7170

Design C 1.8132 10.6143 0.0808 8.0282 0.0208

1.1256 4, 330.8059 142.3440

1.6456 −34.2751 1.4175

706.1090
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Table 4 Uncertainty
quantification with three
different tolerance levels

Δx Ir In

Design A Δx±5% 3.8421 0.0139

Δx±4% 1.5476 0.0092

Δx±3% 0.5467 0.0056

Design B Δx±5% 3.9782 0.0127

Δx±4% 1.8366 0.0080

Δx±3% 0.5682 0.0047

Design C Δx±5% 8.0282 0.0208

Δx±4% 3.1746 0.0140

Δx±3% 1.1514 0.0082

Table 5 Uncertainty
quantifications with symmetric
tolerances

Ir OVR I1
n I2

n IMCS
n

Design A 3.8421 71.4277 0.0139 0.0139 0.0108

Design B 3.9782 149.9726 0.0120 0.0127 0.0093

Design C 8.0282 130.3521 0.0206 0.0208 0.0166

Table 6 Uncertainty
quantifications with asymmetric
tolerances

Ir OVR I1
n I2

n IMCS
n

Design A 7.4873 54.5526 0.0620 0.0571 0.0406

Design B 7.6627 129.2317 0.0594 0.0500 0.0314

Design C 15.3311 112.0077 0.0995 0.0894 0.0619

has the largest variation range and the largest noise measure.
That means if the Pareto design C is chosen by one designer,
s/he would expect a higher impact compared to other design
outcomes. Between design A and design B, A has less noise
and B has better variation range. The choice between A and
B has to yet to be determined by the designers with their own
preferences.

Manufacturing tolerances affect the output uncertainty
variation. In this case, three different tolerance levels at 3%,
4%, and 5% of the initial point are applied to the three design
alternatives. The influence ranges and the influence noises are
listed in Table 4. Form the comparison, we can see that the
influence range and the influence noise are reduced signif-
icantly in the three design alternatives when the tolerances
reduce. That means if the tolerance cost are acceptable, the
designs with Δx±3% should be a better choice for decision-
makers.

Table 5 list the range and noise calculation compared with
baseline using 1000 Monte Carlo design variants. As can be
seen Ir is much smaller than OVR due to the rotation of
axis. This differences not just numerically, it also affects the
decision-making. For example design B has the largest vari-
ation using OVR but design C has the biggest Ir. In addition,
we also compare the noise calculation via the second order
Pareto approximation versus via the first order approximation

only. The noise levels in the OIR are I1
n and I2

n for the first
and the second order approximations, respectively. As can
be seen, the differences in noise measure between approx-
imation methods are not significant. This is due to the fact
that the Pareto set is smooth and the uncertainty is symmet-
ric. For the same Pareto set with asymmetric, we can expect
more clear distinctions.

When uncertainties are asymmetric with X=
[
x −Δx−0%,

x + Δx+6%
]

where Δx−0% = [0, 0, 0, 0]T and Δx+6% =
[0.1, 0.1, 0.1, 72]T , Table 6 shows the three Pareto design and
their quantification results in the influence ranges. As can be
seen the design C has the largest influence area followed by
design B and A. The differences in the influence noise using
the first and the second order approximation become more
clear in asymmetric case. The second order approximation
result is closer to that of Monte Carlo simulations. The first
order approximation also pass through the nominal point of
the influence range and as a result overestimate the noise.

Conclusions

In this work we develop a systematic method to quan-
tify uncertainty in the n-dimensional objective space. The
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proposed optimality influence range extends the previous
definition to cases with the number of objective functions
n > 2. By rotating the original OIR with various weights, a
much smaller convex space that contains the output variations
is created. Virtual samples are generated to assist quantifica-
tion of the OIR. An influence area that quantifies the ranges
of the output variation and an influence noise that quantifies
the compliance of the variation to the Pareto set are devel-
oped. We also extend the influence noise/range concept to
nonlinear Pareto set with the second-order approximation.
The quadratic local Pareto approximation method in the lit-
erature is also extended in this work to solve multi-objec-
tive engineering problems with black-box functions. These
uncertainty quantification metrics can then be used in multi-
objective decision-making.

Acknowledgments This work is partially supported by the National
Science Council in Taiwan with Grant Number NSC99-2221-E-006-
031. This support is highly acknowledged.

References

Allison, J., Kokkolaras, M., & Papalambros, P. (2007). On selecting
single-level formulations for complex system design optimiza-
tion. Journal of Mechanical Design, 129, 898.

Doltsinis, I., & Kang, Z. (2004). Robust design of structures using
optimization methods. Computer Methods in Applied Mechanics
and Engineering, 193(23-26), 2221–2237.

Du, X., & Chen, W. (2002). Efficient uncertainty analysis methods for
multidisciplinary robust design. AIAA Journal, 40(3), 545–552.

Enevoldsen, I., & Sørensen, J. (1994). Reliability-based optimization
in structural engineering. Structural Safety, 15(3), 169–196.

Giassi, A., Bennis, F., & Maisonneuve, J.-J. (2004). Multidisciplin-
ary design optimisation and robust design approaches applied
to concurrent design. Structural and Multidisciplinary Optimiza-
tion, 28(5), 356–371.

Hung, T.-C., & Chan, K.-Y. (2011). Multi-objective design and tol-
erance allocation for single- and multi-level systems. Journal of
Intelligence Manufacturing. doi:10.1007/s10845-011-0608-3.

Jung, D., & Lee, B. (2002). Development of a simple and effi-
cient method for robust optimization. International Journal for
Numerical Methods in Engineering, 53(9), 2201–2215.

Lee, K.-H., & Park, G.-J. (2001). Robust optimization considering
tolerances of design variables. Computers & Structures, 79(1), 77–
86.

Li, M., & Azarm, S. (2008). Multiobjective collaborative robust optimi-
zation with interval uncertainty and interdisciplinary uncertainty
propagation. Journal of Mechanical Design, 130, 081402.

Mattson, C., & Messac, A. (2005). Pareto frontier based concept
selection under uncertainty, with visualization. Optimization and
Engineering, 6, 85–115.

Neufville, R. (1990). Applied system analysis. New York, NY:
McGraw-Hill.

Rachev, S., Stoyanov, S., & Fabozzi, F. (2008). Advanced stochas-
tic models, risk assessment, and portfolio optimization: The ideal
risk, uncertainty, and performance measures. New York: Wiley.

Tappeta, R., & Renaud, J. (1997a). Multiobjective collaborative opti-
mization. Journal of Mechanical Design, 119, 403–411.

Tappeta, R., & Renaud, J. (1997b). A comparison of equality con-
straint formulations for concurrent design optimization. Concur-
rent Engineering, 5(3), 253–261.

Utyuzhnikov, S., Maginot, J., & Guenov, M. (2008). Local Pareto
approximation for multi-objective optimization. Engineering
Optimization, 40(9), 821–847.

123

http://dx.doi.org/10.1007/s10845-011-0608-3

	Uncertainty quantifications of Pareto optima in multiobjective problems
	Abstract
	Introduction
	Optimality influence range in objective space
	Design selection assisted by optimality influence range
	Challenges for nonlinear Pareto set in multiple dimensions

	Generalized optimality influence range in Pareto uncertainty quantification
	Engineering case study
	Conclusions
	Acknowledgments
	References


