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b-Pareto Set Prediction for
Bi-Objective Reliability-Based
Design Optimization
In this research, we investigate design optimization under uncertainties for problems with
two objectives. Reliability-based design optimization (RBDO) that considers uncertainties
as random variables and/or parameters and formulates constraints probabilistically has
received extensive attention. However, research to date has focused primarily on single-
objective problems only. We extend RBDO to problems for which multiple objectives are
optimized simultaneously. Each constraint reliability value results in a Pareto set. The set
of all Pareto frontiers at the various reliability values is denoted as the b-Pareto set. We
study the relations between the deterministic Pareto set and the b-Pareto set and then de-
velop a method to systematically determine the exact b-Pareto set of bi-objective linear
programming problems. The method is also extended to predict the b-Pareto set of nonlin-
ear problems using the sandwich technique. As a result, we are able to accurately predict
the b-Pareto set in the objective space without solving multiple multi-objective optimization
problems at various reliability levels. In the early stage of the product design process, the
proposed approach can help decision-makers efficiently to determine how product perform-
ance varies with reliability level. [DOI: 10.1115/1.4004442]
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1 Introduction and Literature Review

Design is a multi-objective decision-making process that
considers manufacturing, cost, aesthetics, usability, and many
other product attributes. Decisions often have to be made under
various operating and environmental uncertainties. Reliability-
based design optimization (RBDO) allows designers to obtain
optimal product specifications when the desired target reliabil-
ity is known. If the target reliability is unknown, the decision-
making process becomes challenging. For example, the reliabil-
ity of a vehicle structure generally compromises other vehicle
performances. Design engineers generally have no basis for
judging how the trade-off between objectives changes with reli-
ability. Arbitrarily selecting a reliability value might result in a
design that is either too conservative or too risky. Selecting a
very high reliability value will also limit design options. A sys-
tematic approach is needed to assist decision-making under
uncertainty when quick estimates of design outcomes are
required.

This research investigates solutions to bi-objective optimiza-
tion problems under uncertainties quantified as random design
variables and/or random parameters. Equation (1) shows the
generalized mathematical formulation with objectives f¼ff1,
f2g that are functions of the means of random variables only.
The constraints in Eq. (1) are formulated probabilistically with
failure probabilities being less than or equal to Pf. Constraint
reliabilities are therefore (1�Pf). All uncertainties X are
assumed to be Gaussian with means lX as design variables and
standard deviations (STDs) rX as fixed constants. In this prob-
lem setup, we consider deterministic variables x as a special
case with zero variance. Deterministic constraints that are not
functions of random variables are considered as a special case
with Pf being zero. All X are uncorrelated with each other and

all equality constraints are implicitly removed with K being the
constraint set

min
lX

fðlXÞ
s:t: Pr½gjðXÞ > 0� � Pf ; 8j 2 K

X � NðlX;r
2
XÞ

(1)

Values of the failure probability Pf in Eq. (1) directly affect the
feasible space of Eq. (1) and consequently change the optimal sol-
utions. Let F be the deterministic feasible space of constraints
g � 0. The mapping of F to the objective space forms the attain-
able set A.

Definition 1.1. Consider two design points xi, xj in F . We say
that xi dominates xj if and only if

fkðxiÞ < fkðxjÞ8k (2)

If the set of all xi in F satisfying Eq. (2) is null, we say that xj is a
nondominated design. Let the mappings of xi and xj to the objec-
tive space be fi and fj, respectively. The subset of A with all non-
dominated solutions forms the Pareto set, denoted as P. f*

represents points on the Pareto set.
Definition 1.2. A probabilistic feasible space F pðPfÞ, defined in

Eq. (3), is the space of all lX satisfying the probabilistic con-
strains in Eq. (1).

F pðPfÞ ¼ flX 2 Rn : Pr½gjðXÞ > 0� � Pf 8j 2 K;
X � NðlX;r

2
XÞg (3)

Definition 1.3. A b-Pareto set Pb is the set of all Pareto frontiers
at different Pf values.

Numerous studies related to the b-Pareto set have been
published. Li et al. used a multi-objective framework to study the
relations between manufacturing cost and dimensional variations
in multistation assembly processes [1] and the effects of
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manufacturing variations in a fuel injector on engine emissions [2].
Results of b-Pareto sets at different uncertainty levels (dimensional
tolerance and manufacturing variations, respectively) were pre-
sented. Levi et al. generated a b-Pareto set of a cantilever beam
with respect to buckling under material uncertainties [3]. In Ref.
[4], Singh and Minsker investigated the simultaneous effects of
uncertainty on the cost and residual values of various groundwater
remediation designs.

Similar studies have been conducted on stochastic multi-objec-
tive programming (SMP) problems; for example, see Refs. [5–7].
Rommelfanger used both random and fuzzy concepts to model
uncertainties in SMP by converting multiple objectives into a sin-
gle objective problem using a weighted sum [8]. Tonon et al. con-
sidered SMP with both random and fuzzy uncertainties in tunnel
design [9]. In their work, probabilistic constraints are converted
into equivalent deterministic ones, allowing standard deterministic
optimization techniques to be applied. Only parameter uncertain-
ties are considered in SMP and the solution approaches are mainly
focused on constructing the Pareto set with known uncertainties at
a specified reliability level.

Figure 1 shows how the b-Pareto set is generated in the present
study. After a Pf value is determined, the Pareto set P with respect
to Pf is generated. Standard approaches for generating a Pareto set
involve finding a finite number of nondominant design points via a
weighted sum [10] or a constraint method [11] and then connecting
these nondominant points to approximate the true Pareto set. The
number of nondominant design points required is restricted primar-
ily by the computational cost since each nondominant design point
requires a full optimization run of the equivalent problem. If the
Pareto set of a given Pf is obtained, one has to repeat the entire
process to generate another Pareto set for a different Pf.

The process in Fig. 1 is computationally intensive and cannot be
used to predict a Pareto set at an untested Pf value. If none of the
existing b-Pareto sets are satisfactory to a designer, the process is
repeated at a different Pf value. This removes the main benefits of
having a Pareto set, which are that all solutions in the set are opti-
mal and that decision-makers can select the best design based on
their preferences or other design considerations. Imagine that the
Pareto sets of a problem with Pf¼ 0.1, 0.2, 0.3 are provided to a
decision-maker. The decision-maker might be willing to trade-off
reliability with the objectives in Eq. (1); for example, improve Pf

to 0.05 or better. Several new Pareto sets have to be computed
before decisions can be made. Alternatively, the Pareto sets at these
Pf values can be established based on the deterministic Pareto set.

In this research, we develop a systematic approach for identify-
ing the b-Pareto set for bi-objective optimization problems under
random uncertainties. The rest of this paper is organized as fol-
lows. An exact method for predicting the b-Pareto set of linear
systems is proposed in Sec. 2. This method is extended to handle
nonlinear problems in Sec. 3. A vehicle design problem is studied
using the proposed method in Sec. 4. Conclusions are provided in
Sec. 5.

2 Proposed Method for b-Pareto Generation With

Linear Problems

In this section, we study the solutions to the bi-objective lin-
ear programming (BOLP) under uncertainty shown in Eq. (4).
All functions, including objectives and constraints, are linear.
Design variables are the means of all uncertainties. Figure 2
shows a flowchart of the proposed method for generating the b-
Pareto set for BOLP under uncertainty. The deterministic Pareto
set is first generated using the method proposed by Dauer and
Liu [12]. This approach searches for nondominant extreme
points in the objective space by constructing frame vectors of
the reduced cost coefficient matrix R based on the solution of
the extreme points

min
lx

f ¼ CTlx

subject to Pr½g ¼ ATX� b > 0� � Pf

X � ðlx;r
2
xÞ

(4)

Fig. 1 Existing approach for generating b-Pareto set
Fig. 2 Constructing the b-Pareto set of a BOLP under
uncertainty
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The extreme points of the Pareto set under uncertainty are shown
to be the deterministic extreme points with a constant shift D
when the set of active constraints remains unchanged. Therefore,
the b-Pareto set of different Pf values can be easily predicted in
the objective space. If we are able to calculate the value of failure
probability that changes the constraint activity, denoted as P0f , we
can generalize the b-Pareto set by extending the deterministic Par-
eto generation method. In this algorithm, Lagrange multipliers
associated with the active constraints are used to justify the value
of P0f when constraint activity changes. Details of the calculation
of P0f are shown in Sec. 2.3.

The process terminates when the failure probability ranges to
be investigated are covered or when the failure probability value
cannot be made smaller in the attainable set. The method pro-
posed by Dauer and Liu for constructing BOLP in the objective
space is introduced in Sec. 2.1. The shift of the Pareto set under
uncertainty is discussed in Sec. 2.2. The method of using
Lagrange multipliers to obtain P0f is discussed in Sec. 2.3. A dem-
onstration of the proposed method is given in Sec. 2.4.

2.1 Pareto Set Generation. To make this paper self-con-
tained, this section describes the method of obtaining Pareto fron-
tiers of the BOLP shown as [12]

min
X

f ¼ CTx

subjectto g ¼ ATx� b � 0

x � 0

(5)

Definition 2.1. An extreme point f�k in the objective space is the
optimum to the kth single-objective optimization problem defined
as

f�k ¼ ½f1ðx�kÞ; f2ðx�kÞ�; where x�k ¼ argmin fkðxÞ; 8x 2 F
(6)

Definition 2.2. A design x 2 F is said to be a vertex of F if there
are no two distinct points x1 and x2 in F such that
x ¼ ax1 þ ð1� aÞx2 for some a, 0< a< 1.

Definition 2.3. A solution f in a Pareto set P is said to be a ver-
tex of P if there are no two distinct points f1 and f2 in P such that
f ¼ af1 þ ð1� aÞf2 for some a, 0< a< 1.

Definition 2.4. For a k� h matrix, M denote the set of indices
of the columns of M by IdM. Hence, if M ¼ m1;m2;…;mh

� �
,

then IdM ¼ 1; 2;…; hð Þ [12]. For a matrix M, we define the posi-
tive cone spanned by the columns of M as

coneðMÞ ¼ cone mi : i 2 IdM

� �
¼ m 2 Rk : m ¼

X
i2IdM

aim
i; ai � 0

( )

Definition 2.5. A frame, F, of cone M is a collection of columns of
M such that cone mi : i 2 IdFð Þ ¼ coneðMÞ and for each j 2 IdF,
we have coneðmi : i 2 IdFnfjgÞ 6¼ coneðMÞ [12]

The method starts by generating extreme points of the Pareto
frontier as the initial nondominant design. New vertexes of the
Pareto frontier are then obtained from known extreme points until
all extreme points are reached. Dauer and Liu showed that an
edge of the feasible design space will map to an edge of the
attainable set in the objective space if and only if the edge is a
frame vector. Figure 3 illustrates the solution concept using a
bi-objective linear problem. In what follows, we define a Pareto
set of the BOLP in terms of its vertexes as

P ¼ ff1; f2;…; fnv
g (7)

where nv is the number of vertexes. As can be seen, the nondomi-
nated solutions of the attainable set form the Pareto set. Two

extreme points, f�1 and f�2, are obtained, with one being selected as
the starting point to construct the entire Pareto frontier. Constraint
activity at the selected extreme point, �y1, is used to construct a
reduced cost matrix R. The elements of R are the vectors from �y’s
mapped to the adjacent vertex in the design space, denoted as pos-
sible movement directions. The boundaries of R constitute the
frame of possible movement directions that are obtained using a
frame algorithm. Once the frame of R is available, the movement
that satisfies Pareto frontier definition can be determined, shown
as h in Fig. 3. The largest step length in the given Pareto frame
direction is calculated in an optimization subproblem as hk k. The
new vertex in the Pareto frontier is then f2 ¼ f1 þ h. f2 is then
used as the new extreme point to find the next vertex until f�2 is
reached. The detailed procedure of each step of the Pareto frontier
construction is described below.

Step 1. Generate extreme points
In this step, Eq. (5) is considered as a collection of single-objective

linear problems in Eq. (8), where ck is the cost vector of the kth
objective and C¼ [c1, c2]. Equation (8) can be solved using the
simplex method. Let the optimum be x�k . f�k ¼ f1 x�k

� �
; f2 x�k
� �� �

will
be one extreme point in the Pareto frontier. Since we focus on
bi-objective problems only, the two extreme points are obtained
as f�1 ; f

�
22

� �
min

x
fk ¼ cT

k x

subject to g ¼ ATx� b � 0

x � 0

(8)

Step 2. Build reduced cost matrix
Once the extreme points are found in step 1, the corresponding

active constraint set Kk for the kth objective in Eq. (8) is also
known. An extreme point is selected as the starting point for Par-
eto frontier construction with the base variables being xb

k . The
matrices A and C are then decomposed according to the base vari-
ables as

A b

�C 0

� �
! B D b

�CB �CD 0

� �
(9)

The reduced cost coefficient R that contains vectors of all
directions from x�k to adjacent vertexes in the design space is
then built using Eq. (10). The rank of R equals the problem
dimension n.

R ¼ CBB�1D� CD (10)

Step 3. Determine the frame of R in the object space
Since R contains the vectors from x�k to the adjacent vertexes,

not all their mappings to the objective space belong to the Pareto
frontier. In this step, we adopt the frame algorithm from Ref. [13]

Fig. 3 Constructing the Pareto frontier of a BOLP
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to obtain the frame of R in the objective space. The concept of the
frame algorithm is that if the correct frame vectors are selected,
the other vectors in R should be sums of the frame with positive
coefficients. Let us now rewrite R as r1;…; rn½ �, where ri has
dimensions (2� 1) and the set of all r’s is C. The set of frame can-
didates is S, with two elements. The frame algorithm in Ref. [13]
involves selecting candidates from C and then checking if all the
coefficients a in Eq. (11) are non-negative. If a negative a is
obtained, the current candidate cannot enclose all elements in C
and therefore it is not a frame. In other words, the set of the frame
of C must satisfy Eq. (11) with a non-negative a.

ri ¼
X
j2S

ajrj; i 2 ðC � SÞ (11)

Step 4. Determine a Pareto frame vector
After the frame vectors are obtained in step 3, only the frame

vector with the most improved objective function values forms the
Pareto set. Figure 4 shows a cone spanned by the vectors r1 and r2

in the (f1� f2) space. Since both objective functions are to be mini-
mized, r2 is dominated by r1 since the projection of the unit vector
of r1 onto f1, denoted as r1= r1k kð Þf1 , and that of r2 satisfy

r1

kr1k

� �
f1

� r2

kr2k

� �
f1

(12)

Step 5. Find the step length of the Pareto frame vector
Once the Pareto frame vector is obtained, points along the frame

belong to the Pareto frontier until they are no longer in the attain-
able set. The maximal length of the step vector can be found using

max
x;h

h

subject to CTxþ hr ¼ f i

ATx� b � 0

h; x � 0

(13)

Step 6. Iterate until the termination condition is reached
The updated extreme point is f2 ¼ f1 þ h�r. The optimal x of

Eq. (13) is the vertex. The activity of f2 is also known. Repeat
steps 2–6 until termination condition is reached.

2.2 Shift of Pareto Sets. Each vertex in the objective space
has a corresponding vertex at a different Pf value. We prove that
the values of Pf directly affect the feasible space of the probabilistic
constraints in Sec. A.2 of the Appendix. Assuming that the active
constraint set remains unchanged, the matrix R will be the same
and therefore the original frame direction will not be changed. Con-
sider active constraints as equalities with the intersections being the
vertexes in the design space. From Sec A.3 of the Appendix, we
know that the constraint boundaries change with Pf. The new ver-
texes at a different Pf are then the result of a shift of the original
vertexes along the direction given in Eq. (14). By connecting the
shifted vertexes, we obtain the b-Pareto set in the objective space

fnew ¼ f þ z

where z ¼ CTA�1D ¼ CTA�1rgUð1� PfÞ
(14)

2.3 Constraint Activity Prediction at Different Pf. Section
2.2 described how to construct the b-Pareto set assuming that
the constraint activities are unchanged when Pf varies. These
methods are applicable when the constraint activities changes.
Algorithmically, an active set of constraints can be identified
via Lagrange multiplier estimated values k. However, obtaining
Lagrange multipliers of probabilistic constraints is difficult in
practice because Gj is hard to calculate globally for nonlinear
functions, if at all possible. Fortunately, the neighborhood of a
design point Gj can be approximated locally using the first
order reliability method [14]. The true k is only computed at
the optimum, so the Lagrange multipliers are only estimates in
the intermediate iterations. In an active set strategy, as k ! 1
(or in practice, as iterations proceed), lk

X ! l�X, the multiplier
estimates approach the true ones, kk ! k�, and the working set
Gk becomes the true active set G�.

Lemma 1. The change of F due to Pf can be observed from the
vertex in the design space.

Proof. This can be proved by contradiction. If a feasible space
is altered without changing any vertexes, F will not be a polyhe-
dral, which violates the basic principle of LP problems.

Lemma 2. The change of P due to Pf can be observed from the
vertex in the objective space.

Proof. When the change of F is mapped onto the objective
space, one of the following cases will occur:

The new vertexes do not change P; the corner points of P will
not have any effects.

The vertexes map onto P as corner points.
The vertexes map onto P as segments between corner points.

The corner points can thus be used to obtain the correct infor-
mation of constraint activity change.

Theorem 3.1 in Ref. [12] shows that the edge in a design space
will be mapped as an edge in the corresponding objective space
only if the vector is in the frame. In this work, we extend the con-
cept and connect the shifted vertexes to obtain the shifted edge in
the Pareto set in the objective space. Combining Lemmas 1 and 2
yields the following theorem:

Theorem 1. For an LP problem, any change in constraint activ-
ity can be observed at the vertex.

In this research, we use Theorem 1 to determine the critical
failure probability level P0f that changes the active constraint
set as the solution to Eq. (15), where kf,j is the Lagrange mul-
tiplier for constraint gj at a given failure probability level Pf.
This method only requires the Lagrange multipliers at the
vertexes

min
Pf

Pf

s:t:kf;j � k0j ¼ 0

j ¼ 1;…;m

(15)

2.4 Demonstration. In this section, we use the bi-objective
optimization problem in Eq. (16) to demonstrate how the b-Pareto
set can be obtained analytically for LP problems using the pro-
posed approach. The original deterministic formulation in Ref.
[12] is modified such that all design variables are random with
rX¼ 1.

Table 1 shows the nondominant points of the deterministic Par-
eto set as calculated via the approach presented in Sec. 2.1. The
reduced cost coefficient matrix of each nondominant solution and
the corresponding frame vectors are also listed. The maximum
step length h along each frame vector is obtained. Figure 5 shows
the deterministic Pareto set and the b-Pareto set. As can be seen,
the deterministic Pareto set can be formed by connecting nondo-
minant vertex design points f1, f2, f3, and f4Fig. 4 Cone of a Pareto frame
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min
lX

cTlX ¼
�lX1

� 1=9lX3

�lX2
� 1=9lX3

 !
s:t:Pr½g1 ¼ 9X1 þ 9X2 þ 2X3 � 81 > 0� � Pf

Pr½g2 ¼ 8X1 þ X2 þ 8X3 � 72 > 0� � Pf

Pr½g3 ¼ X1 þ 8X2 þ 8X3 � 72 > 0� � Pf

Pr½g4 ¼ �7X1 � X2 � X3 þ 9 > 0� � Pf

Pr½g5 ¼ �X1 � 7X2 � X3 þ 9 > 0� � Pf

Pr½g6 ¼ �X1 � X2 � 7X3 þ 9 > 0� � Pf

Pr½g7 ¼ X1 � 8 > 0� � Pf

Pr½g8 ¼ X2 � 8 > 0� � Pf

X � NðlX;r
2
XÞ

(16)

Table 2 lists the limit of failure probability without changing the
activity for each constraint. At the deterministic optimum for
Pf¼ 50%, constraints g2 and g7 are active at f1. The projections of
CA
�1D on objective functions provide the movement directions

of vertexes with increasing reliability. As can be seen, at a reli-
ability value of 69.3%, points f1 and f2 merge into point f5, and

points f3 and f4 merge into point f6. The maximal reliability in
the probabilistic design space of Eq. (16) is 98.3% when points f5

and f6 merge into point f7.
Figure 5 is a useful tool for decision-making when the

trade-offs between reliability and performance measures are
considered. For the deterministic Pareto set, we have the
standard trade-off information between f1 and f2. If the reli-
ability is to be increased, the decision-maker can immediately
know how the decision affects reliability. For example, if one
would like to know the trade-offs between f1 and f2 when the
constraint reliability is 95%, one can simply connect f5 and f6

with f7 and use Eq. (14) to obtain the shifted Pareto set. The
result will show that the Pareto set of f1 and f2 at 95% reli-
ability is

P95% ¼
�4:34

�2:31

� �
;
�2:31

�4:34

� �� 	

3 Bi-Objective Nonlinear Programming Under

Uncertainty

The b-Pareto set generated via the approach presented in Sec. 2
is exact for BOLP problems. However, this method faces several
challenges for bi-objective nonlinear programming (BONLP)
problems under uncertainty:

(1) The deterministic Pareto set of a BONLP problem does
not have exact forms. Only a limited number of Pareto
points are available in general engineering applications;

(2) The constraint activities in BONLP are much more com-
plex and the theorems for predicting constraint boundary
shifts for BOLP might not be applicable;

(3) When constraints are nonlinear, using the first order con-
cept for estimating constraint boundary shifts might not be
accurate.

These challenges are overcome by extending the BOLP method
to nonlinear problems. We use the minimum number of Pareto
points to ensure efficiency by obtaining important Pareto points
that need to be verified with real simulations. We also use an algo-
rithm to identify the threshold values of Pf when the constraint ac-
tivity changes. We ensure that the accuracy of the resulting b-
Pareto set is at the level request by the designer. Details of the
implementation are given below.

To extend the method for LP problems to NLP, we assume that
BONLP problems can be approximated by a finite set of BOLP
problems. In other words, the attainable set A of a BONLP prob-
lem is the sum of the attainable sets Âk of a finite set of BOLP
subproblems, as shown in Eq. (17). If the BONLP is highly non-
linear, one needs to use a large number of Âk sets to ensure
accuracy

A 	
X
8k
Âk (17)

Table 1 Vertexes of the b-Pareto set of Eq. (16)

R Frame of R h

f1 ¼
�8:11

�0:11

� �
0:014 0:002 0:889

�0:004 �0:143 �0:111

� �
0:002

�0:143

� �
0.789

f2 ¼
�8:10

�0:90

� �
�0:002 0:014 0:900

0:113 �0:014 �0:900

� �
0:014

�0:014

� �
10.182

f3 ¼
�0:90

�8:10

� �
0:113 �0:014 �0:900

�0:002 0:014 0:900

� �
0:113

�0:002

� �
0.789

f4 ¼
�0:11

�8:11

� �
�0:004 �0:143 0:111

0:014 0:002 0:889

� �
f5 ¼

�7:57

�0:71

� �
�0:13 0:00 �0:16

0:02 0:00 0:16

� �
�0:13

0:02

� �
9.71

f6 ¼
�0:71

�7:57

� �
0:02 0:00 0:16

�0:13 0:00 �0:16

� �

Fig. 5 b-Pareto set of Eq. (16)

Table 2 Relations between vertexes of the b-Pareto set

Vertex point f1 f2 f3 f4 f5 f6

CA� 1D on f1 1.064 1.042 0.390 � 1.181 2.834 � 1.403
CA� 1D on f2 � 1.181 0.390 1.042 1.064 � 1.403 2.834
Minimum
reliability (%)

50.0 50.0 50.0 50.0 69.3 69.3

Maximum
reliability (%)

69.3 69.3 69.3 69.3 98.3 98.3
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Equation (17) is used to approximate a Pareto set Pð Þ via a finite
set of linear segments ðP̂kÞ such that P 	

P
8k P̂k.

Figure 6 shows the two-stage process flow of the proposed
method for constructing the b-Pareto set of a BONLP under
uncertainty. The first stage is the initial Pareto set approximation
that uses a sandwich method to obtain the linear segmentations of
the Pareto set. The upper and the lower bounds of the approxima-
tion result in an error measure. If the error is higher than a prede-
termined value Es, an additional line segment is added to the
Pareto approximation. The quality of the representation of the
original NLP space and the accuracy of the final b-Pareto approxi-
mation increase with increasing number of linear segments. This
stage converges when the error of the sandwich Pareto approxima-
tion is acceptable.

The first stage of Fig. 6 provides the linear segments of the
Pareto set and the linearization points. These break points are
then used to linearize BONLP problems. Assuming that nb

break points are created, we have nb BOLP subproblems. Each
of these BOLP subproblems results in a b-Pareto set obtained
using the b-Pareto generation method presented in Sec. 2. We
can then construct the approximation of the BONLP b-Pareto
set by combining a number of BOLP b-Pareto sets. This b-
Pareto approximation is only accurate at a certain reliability
level within the given tolerances. If a reliability value higher
than the current limit is desired, new Pareto points of the orig-
inal BONLP are generated. This process continues until either
the maximum reliability is reached or the obtained reliability
is sufficiently high.

The details of the steps in Fig. 6 are described below using
the mathematical example shown in Eq. (18). Two nonlinear
objectives are minimized in Eq. (18) with the probabilistic fea-
sible space defined by two nonlinear constraints. The proposed
approach first assumes that np Pareto points have been gener-
ated without knowing the entire deterministic Pareto set. This
is a practical assumption, as in most engineering problems,

only a finite set of Pareto points are used to represent the
entire set

min
lX

f ðlXÞ ¼
�lX1

lX2
þ 5

0:5lX1
lX3
þ 50

 !
s:t:Pr½X2

1 þ 0:1X2
2 � X3 � 50 > 0� � Pf

Pr½0:1X2
1 þ 0:4X2

2 þ X3 > 0� � Pf

8X � NðlX; r
2
XÞ;

where lX � 0; rX ¼ 1

(18)

3.1 Sandwich Method in Pareto Set Approximation. In
this section, we describe the sandwich approach for approximating
the Pareto set as linear segments based on the np Pareto points
available. The upper and lower bound approximations of a Pareto
set in Ref. [15] start with the connection of the optimal point of
each objective function to form a two dimensional hyperplane.
Let the Pareto set be partitioned into n segments. The upper bound
function ui of the ith segment is expressed as

ui ¼ f i
2 þ

f iþ1
2 � f i

2

f iþ1
1 � f i

1

ðf1 � f i
1Þ; 8f1 2 ½f i

1; f
iþ1
1 � (19)

Define ei ¼ f iþ1
2
�f i

2

f iþ1
1
�f i

1

as the slope of the upper bound function. The

lower bound function li can then be found as the function parallel
to ui with the maximum distance between them while remaining
in contact with at least one Pareto point. Equation (20) shows the

concept, where f i0
1 is the tangent point of the function li to the Par-

eto set
li ¼ f i0

2 þ eiðf1 � f i0
1 Þ

where f i0
1 ¼ arg minff2 � eif1; 8f i

1 � f1 � f iþ1
1 g

(20)

The upper and lower bound approximations, ui and li, contain the
true Pareto set. The more Pareto points available, the higher the ac-
curacy of this approximation can be. The maximum number of seg-
ments is np and the minimum number is 1. The distance between ui

and li is an index for approximation accuracy, denoted as Es.
In this study, we use the values of one objective within ui and li

to be the measure of the Pareto approximation error. For a bi-
objective problem, Eq. (21) uses the values of f2 within the
bounds, Df2, as the error of the sandwich approximation, as shown
in Fig. 7. If the objective function variation is not acceptable,
more linear segments should be added until Df2 � Es.

Fig. 6 Flowchart for predicting b-Pareto set for BONLP

Fig. 7 Sandwich approach in Pareto approximation
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Df2 ¼ max
i

ui f i0
1

� �
� li f i0

1

� �
 �
(21)

Figure 8 shows the results of the sandwich approximation to Eq.
(18) with Es¼ 3. As can be seen, two piecewise linear segments
are obtained with breakpoints f

10 ¼ [�35.13, 91.09] and
f20 ¼ [�12.96, 55.58]. We use a large Es to show the upper and
lower bounds. A much better approximation can be obtained by
increasing the number of linear segments.

3.2 Linear Subproblems in Pareto Approximation. The
attainable set of the original nonlinear problem is approximated as
the sum of a finite number of linear attainable sets, as in Eq. (17).
The sandwich method presented in Sec. 3.1 helps to determine the
number of required linear sets for approximating the Pareto set. The
corresponding linear subproblems in each attainable set approximate
are presented in this section. Let f0 be the linearization point in the
objective space. In this step, we map the linearization point to the
design space and find the corresponding linear boundaries of active
constraints. The linearization point in the design space, x0, can be
found using the constraint method in the objective space. In Fig. 7,
we have f

0i as the linear segments in the objective space. The corre-
sponding linear design point x0 can then be found as the solution to

min
x

f2ðxÞ
s:t: f1ðxÞ ¼ f 0i1

8x 2 F
(22)

Once the linearization point in the design space (x0) is found, the
corresponding LP subproblem with respect to x0 can be obtained as

LPðx0Þ :
min

x
f̂ðxÞ ¼ CT

f x

s:t: F0 ¼ fĝ ¼ ATx � B; ga ¼ AT
a x � Bag

(

where CT
f ¼ rfjx¼x0 , AT ¼ rgjx¼x0 , and B ¼ gjx¼x0 � rgjx¼x0 
 x0.

The feasible space F0 in LP (x0) considers not only the linearization
of the original constraints, ĝ, but also auxiliary constraints, denoted
as ga, to ensure that the design will not go beyond the extreme points
in the original Pareto set. These auxiliary constraints ensure that the
design matches the original extreme conditions, thus improving the
accuracy of the Pareto set approximation. Aa and Ba are obtained by
identifying the extreme points x

* in the design space and linearizing
the constraints at these points. Therefore, Aa ¼ rgjx�¼x� , and
Ba ¼ gjx¼x� � rgjx¼x� 
 x�. Table 3 lists the results of two LP sub-
problems generated at break points f 01 and f 02.

3.3 Approximate b-Pareto Set. The solutions to each BOLP
subproblem are then obtained using the method described in Sec.
2. Different from the LP case, the minimum failure probability of
a Pareto set shifting depends not only on constraint activities but
also on the accuracy of the shift. This is calculated by comparing
the true Pareto points using the constraint method with the Pareto
approximation when all objective functions are fixed but one, as
shown in Eq. (23). The objective function in Eq. (23) is to obtain
the maximum reliability (minimum failure probability) while the
Pareto set prediction for another objective f̂2 is within acceptable
range Ep from the true Pareto b using the constraint method

min
a;Pf

Pf

s:t:jf̂ 2 � bj=f̂ 2 � Ep

a 2 ff̂ k
1 ; f̂

kþ1
1 g;Pf 2 f0; 50%g

b ¼ min f2; x 2 F ; f1 � a

(23)

For Ep¼ 5%, Fig. 9 shows the b-Pareto set of Eq. (18) obtained
using the proposed method. Table 4 lists the vertexes of these b-
Pareto sets. As can be seen, the deterministic Pareto set approxi-
mated via two break points is valid only between Pf¼ 50% and
Pf¼ 41% due to the highly nonlinear nature of the problem even
though P̂0 in Table 4 shows that the constraint activity will
remain unchanged until Pf¼ 2%. A new Pareto approximation P̂1

is then generated that is valid for Pf values between 41% and
33%. Likewise, P̂2 is valid for Pf values between 33% and 9%
and P̂3 is valid for Pf values between 9% and 3%.

Based on these results, if one is interested in the trade-offs
between objective functions at a reliability level within [67%,
91%], P̂2 and P̂3 can be used. For example

Table 3 Pareto set approximation of Eq. (18)

Break point on P
f10 ¼ �35:13

91:09

� �
f20 ¼ �12:96

55:58

� �
Linear design point x10 ¼ �5:74;�5:25;�14:33ð Þ x20 ¼ �3:03;�2:63;�3:68ð Þ

Cf in LP (x0)
4:97 5:34 0

�7:26 0 �2:67

� �
2:56 2:79 0

�2:19 0 �1:39

� �

A in LP (x0)
�11:47 �1:05 �1:00

�1:15 �4:2 1:00

� �
�6:06 �0:53 �1:00

�0:61 �2:10 1:00

� �
B in LP (x0) 85:67; 14:33ð ÞT 59:88; 3:68ð ÞT

Aa in LP (x0)

�9:53 �1:41 �1:00

�0:95 �5:66 1:00

0:00 �0:16 �1:00

0:00 �0:65 1:00

0BB@
1CCA

Ba in LP (x0) 77:73; 22:27; 50:07; 0:26ð ÞT

Fig. 8 Linear segmentation of Eq. (18)
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P̂80% ¼
�32:06

98:83

� �
;
�29:05

88:44

� �
;
�15:77

61:52

� �
;
�9:06

53:37

� �
;
�1:07

45:83

� �� 	

and

P̂85% ¼
�30:39

98:00

� �
;
�27:15

86:84

� �
;
�13:92

60:01

� �
;
�8:52

53:46

� �
;
�1:28

46:04

� �� 	
If a higher reliability is needed, one might use P̂3 to get

P̂95% ¼
�27:25

95:98

� �
;
�21:49

80:17

� �
;
�12:10

60:34

� �
;
�5:84

50:44

� �
;
�0:33

45:00

� �� 	

These results have the accuracy levels of Es and Ep and can
readily be available without running additional optimization
routines.

4 Multi-Objective Design of Vehicle Crashworthiness

The multi-objective optimal vehicle design considering occu-
pant safety from Refs. [16,17] under uncertainty is studied using
the proposed method. Two objectives of interest are minimizing
the overall weight of the vehicle and optimizing the index for the
side impact test (i.e., the door intrusion velocity). These two
objectives contradict each other in that upgrading the body side
helps to reduce the severity of the subsequent momentum
exchange between the door and the occupant but increases the
weight. In addition to the objective functions, constraints on other
design considerations are to be satisfied with high reliability val-
ues under operational and material uncertainties. Equation (24)
shows the problem formulation of the crashworthiness study. The
surrogate models created by Gu et al. [16] are used to replace the
computationally expensive finite element models.

4.1 Problem Description. The vehicle design problem is for-
mulated as Eq. (24), with two objective functions, nine con-Fig. 9 b-Pareto set approximation of Eq. (18)

Table 4 Vertexes of the b-Pareto approximation of Eq. (18)

bP0
1 :

�38:80

99:68

2%

0@ 1A; �38:41

98:20

2%

0@ 1A; �28:52

76:76

2%

0@ 1A; �3:94

28:90

2%

0@ 1A8<:
9=;

bP0
2 :

�36:61

118:94

13%

0@ 1A; �35:33

108:83

2%

0@ 1A; �30:04

82:12

2%

0@ 1A; �29:82

81:20

5%

0@ 1A; �24:42

67:61

2%

0@ 1A; �16:46

59:25

2%

0@ 1A; �12:96

55:58

20%

0@ 1A; �10:51

53:00

1%

0@ 1A; 1:74

44:42

41%

0@ 1A8<:
9=;

bP1
1 :

�37:14

100:39

2%

0@ 1A; �35:57

94:73

2%

0@ 1A; �26:32

75:66

2%

0@ 1A; �2:93

28:91

2%

0@ 1A8<:
9=;

bP1
2 :

�34:55

115:19

2%

0@ 1A; �33:59

107:05

2%

0@ 1A; �28:73

82:85

2%

0@ 1A; �27:88

79:32

2%

0@ 1A; �22:91

67:27

2%

0@ 1A; �11:21

53:99

2%

0@ 1A; �3:30

45:79

2%

0@ 1A8<:
9=;

bP2
1 :

�35:47

100:63

4%

0@ 1A; �32:79

91:91

2%

0@ 1A; �3:86

32:78

2%

0@ 1A8<:
9=;

bP2
2 :

�32:48

111:28

2%

0@ 1A; �31:79

104:86

2%

0@ 1A; �27:42

83:27

2%

0@ 1A; �26:01

77:61

2%

0@ 1A; �21:47

67:04

2%

0@ 1A; �10:06

53:05

2%

0@ 1A; �2:52

45:33

2%

0@ 1A8<:
9=;

bP3
1 :

�29:65

97:66

2%

0@ 1A; �24:14

82:61

2%

0@ 1A; �0:24

32:10

2%

0@ 1A8<:
9=;

bP3
2 :

�25:15

93:86

2%

0@ 1A; �22:75

82:01

2%

0@ 1A; �20:29

73:10

2%

0@ 1A; �17:18

67:19

2%

0@ 1A; �6:53

50:28

2%

0@ 1A; �0:81

44:63

2%

0@ 1A8<:
9=;
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straints, and nine design variables. Table 5 shows the design varia-
bles used in this study. Among these nine variables, the first seven
are dimensions related to the structural element of the vehicle. X8

and X9 are material properties indicating the yielding stress of
structural elements with crucial influences on safety criteria.
Uncertainties exist in these design variables due to manufacturing
processes or from inherent material property variations. These
uncertainties are modeled as Gaussian distributions with constant
STDs, shown as in Table 5. The upper bounds (UB) and the lower
bounds (LB) on the mean values lX are also listed

min
lX

ff1ðlXÞ; f2ðlXÞg

s:t:Pr½giðXÞ> 0� � Pf ; 8X� NðlX;r
2
XÞ

where f1:Weight¼ 1:98þ 4:9lX1
þ 6:67lX2

þ 6:98lX3

þ 4:01lX4
þ 1:78lX5

þ 2:73lX7

f2:Doorvelocity ¼ 16:45� 0:489lX3
lX7
� 0:843lX5

lX6

g1 ¼ 1:16� 0:3717X2X4 � 0:484X3X9

g2 ¼ 29:98þ 3:818X3 � 4:2X1X2 þ 6:63X6X9 � 7:7X7X8

g3 ¼ 33:86þ 2:95X3� 5:057X1X2 � 11X2X8

� 9:98X7X8 þ 22X8X9

g4 ¼ 46:36� 9:9X2� 12:9X1X8

g5 ¼ 0:261� 0:0159X1X2 � 0:188X1X8� 0:019X2X7

þ 0:0144X3X5þ 0:08045X6X9

g6 ¼ 0:214þ 0:00817X5� 0:131X1X8 � 0:0704X1X9

þ 0:03099X2X6� 0:018X2X7 þ 0:0208X3X8

þ 0:121X3X9 � 0:00364X5X6

g7 ¼ 0:74� 0:61X2� 0:163X3X8 � 0:166X7X9 þ 0:227X2
2

g8 ¼ 4:72� 0:5X4 � 0:19X2X3

g9 ¼ 10:58� 0:674X1X2 � 1:95X2X8

The initial lateral velocity of the 950-kg moving deformable bar-
rier in the vehicle side crash test is 56 km/h. A vehicle must meet
internal and regulated side impact requirements specific to the ve-
hicle market. In this work, the European Enhanced Vehicle-Safety
Committee side impact procedure is adopted. Several dummy
safety performances are used as the criteria for occupant safety
under side impact including head injury criterion, abdomen load
(g1), rib deflections (upper g2, middle g3, and lower g4), and vis-
cous criteria (upper g5, middle g6, and lower g7), pubic symphysis
force (g8), and the velocity of the B-pillar at the middle point (g9).

4.2 Results and Discussion. The b-Pareto set of the bi-
objective optimization problem in Eq. (24) is obtained using the
proposed method with Es¼ 0.01 and Ep¼ 0.2%. 50 Pareto points
on the deterministic Pareto set are first obtained using the con-
straint method. With the given Es, this deterministic Pareto set is
approximated using three linear segments with corresponding
break points [24.25, 15.06], [32.94, 13.45], and [34.09, 13.45],

respectively. The resulting Pareto approximation P̂0 is listed in
Table 6. Although the failure probability limit without constraint
activity change is 1%, the nonlinearity in the constraints restricts
the shift of the deterministic Pareto to Pf¼ 14%.

The proposed method needs to be repeated with Pareto points at
Pf¼ 14% identified using the constraint method. Four new linear
segments are obtained to meet the Es requirement with break
points [24.95, 15.04], [25.77, 14.46], [31.25, 13.80], and [34.09,
13.54]. The Pareto approximation P̂1 is listed in Table 6. Within
the Ep requirement, the b-Pareto set up to Pf¼ 1% can be
obtained.

Figure 10 compares the b-Pareto set of the vehicle crashworthi-
ness study obtained using the proposed method (solid lines) with
that obtained using the constraint method (?). As can be seen, the
proposed method is able to capture the Pareto set with high

Table 6 b-Pareto set data for Fig. 10

bP0
1 :

23:36

15:7
1%

0@ 1A; 25:14

14:43

1%

0@ 1A; 27:87

14:19

1%

0@ 1A; 32:94

13:94

1%

0@ 1A8<:
9=;

bP0
2 :

23:36

16:68

1%

0@ 1A; 25:14

14:92

1%

0@ 1A; 27:87

14:19

1%

0@ 1A; 32:94

13:45

1%

0@ 1A8<:
9=;

bP0
3 :

23:15

16:18

1%

0@ 1A; 24:93

14:92

1%

0@ 1A; 27:66

14:19

1%

0@ 1A; 32:94

13:45

1%

0@ 1A8<:
9=;

bP1
1 :

24:10

15:64

1%

0@ 1A; 25:77

14:46

1%

0@ 1A; 28:32

14:21

1%

0@ 1A; 33:03

13:97

1%

0@ 1A8<:
9=;

bP1
2 :

24:10

15:64

1%

0@ 1A; 25:77

14:46

1%

0@ 1A; 28:32

14:21

1%

0@ 1A; 33:03

13:97

1%

0@ 1A8<:
9=;

bP1
3 :

24:11

15:90

1%

0@ 1A; 25:78

14:72

1%

0@ 1A; 28:33

14:21

1%

0@ 1A; 33:04

13:54

1%

0@ 1A8<:
9=;

bP1
4 :

23:93

16:07

1%

0@ 1A; 25:60

14:88

1%

0@ 1A; 28:15

14:21

1%

0@ 1A; 33:05

13:54

1%

0@ 1A8<:
9=;

Table 5 Bounds and variations of design variables

Design variable UB LB STD

X1 Thickness of B-pillar inner 0.5 1.5 1
X2 Thickness of B-pillar reinforce 0.5 1.5 1
X3 Thickness of floor side inner 0.5 1.5 1
X4 Thickness of cross members 0.5 1.5 1
X5 Thickness of door beam 0.5 1.5 1
X6 Thickness of door belt reinforce 0.5 1.5 1
X7 Thickness of roof rail 0.5 1.5 1
X8 Yield stress of B-pillar inner 0.192 0.750 0.1
X9 Yield stress of floor side inner 0.192 0.750 0.1

Fig. 10 b-Pareto set approximation of vehicle crashworthiness
example
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accuracy with a significant efficiency improvement. Another impor-
tant feature of the proposed method is that predictions between
objective trade-offs at untested Pf values can quickly be obtained
without additional optimization processes. For example, if a de-
signer would like to know the trade-off between weight and door
intrusion velocity at a 95% reliability level (Pf¼ 0.05), he/she can
simply use P̂1 and P̂2 to obtain the Pareto approximation at
Pf¼ 5% as

P̂95% ¼
24:50

15:61

� �
;

26:10

14:47

� �
;

28:56

14:23

� �
;

33:10

13:58

� �� 	
5 Concluding Remarks

Design under uncertainty is a field with growing interest that
studies practical engineering problems in an analytical manner. In
this work, we extend the field of design under uncertainty to mul-
tiple objectives. The main contribution of the proposed work is
that we are able to predict a Pareto set at any reliability value.
This allows designers to make better decisions when considering
reliability. An exact b-Pareto set generation method is proposed
for bi-objective linear programming problems. By identifying
extreme point on the Pareto set and then calculating the vertexes,
the exact Pareto set of a BOLP can be obtained. The entire b-Par-
eto set at all Pf values can then be constructed by calculating the
Pareto set shift at various reliability levels and the limit of failure
probability when constraint activity changes. We also extend the
method of generating BOLP b-Pareto sets to nonlinear problems.
A sandwich method is first applied to approximate the determinis-
tic Pareto set as a union of several LP subproblems. By combing
information from LP subproblems, we can construct the b-Pareto
set of nonlinear problems.

The proposed method provides an efficient way for understanding
the trade-offs between objectives at any reliability values. For gen-
eral engineering design, this information is crucial for decision-mak-
ers for obtaining a quick and relatively accurate estimate. One needs
to be aware that, when approximating a BONLP with a number of
BOLPs, the resulting linear constraints might result in degeneracy.
The simplex method used for obtaining the vertexes of the Pareto in
Secs. 2 and 3 will not converge. Before LP problems can be solved,
the standard approaches described in Ref. [18] might be necessary
to ensure that redundant constraints are properly removed.
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Appendix

A.1 Activity of Probabilistic Constraints

In standard deterministic NLP, an inequality constraint is active if
removing the constraint changes the optimum [19]. For simplicity
of presentation, assume that a unique optimum exists and let the

feasible set F be the union of all constraint sets
Kj ¼ fx : gjðxÞ � 0g, j ¼ 1;…;m. The optimum with all inequal-
ity constraints present is defined as x� ¼ arg min f ðxÞ; 8x 2 F ,
while the optimum with constraint gj removed is defined as
x�j ¼ arg min f ðxÞ; x 2 F �Kj. From the definition of an opti-
mum, f(x*) � f(xj

*). Constraint gj is active if f(x*)= f(xj
*).

Pomrehn and Papalambros. [20] described various activity def-
initions for continuous constraints with continuous and discrete
variables, as shown in Table 7. These definitions are adopted and
extended for probabilistic constraints. The activity of a probabilis-
tic constraint can be defined similarly: A probabilistic constraint
is active if removing the constraint changes the value of the opti-
mum. For any design vector lX, Gj has the same feasibility infor-
mation as the probabilistic constraint in

GjðlXÞ � Pr½gjðXÞ > 0� � Pf;j (A1)

Hence, Gj is a deterministic equivalent constraint function that
can be used to represent the activity of the probabilistic constraint
function Pr½gjðXÞ > 0� � Pf;j. Assuming Gj is a continuous differ-
entiable function, the definitions in Table 7 can be extended sim-
ply by replacing gj with Gj.

A.2 Relations Between F p and Pf

Theorem 2. Let Pf,i and Pf,j be different failure probability values
in Eq. (1) and the corresponding probabilistic feasible space be
F p;i and F p;j, respectively. With an increase of reliability require-
ments, hence a decrease of Pf values, F p shrinks as

Pf;i � Pf;j ) F p;i � F p;j (A2)

Proof. Denote g0i and g0j as the active constraints of Eq. (1) with
failure probabilities Pf,i and Pf,j, respectively. Let the correspond-
ing deterministic constraints set Ki ¼ Kj. F p;i \ F p;j ¼ F p;i or
F p;j. Let us now prove Theorem 2 by contradiction. Assume that
there exist Pf,i and Pf,j such that F p;i  F p;j. In optimization
theory, a larger feasible space will yield a better solution than a
smaller one; therefore

max Pr½gjðXðlXÞÞ > 0�; 8lX 2 F p;i


 �
�

max Pr½gjðXðlXÞÞ > 0�;8lX 2 F p;j


 � (A3)

Equation (A3) also implies Pf,i � Pf,i, which contradicts our initial
statement in Eq. (A2). In addition, for cases which
F p;i \ F p;j ¼ ;, F p;i \ F p;j 6¼ F p;i, or F p;j, the initial assumptions
are violated. Thus, Theorem 2 is proved. h

A.3 Linear Constraint Boundary Shift Under Random

Uncertainties

Uncertainties in Eq. (5) result in probabilistic constraints, as in
Eq. (4). Since we only consider X with Gaussian distributions, a
linear constraint gjðXÞ ¼ AT

j X� b will also be Gaussian with
mean lgj and variance r2

gj
, where

Table 7 Constraint activity definitions

gj Satisfied as a strict inequality
at the optimum

gj Satisfied as an equality
at the optimum

Removal of gj does not affect the
set of optimal solutions

Inactive Tight

Removal of gj alters the set of
optimal solutions, but does not
affect its objective function value

Weakly semi-active Strongly semi-active

Removal of gj alters both the
optimal solution set and its objec-
tive function value

Weakly active Strongly active
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lgj
¼ AT

j lX � b

r2
gj
¼
Xn

i¼1

@gj

@xi

����
lX

 !2


 r2
Xi

(A4)

The probabilistic linear constraint can then be written as the deter-
ministic constraint gj with a deviation Dj or as an equivalent deter-
ministic constraint Gj in Eq. (A5), where

Dj ¼ rgj
U 1� Pf ;j

� �
Pr½gjðXÞ > 0� � Pf ) U lgj

=rgj

 �
� Pf � 0

) gjðlXÞ þ Dj � 0 � GjðlXÞ � 0

(A5)

Theorem 3. Constraint deviations D in Eq. (A5) due to Pf result in
a constant shift to the Pareto set P if constraint activity remains
unchanged.
Proof. Let us now compare the Pareto frontiers along the active
constraints g and the probabilistic active constraint g0 of the same
active set G. The vertex of the active set G is the solution of the si-
multaneous equations, as shown

x�k ¼ fg : ATx� b ¼ 0; g 2 Gg (A6)

Assuming that the active set remains unchanged, the vertex of the
b-Pareto is x

0�
k such that

x0�k ¼ fg0 : ATx� bþ D ¼ 0; g0 2 Gg (A7)

The shift of constraint boundaries results in the vector

dx ¼ xk � x0k ¼ A�1D (A8)

If we calculate the effect of the constraint shift on the objective
space, we have

df ¼ f 0 � f ¼ CTA�1D (A9)

Theorem 4. Without changing constraint activity, the shift of P is
proportional to �U�1 1� Pfð Þ

� �
.

Proof. D in Eq. (A9) is proportional to �U�1 1� Pfð Þ
� �

based on
Eq. (A5). The shift of Pareto df in Eq. (A9) is therefore propor-
tional to �U�1 1� Pfð Þ

� �
.

Nomenclature

A¼ attainable set, with Â being its approximation
Es¼ error in Pareto set approximation obtained using the

sandwich method
Ep¼ error in b-Pareto approximation of nonlinear

problems
F ¼ feasible space with deterministic constraints g � 0

F pðPfÞ¼ feasible space with probabilistic constraints
Pr½gj > 0� � Pf ; 8j 2 K

f(x)¼ objective functions to be optimized with respect to x
f�i ¼ extreme point on the Pareto set with respect to the ith

objective
f
*¼ a point on the Pareto set, with f̂� being its

approximation
f ¼ vertex of the Pareto frontier
f0 ¼ breakpoint of a Pareto approximation
gj¼ the jth deterministic constraint in the negative null

form, j ¼ 1;…;m
Gj¼ equivalent deterministic constraint of Pr½gj > 0� � Pf

K¼ constraint set
n¼ number of design variables (problem dimensions)
P¼ deterministic Pareto set, with P̂ being its

approximation
Pb¼ b-Pareto set

Pr½
� ¼ probability of 

Pf¼ failure probability levels
P0f ¼ limit of failure probability without change of con-

straint activity
R¼ reduced cost coefficient
S¼ frame of R
x¼ deterministic design variables
X¼ Gaussian random variable with mean lX and standard

deviation rX

Z¼ standard Gaussian random variable with zero mean
and unity variance

b¼ reliability index
(N)LP¼ (non)linear programming

BO(N)LP¼ bi-objective (non)linear programming
RBDO¼ reliability-based design optimization
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