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Outline

• What is linear algebra? And why we need this field?

• Basic definitions, operations and properties

• Gauss elimination and matrix row operations

• Subspace and dimensionality

• Matrix functions

• Matrix decompositions (eigenvalue decomposition, SVD)
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What is linear algebra?

• A math course in which we deal with a lot of vectors and
matrices?

• A math course in which we learn to systematically solve linear
equations?

• A math course in which we calculate eigenvalues and
determinants of matrices?

• A math course in which we play with vector spaces, inner
products and linear transforms?

• All of the above!
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What is linear algebra?

• Linear algebra is the branch of mathematics concerning vector
spaces, often finite or countably infinite dimensional, as well
as linear mappings between such spaces.
• Such an investigation is initially motivated by a system of

linear equations in several unknowns. Such equations are
naturally represented using the formalism of vectors and
matrices.
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Why study linear algebra?

• Linear algebra is vital in multiple areas of science in general.

• First order approximation of the real and complex non-linear
world.

• It’s everywhere, e.g. physics, chemistry, biology, computer
science, statistics, economics, social science, management,
etc.
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Vectors

• Vector x ∈ Rm

x =


x1
x2
...
xm


• May also write

x = [x1 x2 · · · xm]T
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Vector addition

A + B = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)
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Scalar product

αv = α(x1, x2) = (αx1, αx2)
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Matrices

• A matrix (plural: matrices) is a rectangular array of numbers,
symbols, or expressions, arranged in rows and columns.

• Matrix M ∈ Rm×n

M =

M11 . . . M1n
...

. . .
...

Mm1 . . . Mmn


• Written in terms of rows or columns

M =


rT1
rT2
...
rTm

 = [c1 c2 . . . cn]

where ri = [Mi1 . . . Min]T , and ci = [M1i . . . Mmi ]
T

9 / 43



Multiplication

• Vector-vector: x , y ∈ Rm → R

xT y =
m∑
i=1

xiyi

• Matrix-vector: x ∈ Rn,M ∈ Rm×n → Rm

Mx =


rT1 x
rT2 x

...
rTm x


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Multiplication (matrix-matrix)

• Matrix-matrix: A ∈ Rm×k ,B ∈ Rk×n → Rm×n
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Multiplication

• Matrix-matrix: A ∈ Rm×k ,B ∈ Rk×n → Rm×n

• ai : rows of A, bj columns of B

AB = [Ab1 . . . Abn] =

a
T
1 B
...

aTmB

 =

a
T
1 b1 . . . aT1 bn
... aTi bj

...
aTmb1 . . . aTmbn


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Multiplication properties

• Associative
(AB)C = A(BC )

• Distributive
A(B + C ) = AB + AC

• NOT commutative
AB 6= BA
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Gauss elimination and matrix operation

• Use Gauss elimination to solve the following linear system:
x + y − z = 9
y + 3z = 3
−x − 2z = 2
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Useful matrices

• Identity matrix I ∈ Rm×m

I =

{
0, if i 6= j

1, if i = j

AI = A, IA = A

• Diagonal matrix A ∈ Rm×m

A = diag(a1, . . . , am) =

a1 . . . 0
... ai

...
0 . . . am


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Useful matrices

• Symmetric matrix: A ∈ Rm×m

A = AT

• Positive semidefinite matrix A ∈ Rm×m:

xTAx > 0, ∀x ∈ Rn

Equivalently, there exists L ∈ Rm×m such that

A = LLT
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Orthogonal matrices

• For vectors v ,w ∈ Rn (Euclidean space), the inner product of
them is defined as:

v · w = |v ||w |cosθ

where θ is the angle between the vectors.

• Orthogonal means perpendicular. Vectors v ,w are orthogonal
when the angle between them is θ = π

2 . Hence cosθ = 0 and
v · w = 0.

• Orthogonal matrix: U ∈ Rm×m

UTU = UUT = I
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Norms

• Quantify the “size” of a vector
• Given x ∈ Rn, a norm satisfies

• ||cx || = |c |||x ||
• ||x || = 0 ⇐⇒ x = 0
• ||x + y || 6 ||x ||+ ||y ||

• Common norms:
• Euclidean L2−norm: ||x ||2 =

√
x21 + · · ·+ x2n

• L1−norm: ||x ||1 = |x1|+ · · ·+ |xn|
• L∞−norm: ||x ||∞ = maxi |xi |
• Lp−norm: p

√
|x1|p + · · ·+ |xn|p

18 / 43



norms illustration
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Linear subspace

Let K be a field (such as the real numbers), V be a vector space
over K , and let W be a subset of V . Then W is a subspace if:

• The zero vector, 0, is in W .

• If u and v are elements of W , then the sum u + v is an
element of W .

• If u is an element of W and c is a scalar from K , then the
scalar product cu is an element of W .
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Linear subspace illustration
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Linear span

The span of a set of S of vectors may be defined as the set of all
finite linear combinations of elements of S .

span(S) =

{ k∑
i=1

λivi

∣∣∣∣k ∈ N, vi ∈ S , λi ∈ K

}

22 / 43



Linear independence

• The vectors x1, . . . , xm in a subset S of a vector space V are
said to be linearly dependent, if there exist scalars
a1, a2, . . . , ak , not all zero, such that

a1x1 + a2x2 + · · ·+ akxk = 0,

where 0 denotes the zero vector.

• Vectors x1, . . . , xm are linearly independent if

m∑
i=1

αixi = 0 ⇐⇒ αi = 0, ∀i

Every linear combination of the xi is unique.
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Evaluating linear independence

Sets of vectors in R2, check for linear dependency.

• The set of vectors v1 = (1, 1), v2 = (−3, 2) and v3 = (2, 4).

• The set of vectors v1 = (1, 1), v2 = (−3, 2).
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Linear independence and dimension

• Dim(V ) = m if x1, . . . , xm span V and are linearly
independent
• If y1, . . . , yk span V then

• k > m
• k > m then yi are NOT linearly independent
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Linear Independence and Dimension
Dimension: Number of basis (linear independent) vectors of
subspace for the subspace.
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Matrix subspaces

• Matrix M ∈ Rm×n defines two subspaces
• Column space col(M) = {Mα | α ∈ Rn} ⊂ Rm

• Row space row(M) = {MTβ | β ∈ Rm} ⊂ Rn

• Nullspace of M: null(M) = {x ∈ Rn | Mx = 0}
• null(M)⊥row(M)
• dim(null(M)) + dim(row(M)) = n
• column space is similar
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Matrix rank

• rank(M) gives dimensionality of row and column spaces

• If M ∈ Rm×n has rank k , then it can be decomposed into
product of m × k and k × n matrices
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Example of matrix rank

•

A =

1 0 0
0 1 0
0 0 0


•

B =

1 5 3 5 9 1
2 6 4 4 8 2
3 7 5 3 7 4


•

C =

3 3 3
3 3 3
3 3 3


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Properties of rank

• For A,B ∈ Rm×n

• rank(A) 6 min(m, n)
• rank(A) = rank(AT )
• rank(AB) 6 min(rank(A), rank(B)), for any B ∈ Rn×k

• rank(A + B) 6 rank(A) + rank(B)

• A has full rank if rank(A) = min(m, n)

• If m > rank(A) rows not linearly independent (similar for
columns)
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Matrix inverse

For a square matrix A, the inverse is written A−1. When A is
multiplied by A−1 the result is the identity matrix I . Non-square
matrices do not have inverses.
Augmented matrix method to find the inverse of a matrix
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Matrix inverse

• M ∈ Rm×m is invertible iff rank(M) = m
• inverse is unique and satisfies

• M−1M = MM−1 = I
• (M−1)−1 = M
• (MT )−1 = (M−1)T

• If A is invertible then MA is invertible and

(MA)−1 = A−1M−1
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Systems of equations

• Given M ∈ Rm×n, y ∈ Rm we wish to solve

Mx = y

The solution exists only if y ∈ col(M)
(with possibly infinite number of solutions)

• If M is invertible then x = M−1y
Note: Do not solve M−1 by hands, use built-in functions...
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Systems of equations (illustration)
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Projection

• What if y /∈ col(M)?
• Find the x such that ŷ = Mx is closet to y

• ŷ is the projection of y onto col(M)
• also known as regression

• Assume rank(M) = n < M

x = (MTM)−1MT y

ŷ = M(MTM)−1MT y
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Projection illustration

M(MTM)−1MT is a projection matrix
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Eigenvalues and eigenvectors
An eigenvector or characteristic vector of a linear transformation is
a non-zero vector that changes by only a scalar factor when that
linear transformation is applied to it.
If T is a linear transformation from a vector space V over a field F
into itself and v is a vector in V that is not the zero vector, then v
is an eigenvector of T if T (v) is a scalar multiple of v , that is,

T (v) = λv .

And we call the scalar λ to be the eigenvalue corresponding to the
eigenvector v .
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Properties of eigenvalues

For M ∈ Rm×m with eigenvalues λi
• tr(M) =

∑m
i=1 λi

• det(M) = λ1λ2 . . . λm

• rank(M) = #λi 6= 0

When M is symmetric

• Eigenvalue decomposition is singular value decomposition

• Eigenvectors for nonzero eigenvalues give orthogonal basis for
row(M) = col(M)
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Eigenvalues decomposition

• Eigenvalues decomposition of symmetric M ∈ Rm×m is

M = QΣQT =
m∑
i=1

λiqiq
T
i

• Σ = diag(λ1, . . . , λn) contains eigenvalues of M
• Q is orthogonal and contains eigenvectors qi of M
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Diagonalization

• Diagonalization problem: For a square matrix A does there
exist an invertible matrix P such that P−1AP is diagonal?
• Diagonalizable matrix

• Definition 1: A square matrix A is called diagonalizable if there
exists an invertible matrix P such that P−1AP is a diagonal
matrix (i.e., P diagonalizes A)

• Definition 2: A square matrix A is called diagonalizable if A is
similar to a diagonal matrix

Two square matrices A and B are similar if there exists an
invertible matrix P such that B = P−1AP.
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Diagonalization example

Find Ak for

A =

[
7 2
−4 1

]
= PDP−1

We have

P =

[
1 1
−1 − 2

]
, D =

[
5 0
0 3

]
Then by associativity of matrix multiplication

A2 = (PDP−1)(PDP−1) = PD(P−1P)DP−1 = PDDP−1 = PD2P−1

=

[
1 1
−1 −2

] [
52 0
0 32

] [
2 1
−1 −1

]
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Single value decomposition (SVD)

• U: A real or complex orthonormal matrix
• V : A real or complex orthonormal matrix
• Σ : An n × d rectangular diagonal matrix with non-negative

real numbers on the diagonal
• Interpretation: Use for dimensional reduction, find the “best”

axis to project on. “Best”: minimum sum of squares of
projection errors. 42 / 43



SVD and image processing

Original picture

1https:

//www.projectrhea.org/rhea/index.php/PCA_Theory_Examples
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