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Outline

What is linear algebra? And why we need this field?
Basic definitions, operations and properties

Gauss elimination and matrix row operations
Subspace and dimensionality

Matrix functions

Matrix decompositions (eigenvalue decomposition, SVD)
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What is linear algebra?

A math course in which we deal with a lot of vectors and
matrices?

A math course in which we learn to systematically solve linear
equations?

A math course in which we calculate eigenvalues and
determinants of matrices?

A math course in which we play with vector spaces, inner
products and linear transforms?

All of the abovel!
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Linear algebra

From Wikipedia, the free encyclopedia

Not to be contused with Elementary algebra.
Linear algebra is the branch of mathematics concerning linear equations such as

@@yt anan = b,
linear functions such as

1y -1 Tn) > @1T1 + - + Ann,
and ther representations through matices and vector spaces.!'121°]
Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of
geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis may be basically viewed as
the appliication of linear algebra to spaces of functions. Linear aigebra is also used in most sciences and engineering areas, because it intne tree-Gimensional Eucidean &2
allows modeling many natural phenomena, and efficiently computing with such models. For nonlinear systems, which cannot be space, planes represent solutions of linear

quations and their intersections reprasent
modeled with linear algebra, linear algebra is often used as a first-order approximation. = =
the common solutions

® Linear algebra is the branch of mathematics concerning vector
spaces, often finite or countably infinite dimensional, as well
as linear mappings between such spaces.

® Such an investigation is initially motivated by a system of
linear equations in several unknowns. Such equations are
naturally represented using the formalism of vectors and
matrices.
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Why study linear algebra?

® Linear algebra is vital in multiple areas of science in general.
® First order approximation of the real and complex non-linear
world.

® |t's everywhere, e.g. physics, chemistry, biology, computer
science, statistics, economics, social science, management,
etc.
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Vectors

® \ector x € R™

X1
X2

Xm
® May also write
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Vector addition

A+ B = (x1,%) + (y1,¥2) = (x1 + y1, %2 + ¥2)
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Scalar product

av = a(x1, x2) = (axi, axz)

av

/v/
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Matrices

® A matrix (plural: matrices) is a rectangular array of numbers,
symbols, or expressions, arranged in rows and columns.

® Matrix M € RmMxn

M11 Ce Mln
M = : . :
Mp1 ... Mmn
® \Written in terms of rows or columns

T

n

L
s

M= : =la o ... ¢
i

where r; = [Miy ... M), and ¢; = [My; ... My]T
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Multiplication

® Vector-vector: x,y € R™ — R

m
Ty =3y
i=1

® Matrix-vector: x € R". M € R™*" — R™

-
ry x
Mx =
7
Fo X
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Multiplication (matrix-matrix)

e Matrix-matrix: A € R™*k B ¢ RkXn — Rmxn

-
-

¥
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Multiplication

e Matrix-matrix: A € R™*k B ¢ Rk — RM*n

® a;: rows of A, b; columns of B

alTB alTbl alTb,,
AB=[Ab1 ... Aby = : = : aTh:

. . i J :
T T T
anB anbi ambn
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Multiplication properties

® Associative
(AB)C = A(BC)

® Distributive
A(B+ C)=AB+ AC

e NOT commutative
AB # BA
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Gauss elimination and matrix operation

® Use Gauss elimination to solve the following linear system:
x+y—z=9

y+3z=3
—x—2z=2
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Useful matrices

® [dentity matrix | € R™*™M
| 0, ifi#j
)1, ifi=j
Al=A A=A
® Dijagonal matrix A € R™*m

ar ... 0
A=diag(ar,...,am) = | 1 4
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Useful matrices

® Symmetric matrix: A € R™X™

A=AT
® Positive semidefinite matrix A € RmM*m:
xTAx >0, V¥xeR"

Equivalently, there exists L € R™*™ such that

A=LLT
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Orthogonal matrices

For vectors v, w € R" (Euclidean space), the inner product of
them is defined as:

v-w = |v||w|cosf

where 0 is the angle between the vectors.

Orthogonal means perpendicular. Vectors v, w are orthogonal
when the angle between them is 6 = 7. Hence cosf/ = 0 and
v-w=0.

Orthogonal matrix: U € R™*™m

vltu=uuT =1
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Norms

® Quantify the “size” of a vector
® Given x € R", a norm satisfies
® [lex|l = [elllxll
° ||x]|=0 < x=0
* [Ix+yll < I+ llyll
e Common norms:

Euclidean Ly—norm: ||x|]2 = \/x¢ + -+ + x2
Li—norm: ||x||1 = |x1| + -+ + |xn]
Loo—norm: ||x]|s = max; |x;]

Ly—norm: ¢/|xi|P + -+ + [x,|P
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norms illustration

lIxly

>

lixl,

>

Xl
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Linear subspace

Let K be a field (such as the real numbers), V be a vector space
over K, and let W be a subset of V. Then W is a subspace if:

® The zero vector, 0, is in W.

® |f u and v are elements of W/, then the sum u+ v is an
element of W.

® |f yis an element of W and c is a scalar from K, then the
scalar product cu is an element of W.
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Linear subspace illustration

21/43



Linear span

The span of a set of S of vectors may be defined as the set of all
finite linear combinations of elements of S.

K
span(S) = { Z AV

i=1

kEN,V;ES,A,‘EK}
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Linear independence

The vectors xi,...,xn in a subset S of a vector space V are
said to be linearly dependent, if there exist scalars
ai, as,...,ax, not all zero, such that

axy+ axxo + -+ agxx =0,

where 0 denotes the zero vector.

Vectors x1, ..., Xm are linearly independent if

m
D aixi=0 <= a; =0, Vi
i=1

Every linear combination of the x; is unique.
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Evaluating linear independence

Sets of vectors in R?, check for linear dependency.
® The set of vectors v; = (1,1),v» = (—3,2) and v3 = (2,4).
® The set of vectors v; = (1,1), v = (—3,2).
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Linear independence and dimension

e Dim(V)=mif xi,...,xm span V and are linearly
independent
® If y1,...,yk span V then
®* k>m
® k > m then y; are NOT linearly independent
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Linear Independence and Dimension

Dimension: Number of basis (linear independent) vectors of
subspace for the subspace.
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Matrix subspaces

e Matrix M € R™*" defines two subspaces
® Column space col(M) = {Ma | « € R"} C R™
® Row space row(M) = {M'"3| 3 €R™} CR"
® Nullspace of M: null(M) = {x € R" | Mx = 0}
® null(M)_Lrow(M)
® dim(null(M)) + dim(row(M)) = n
® column space is similar
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Matrix rank

® rank(M) gives dimensionality of row and column spaces
g y

e If M € R™*" has rank k, then it can be decomposed into
product of m x k and k X n matrices

n

k
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Example of matrix rank

0
0
0

o - O

— O O

153591

A=
2 6 4 4 8 2

-

|

3 75374
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Properties of rank

® For A,B € R™*"
® rank(A) < min(m, n)
® rank(A) = rank(AT)
* rank(AB) < min(rank(A), rank(B)), for any B € R"*k
® rank(A + B) < rank(A) + rank(B)
® A has full rank if rank(A) = min(m, n)
® If m > rank(A) rows not linearly independent (similar for
columns)
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Matrix inverse

For a square matrix A, the inverse is written A~1. When A is
multiplied by A~! the result is the identity matrix /. Non-square

matrices do not have inverses.

Augmented matrix method to find the inverse of a matrix
1 0 1 0
0 1 =ar L

(1 2

W =
= b2
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Matrix inverse

® M e R™ ™ is invertible iff rank(M) = m
® inverse is unique and satisfies
* MM =MM"1=]
(M—H)"t=m
(MT)=t=(M~)T
If Ais invertible then MA is invertible and

(MA)™t = A7tpmt
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Systems of equations

® Given M € R™" y € R™ we wish to solve
Mx =y

The solution exists only if y € col(M)
(with possibly infinite number of solutions)

e If M is invertible then x = M1y
Note: Do not solve M1 by hands, use built-in functions...
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Systems of equations (illustration)

: 05 /
. :
X i X
05 eevereron ; 0
. . A U, VOO TR SO
15 :
EREENT 0 05 1

B H—z 5] [_15] I e R
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Projection

® What if y ¢ col(M)?
® Find the x such that y = Mx is closet to y

® § is the projection of y onto col(M)
® also known as regression

¢ Assume rank(M)=n< M
x=(MTM)IMTy

g=MMTM)IMTy
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Projection illustration

M(MTM)~IMT is a projection matrix

N

zQy
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Eigenvalues and eigenvectors
An eigenvector or characteristic vector of a linear transformation is
a non-zero vector that changes by only a scalar factor when that
linear transformation is applied to it.
If T is a linear transformation from a vector space V over a field F
into itself and v is a vector in V that is not the zero vector, then v
is an eigenvector of T if T(v) is a scalar multiple of v, that is,

T(v) = Av.

And we call the scalar A to be the eigenvalue corresponding to the
eigenvector v.

Y
L — /
AX =X
y
X
¢] X )\x X
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Properties of eigenvalues

For M € R™*™ with eigenvalues \;
o tr(M) =321 A
o det(M) =X i)ha... A\
® rank(M) = #\; #0
When M is symmetric
® Eigenvalue decomposition is singular value decomposition

® Eigenvectors for nonzero eigenvalues give orthogonal basis for
row(M) = col(M)
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Eigenvalues decomposition

® Eigenvalues decomposition of symmetric M € R™*™ is
m
M=QzQ" => Xaiq/
i=1

® 3 = diag(A1,...,As) contains eigenvalues of M
® @ is orthogonal and contains eigenvectors q; of M
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Diagonalization

® Diagonalization problem: For a square matrix A does there
exist an invertible matrix P such that P~1AP is diagonal?
® Diagonalizable matrix
® Definition 1: A square matrix A is called diagonalizable if there
exists an invertible matrix P such that P~1AP is a diagonal
matrix (i.e., P diagonalizes A)
® Definition 2: A square matrix A is called diagonalizable if A is
similar to a diagonal matrix
Two square matrices A and B are similar if there exists an
invertible matrix P such that B = P~1AP.
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Diagonalization example

Find A for

We have

ol ST T

Then by associativity of matrix multiplication

A? = (PDP~Y)(PDP™Y) = PD(P~*P)DP~* = PDDP™!

SRR I

= PD*P*
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Single value decomposition (SVD)

5 VT
. BT rxd
A | _ | T
nxd nXT
U by vT

nxd mnxd dxd

® (J: A real or complex orthonormal matrix

® V: A real or complex orthonormal matrix

> : An n x d rectangular diagonal matrix with non-negative

real numbers on the diagonal

Interpretation: Use for dimensional reduction, find the “best”

axis to project on. “Best”: minimum sum of squares of

projection errors. 42/43



SVD and image processing

M Eigenvalues

Eigenvalue

1https :
//www.projectrhea.org/rhea/index.php/PCA_Theory_Examples
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