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Some quotes

• “There are three kinds of lies: lies, damned lies, and
statistics.”
– Benjamin Disraeli

• “Essentially, all models are wrong, but some are useful.”
– George Box

• “The only way to find out what will happen when a complex
system is distributed is to disturb the system, not merely to
observe it passively.”
– Fred Mosteller and John Tukey
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Outline

• Basic terminology in statistics inference

• Basic terminology in probability theory

• Some famous probability distributions

• Sampling distributions

• Central limit theorem

• Estimation and hypothesis testing

• Confidence intervals

• P-value

• Measure of association and test statistics
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Parameters, sample statistics, and
sampling distribution

• We are interested in a person’s ”true” weight. In practice, we
may have measured weight in a random sample.

• The former quantity is an example of a parameter while the
latter is the example of a sample statistic or estimator.
• For a sample of observations (y1, · · · yn), use

• sample average ȳ =
∑n

i=1 yi
n to estimate the population mean,

• sample variance s2 =
∑n

i=1(yi−ȳ)2

n−1 to estimate the true variance.
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What makes a estimator good?

• Two levels of concern:
• Bias: the difference between this estimator’s expected value

and the true value of the parameter being estimated. A
systematic error.

• Random variance: the variability that is contained within a
process that cannot be determined. A nonsystematic error
(variation between individuals).

• The sampling distribution of a statistic is the distribution of
that statistic, considered as a random variable, when derived
from a random sample of size n. Sampling distributions show
how the statistics vary from sample to sample.
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Sample space, random variable, and
probability function

• The sample space of an experiment or random trial is the set
of all possible outcomes or results of that experiment.

• A random variable is defined as a function that maps the
outcomes of unpredictable processes to numerical quantities.

• A probability function is a function whose value at any given
sample (or point) in the sample space (the set of possible
values taken by the random variable) can be interpreted as
providing a relative likelihood that the value of the random
variable would equal that sample.
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Sample space, random variable, and
probability function

Example: Roll a die

• sample space: 123456
• random variable: {1, 2, 3, 4, 5, 6}
• probability function:
Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) = Pr(6) = 1

6
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Famous discrete probability distribution
(Binomial(n, p))

• sample space: n independent trials with probability p of
success, and probability (1− p) of failure

• random variable: Y = {0, 1, 2, · · · , n}, the number of success
in n trials

• probability function: Pr(Y = k) =
(n
k

)
pk(1− p)n−k
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Famous continuous probability distribution
(N(µ, σ))

• sample space: target of interest

• random variable: −∞ < Y <∞
• probability function: f (Y = y) = 1√

2πσ
exp[− 1

2σ2 (y − µ)2]
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Probability distribution

• Probability distribution: relationship between random variable
and probability function.

• To determine the associated random variable by using the
shape of the probability distribution.

• To determine the percentiles of the distribution by computing
the cumulative probability density Pr(Y 6 y).

• To do statistical research based on the characteristics of
sampling distributions.
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Relationships among probability
distributions

1LEEMIS, Lawrence M.; Jacquelyn T. MCQUESTON (February 2008).
”Univariate Distribution Relationships” (PDF). American Statistician. 62 (1):
45–53.
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Sampling distributions

• The probability distribution of a given random-sample-based
statistic that provides a major simplification of route to
statistical inference.

• If the sample points follow a normal distribution N(µ, σ),
sample means from samples of size n follow a normal
distribution N(µ, σ/n). This implies sample means correctly
estimate the population mean “on average” and one will have
less variation of sample means around the population mean
when the sample size is large.

• Central limit theorem: Regardless of the distribution of the
individual data points, if n is large enough, sample means
from sample of size n will be approximately normal, and get
closer to normal as n increases.
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Central limit theorem (illustration)

1https://upload.wikimedia.org/wikipedia/commons/8/8c/Dice_sum_

central_limit_theorem.svg 13 / 35
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Central limit theorem (illustration)

1Rouaud, Mathieu (2013). Probability, Statistics and Estimation, p. 10.
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Central limit theorem (example)

• Toss a unknown biased coin with probability p of getting head
(yi = 1)and 1− p of getting tail (yi = 0).

• Toss the coin n times and the sample mean is

n∑
i=1

yi
n

=
nhead × 1 + ntail × 0

n
=

nhead
n

= p,

where p is the proportion of heads in the sample.

• The sampling distribution of a sample proportion is
approximately N(π, π(1− π)/n), where π is the true
probability of getting a head.
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Two categories of statistical inference
(estimation)

• Estimation:
• Point estimation: an estimator of a population parameter, e.g.

x̄ → µ.
• Interval estimation: a point estimate plus an interval that

expresses the uncertainty and variability associated with the
estimate, e.g. confidence interval.
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Two categories of statistical inference
(hypothesis testing)

• Hypothesis testing: given the observed data, do we reject or
accept a pre-specified null hypothesis in favor of an alternative

• The comparison is deemed statistically significant if the
relationship between the data sets would be an unlikely
realization of the null hypothesis according to a threshold
probability—the significance level.
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Confidence interval

• A type of interval estimate, computed from the statistics of
the observed data, that might contain the true value of an
unknown population parameter.

• This quantifies the level of confidence that the parameter lies
in the interval.

• Specifically, a confidence interval is defined as an interval that
has a specified probability (e.g. 95%) to include the true
parameter.

• More strictly speaking, the confidence level represents the
frequency (i.e. the proportion) of possible confidence intervals
that contain the true value of the unknown population
parameter.
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Confidence interval of population mean

• If the observations (x1, · · · , xn) are from N(µ, σ)

Pr(−1.96 6
x̄ − µ
σ/
√
n
6 1.96) = 0.95

Pr(x̄ − 1.96
σ√
n
6 µ 6 x̄ + 1.96

σ√
n

) = 0.95

• If the sampling distribution of a statistic is nearly normal and
we know (or we can estimate) its standard deviation (standard
error), the generic formula that the 95% of confidence interval
for any parameter estimated by a statistic that is
approximately normally distributed is given by

(statistic± 1.96× (se of the statistic))
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Student’s t-distribution and sampling

• So far the discussion has been concentrating on the scenarios
where the sampling distribution of a statistic can be assumed
to be normal and its variance is known.

• If the sampling distribution of a statistic is normal but its
variance σ2 is unknown, then σ can be estimated by

s =

√∑n
i=1(xi − x̄)2

n − 1

• X̄−µ
s/
√
n

follows a t-distribution with n − 1 degrees of freedom

• t-distribution is approximately normal: As n goes large, the
approximates the normal distribution
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Student’s t-distribution and normal
distribution
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How to tell if a distribution is roughly
normal?

• Mean ≈ Median ≈ Mode?
• Use a histogram to check the skewness
• Quantile-quantile plot (q-q plot)

• Tests for normality, e.g. Kolmogorov-Smirnov test (K-S) and
Shapiro-Wilk (S-W) test
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Confidence intervals under different
assumptions

(X1, · · · ,Xn) are independent random variables with mean µ and
variance σ2, then the (1− α)× 100% C.I. for µ is

• n: any; normality; σ: known

(x̄ − z1−α/2
σ√
n
, x̄ + z1−α/2

σ√
n

)

• n: any; normality; σ: unknown

(x̄ − t1−α/2
s√
n
, x̄ + t1−α/2

s√
n

)

• n >> 30; normality or non-normality; σ: known or unknown

(x̄ − z1−α/2
s√
n
, x̄ + z1−α/2

s√
n

)
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Hypothesis testing

One-sample test:

• Compares the mean of the sample to a given number.

• Test whether the population mean weight (µweight) is equal to
60.

• H0 : µweight = 60;
HA : µweight 6= 60

Two-sample test:

• Compare the mean of the first sample minus the mean of the
second sample to a given number.

• Test whether the difference of the population mean weights
between females and males is equal to 0.

• H0 : µf − µm = 0;
HA : µf − µm 6= 0
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Hypothesis testing

Paired test:

• Compare the mean of the differences in the observations to a
given number.

• Test whether the difference of the first measured weight w1

and the second measured weight w2 from the same individual
is equal to 0.

• H0 : µw1 − µw2 = 0;
HA : µw1 − µw2 6= 0

The distribution of test statistics follow a normal or t-distribution,
depending on the information we know about the data.
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P-value

• The p-value for a hypothesis test is the probability of
obtaining a value of the test statistic as extreme or more
extreme (in the direction of the critical region) than the one
actually computed, when H0 is true.

• Reporting the p-value associated with a test gives an
indication of how common or rare the computed values of the
test statistics is given that H0 is true.

• For judging the significance of a p-value
p-value < 0.05: “statistical significance” → reject H0

p-value > 0.05: “non significance” → fail to reject H0
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Relationship between commonly used
sampling distributions

Normal and χ2 distribution:

• If Z follows a standard normal N(0, 1) distribution, then Z 2

follows a χ2 distribution with 1 degree of freedom.

• If Q =
∑k

i=1 Z
2
i , then Q ∼ χ2(k).

• Notice that squaring eliminates the sign, so that the square of
the 97.5th percentile of the normal is the 95th percentile of
the χ2, i.e. 1.9622 = 3.84. One can think of this as folding
over the normal distribution so that both extremes end up at
the upper right hand size.

27 / 35



Relationship between commonly used
sampling distributions

χ2, t and F distributions:

• The F−distribution has two degrees-of-freedom specifications,
one for the numerator and the other for the denominator.

• If T follows a t−distribution with ν degree of freedom, then
T 2 follows an F−distribution with degree of freedom (1, ν).

• Let F0.95(1, 15) refer to the 95th percentile of the F−
distribution with df (1,15), and t0.975 refer to the 97.5th
percentile of the t−distribution with df 15. Then

F0.95(1, 15) = 4.541 = 2.1312 = (t0.975(15))2.
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Measure of association

• To compare the difference of certain characteristic between
two or more groups. Measure of association between
characteristic and grouping.
• Measure of association for continuous data:

• e.g., whether a weight losing drug does indeed have a
beneficial effect?

• the difference µ1 − µ2 in means between two populations,
regression coefficients, or correlation coefficients.

• Measure of association for binary factors:
• e.g., Is smoking causing the lung cancer?
• relative risk or odds ratio
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The difference of means

• Interested in the difference of means µ1 − µ2.

• The difference is naturally estimated by the difference in
sample averages. x̄1 − x̄2

• Hypothesis test: H0 : µ1 − µ2 = 0

• Two-sample t-test
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Two-sample t-test under different
assumptions

(X11, · · · ,X1n1) follow a distribution with mean=µ1, variance=σ2
1.

(Y21, · · · ,Y2n2) follow a distribution with mean=µ2, variance=σ2
2.

X1i ’s and Y2j ’s are independent.
The hypothesis test for H0 : µ1 − µ2 = 0
1. n1, n2: any; normal; σ1, σ2: known

test statistic =
x̄1 − x̄2√
σ2

1
n1

+
σ2

2
n2

∼ N(0, 1)

2. n1, n2: any; normal; σ1 = σ2 = σ: unknown

test statistic =
x̄1 − x̄2

Sp

√
1
n1

+ 1
n2

∼ t(n1 + n2 − 2)

where Sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
.
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Two-sample t-test under different
assumptions (continued)

3. n1, n2 >> 30; normal or non-normal; σ1, σ2: known or unknown

test statistic =
x̄1 − x̄2√
σ2

1
n1

+
σ2

2
n2

∼ N(0, 1)

32 / 35



Confidence intervals for µ1 − µ2

1. n1, n2: any; normal; σ1, σ2: known

(x̄1 − x̄2)± z1−α/2

√
σ2

1

n1
+
σ2

2

n2

2. n1, n2: any; normal; σ1 = σ2 = σ: unknown

(x̄1 − x̄2)± t1−α/2(n1 − n2 − 2)Sp

√
1

n1
+

1

n2

3. n1, n2 >> 30; normal or non-normal; σ1, σ2: known or unknown

(x̄1 − x̄2)± z1−α/2

√
s2

1

n1
+

s2
2

n2
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Measure of association vs. test statistic

• A measure of association
• a parameter
• a special parameter that we choose for practical interpretability

and purpose
• does not depend on the sample size, although the success with

which we estimate the measure does

• A test statistics
• target the question whether a certain magnitude of estimated

association could have arisen by change
• there is nothing of universal interpretability or relevance about

a test statistic
• very much dependent on sample size
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The problems of p-values

• If someone people replicates the study with a larger sample
size, we expect them to find the same or similar magnitude of
association. However, their test statistics will be larger and
more significant (and their p-values smaller).

• For the reasons outline, the p-value can not be used as a
measure of association.

• Some better way: Use the confidence interval of the difference
instead.
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