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Moving beyond nonlinearity

The real world is never linear! Or almost never!

But often the linearity assumption is good enough.
When it’s not linear, we can use

polynomials

step functions

splines

local regression

generalized additive models

The models above offer a lot of flexibility, without losing the
ease and interpretability of linear models.
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Wage

Polynomial regression

Vi = Bo+ Bixi + Box? + Bax? + -+ + Baxf + €
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Details of polynomial regression

e Create new variables X; = X, X> = X2, etc, and then treat as
multiple linear regression.

® Not really interested in the coefficients; more interested in the
fitted function values at any value x:

f(x0) = Bo + Bixo + Box¢ + Baxd + Baxg.

® Since f(xo) is a linear function of the f;, we can get a simple
expression for pointwise-variances Var[f(xo)] at any value xo.
In the figure before we have computed the fit and pointwise
standard errors on a grid of values for xg. We show
f(x0) & 2 - se[f(x0)].
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Details of polynomial regression

Logistic regression follows naturally. For example, in the
previous figure we model

exp(ﬁo + Bix;i + ﬁzX,-2 + B3X,-3 + -+ ﬁdX,-d)

Pr(y; > 250|x;) = )
(i i) 1+ exp(Bo + B1x; + Box? + B3x? + -+ + Baxf’)

To get confidence intervals, compute upper and lower bounds
on the logit scale, and then invert to get on probability scale.

Can do separately on several variables—just stack the variables
into one matrix, and separate out the pieces afterwards (see
GAM later).

Caveat: polynomials have notorious tail behavior—very bad for
extrapolation.

Can fit using in formula.
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variable into distinct regions.
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Step functions
Another way of creating transformations of a variable — cut the

Piecewise Constant
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Step functions (continued)

® Easy to work with. Creates a series of dummy variables
representing each group.

e Useful way of creating interactions that are easy to interpret.
For example, interaction effect of year and age:

I(year < 2005) - age, I(year > 2005) - age

would allow for different linear functions in each age category.

® |n R: use the function
e.g.
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Piecewise polynomials

® Instead of a single polynomial in X over its whole domain, we
can rather use different polynomials in regions defined by
knots.

OZ(X) = 501 + Bllxi + 521Xi2 + /831X,3 + €; if X; < C;
Bo2 + Bizxi + BazxP + Brax? + € if x> c.

® Better to add constraints to the polynomials, e.g. continuity.

® Splines have the “"maximum” amount of continuity.
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Piecewise polynomials and splines
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Linear splines

® A linear spline with knots at &,, k= 1,..., K is a piecewise
linear polynomial continuous at each knot.

® We can represent this model as

yi = Bo + Bib1(x;) + Baba(x;) - - - + Bribkyi(xi) + €,
where the by are basis functions,

bl(X,') = X
bk+1(xf) = (Xi - gk)-ﬁ-? k = 1727 SRR K

® Here the ()+ means positive part; i.e.

xi — & if xp > &
0 otherwise

(xi —&k)+ = {
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Cubic splines

® A cubic splines with knots at &,k =1,2,..., K is a piecewise
cubic polynomial with continuous derivatives up to order 2 at
each knot.

® Again we can represent this model truncated power basis
functions

Yi = Bo + B1b1(xi) + Baba(xi) - -+ + Br+3bk+3(xi) + €,

bi(x;) = x;
ba(x;) = x?
bs(x;) = x,-3
bers(xi) = (xi — &)3, k=1,2,...,K

where

0 otherwise

(xi —&)3 = {(Xi G > &
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Natural cubic splines
A natural cubic splines extrapolates linearly beyond the boundary
knots. This adds 4 = 2 x 2 extra constraints, and allows us to put
more internal knots for the same degrees of freedom as a regular
cubic spline.
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Fitting splines

Fitting splines in R is easy: for any degree of splines and
for natural cubic splines, in the package

Natural Cubic Spline
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Knot placement

One strategy is to decide K, the number of knots, and then
place them at appropriate quantiles of the observed X.

A cubic spline with K knots has K + 4 parameters or degrees
of freedom.

® A natural spline with K knots has K degrees of freedom.

Comparison of a degree-14 polynomial and a natural cubic
spline, each with 15 degrees of freedom.
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Smoothing splines

This section is a little bit mathematical.
Consider this criterion for fitting a smooth function g(x) to some
data:

mlnlmlzegegz g(x))? —1—)\/ '(t)?dt.

® The first term is RSS, and tries to make g(x) match the data
at each x;.
® The second term is a roughness penalty and controls how
wiggly g(x) is. It is modulated by the tuning parameter \.
°* \>0
® The smaller A, the more wiggly the function, eventually

interpolating y; when A = 0.
® As X\ — oo, the function g(x) becomes linear.
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Smoothing splines (continued)

The solution is a natural cubic spline, with a knot at every unique
value of x;. The roughness penalty still controls the roughness via
A

Some details

® Smoothing splines avoid the knot-selection issue, leaving a
single A\ to be chosen.

® The algorithmic details are too complex to describe here. In
R, the function will fit a smoothing spline.

® The vector of n fitted values can be written as g, = Sy,
where Sy is a n X n matrix (determined by the x; and \).

® The effective degrees of freedom are given by
dh = {Sa}ii
i=1
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Smoothing splines — choosing A

® We can specify df rather than \.
In R, eg.

® The leave-one-out (LOO) cross-validated error is given by

N~y a0 )2 L[y — &)’
RSch()\)—;(y, g\ (%) —;[1_{%}”} .

In R, e.g.
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Local regression

Local Regression
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With a sliding weight function, we fit separate linear fits over the
range of X by weighted least squares. When the span goes down,
the flexibility of the model goes up. Use /oess() function in R.
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Generalized additive models

Allows for flexible nonlinearities in several variables, but remains
the additive structure of linear models.

fi(year)

-30 -20 -10

yi = Bo+ fi(xi1) + fa(xi2) + - - + fp(Xip) + €.
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GAM details

Can fit a GAM simply using e.g. natural splines:

Coefficients not that interesting, fitted functions are. The
previous plot was produced using

Can mix terms — some linear, some nonlinear — and use
to compute models.

Can use smoothing splines or local regression as well:

GAMs are additive, although low-order interactions can be
included in a natural way using, e.g. bivariate smoothers or
interactions of the form
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Ji(year)

GAMs for classification

log <]_f(;))<())<)> = Bo + fl(Xl) + f2(X2) +oot fP(XP)
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