Chapter 7: Moving beyond linearity

Yu-Tzung Chang and Hsuan-Wei Lee

Department of Political Science, National Taiwan University

2018.12.06.

Outline

- Polynomial regression
- Step functions
- Basis functions
- Regression splines
- Smoothing splines
- Local regression
- Generalized additive splines

Moving beyond nonlinearity

- The real world is never linear! Or almost never!
- But often the linearity assumption is good enough.
- When it's not linear, we can use
 - polynomials
 - step functions
 - splines
 - local regression
 - generalized additive models
- The models above offer a lot of flexibility, without losing the ease and interpretability of linear models.

Polynomial regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d + \epsilon_i$$

Degree-4 Polynomial

Details of polynomial regression

- Create new variables $X_1 = X$, $X_2 = X^2$, etc, and then treat as multiple linear regression.
- Not really interested in the coefficients; more interested in the fitted function values at any value x₀:

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$

• Since $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_l$, we can get a simple expression for *pointwise-variances* $Var[\hat{f}(x_0)]$ at any value x_0 . In the figure before we have computed the fit and pointwise standard errors on a grid of values for x_0 . We show $\hat{f}(x_0) \pm 2 \cdot se[\hat{f}(x_0)]$.

Details of polynomial regression

 Logistic regression follows naturally. For example, in the previous figure we model

$$Pr(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d)}.$$

- To get confidence intervals, compute upper and lower bounds on the logit scale, and then invert to get on probability scale.
- Can do separately on several variables—just stack the variables into one matrix, and separate out the pieces afterwards (see GAM later).
- Caveat: polynomials have notorious tail behavior—very bad for extrapolation.
- Can fit using $y \sim poly(x, degree = 3)$ in formula.

Step functions

Another way of creating transformations of a variable – cut the variable into distinct regions.

- $C_1(X) = I(X < 35)$
- $C_2(X) = I(35 \leqslant X < 50)$
- $C_3(X) = I(50 \le X < 65)$
- $C_4(X) = I(X \ge 65)$

Piecewise Constant

Step functions (continued)

- Easy to work with. Creates a series of dummy variables representing each group.
- Useful way of creating interactions that are easy to interpret.
 For example, interaction effect of year and age:

$$I(year < 2005) \cdot age, I(year \geqslant 2005) \cdot age$$

would allow for different linear functions in each age category.

In R: use the cut function
 e.g. cut(age, c(10,20,30,40,50,60,70)).

Piecewise polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots.

$$\alpha(x) = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c; \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

- Better to add constraints to the polynomials, e.g. continuity.
- Splines have the "maximum" amount of continuity.

Piecewise polynomials and splines

Linear splines

- A linear spline with knots at ξ_k , k = 1, ..., K is a piecewise linear polynomial continuous at each knot.
- We can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) \cdots + \beta_{K+1} b_{K+1}(x_i) + \epsilon_i,$$

where the b_k are basis functions,

$$b_1(x_i) = x_i$$

 $b_{k+1}(x_i) = (x_i - \xi_k)_+, \ k = 1, 2, \dots, K$

• Here the ()₊ means *positive part*; i.e.

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if } x_i > \xi_k; \\ 0 & \text{otherwise} \end{cases}$$

Linear splines: illustration

Cubic splines

- A cubic splines with knots at $\xi_k, k = 1, 2, ..., K$ is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.
- Again we can represent this model truncated power basis functions

$$y_{i} = \beta_{0} + \beta_{1}b_{1}(x_{i}) + \beta_{2}b_{2}(x_{i}) \cdots + \beta_{K+3}b_{K+3}(x_{i}) + \epsilon_{i},$$

$$b_{1}(x_{i}) = x_{i}$$

$$b_{2}(x_{i}) = x_{i}^{2}$$

$$b_{3}(x_{i}) = x_{i}^{3}$$

$$b_{k+3}(x_{i}) = (x_{i} - \xi_{k})_{+}^{3}, \ k = 1, 2, \dots, K$$

where

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k; \\ 0 & \text{otherwise} \end{cases}$$

Cubic splines: illustration

Natural cubic splines

A natural cubic splines extrapolates linearly beyond the boundary knots. This adds $4=2\times 2$ extra constraints, and allows us to put more internal knots for the same degrees of freedom as a regular cubic spline.

Fitting splines

Fitting splines in R is easy: bs(x, ...) for any degree of splines and ns(x, ...) for natural cubic splines, in the package *splines*.

Knot placement

- One strategy is to decide K, the number of knots, and then place them at appropriate quantiles of the observed X.
- A cubic spline with K knots has K+4 parameters or degrees of freedom.
- A natural spline with K knots has K degrees of freedom.
- Comparison of a degree-14 polynomial and a natural cubic spline, each with 15 degrees of freedom.

Smoothing splines

This section is a little bit mathematical.

Consider this criterion for fitting a smooth function g(x) to some data:

$$\mathsf{minimize}_{g \in S} \sum_{i=1}^n (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt.$$

- The first term is RSS, and tries to make g(x) match the data at each x_i .
- The second term is a *roughness penalty* and controls how wiggly g(x) is. It is modulated by the *tuning parameter* λ .
 - λ ≥ 0
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.
 - As $\lambda \to \infty$, the function g(x) becomes linear.

Smoothing splines (continued)

The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .

Some details

- Smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen.
- The algorithmic details are too complex to describe here. In R, the function smooth.spline() will fit a smoothing spline.
- The vector of n fitted values can be written as $\hat{g}_{\lambda} = S_{\lambda}y$, where S_{λ} is a $n \times n$ matrix (determined by the x_i and λ).
- The effective degrees of freedom are given by

$$df_{\lambda} = \sum_{i=1}^{n} \{S_{\lambda}\}_{ii}.$$

Smoothing splines – choosing λ

- We can specify df rather than λ.
 In R, e.g. smooth.spline(age, wage, df = 10).
- The leave-one-out (LOO) cross-validated error is given by

$$RSS_{CV}(\lambda) = \sum_{i=1}^{n} (y_i - \hat{g}_{\lambda}^{(-i)}(x_i))^2 = \sum_{i=1}^{n} \left[\frac{y_i - \hat{g}_{\lambda}(x_i)}{1 - \{S_{\lambda}\}_{ii}} \right]^2.$$

In R, e.g. *smooth.spline(age, wage)*.

Smoothing splines

Smoothing Spline

Local regression

With a sliding weight function, we fit separate linear fits over the range of X by weighted least squares. When the *span* goes down, the flexibility of the model goes up. Use *loess()* function in R.

Generalized additive models

Allows for flexible nonlinearities in several variables, but remains the additive structure of linear models.

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \cdots + f_p(x_{ip}) + \epsilon_i.$$

GAM details

- Can fit a GAM simply using e.g. natural splines: $Im(wage \sim ns(year, df=5) + ns(age, df=5) + education)$
- Coefficients not that interesting, fitted functions are. The previous plot was produced using plot.gam.
- Can mix terms some linear, some nonlinear and use anova() to compute models.
- Can use smoothing splines or local regression as well: gam(wage ~ s(year,df=5) + lo(age, span=5) +education)
- GAMs are additive, although low-order interactions can be included in a natural way using, e.g. bivariate smoothers or interactions of the form ns(age, df=5):ns(year, df=5).

GAMs for classification

$$log\left(\frac{\rho(X)}{1-\rho(X)}\right) = \beta_0 + f_1(X_1) + f_2(X_2) + \cdots + f_p(X_p).$$

 $gam(I(wage > 250) \sim year + s(age, df = 5) + education, family = binomial)$