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Outline

• What is statistical learning?

• Why and how to estimate the model?

• The trade-off between prediction accuracy and model
interpretability

• Measuring quality of fit

• The bias-variance trade-off

• The classification setting
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Introduction
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The data shown are Sales vs TV, Radio, and Newspaper, with a
blue linear-regression line fit separately to each.
We want to predict Sales using the information of the other three
variables, that is, we want to find a model f such that

Sales ≈ f (TV,Radio,Newspaper).
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Notations of the book

• Here Sales is a response or target that one wishes to predict,
this is usually denoted as a response variable Y .

• The variables TV, Radio, and Newspaper are features, or
inputs, or predictors; we name them as X1, X2, and X3.

• The input vector could be written collectively as

x =

X1

X2

X3

 .
• The model could be written as

Y = f (X ) + ε

where ε captures measurement errors and other discrepancies.
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The choices of the models f

There are infinite numbers of models f to choose from. For
example,

Sales = f (TV,Radio,Newspaper)

could be

• Sales = β0 + β1TV + β2Radio + β3Newspaper + ε

• Sales = eβ0+β1TV+β2Radio+β3Newspaper + ε

• Sales = log(β0 + β1TV + β2Radio + β3Newspaper) + ε

• Sales = β0 + β1TV× Radio + β2Newspaper + ε
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What is f(X) good for?

• With a good model f , we can make predictions of Y at new
points X = x .

• We can understand which components of
X = (X1,X2, . . . ,Xp) are important in explaining Y , and
which are irrelevant. For example, age has a huge impact on
height, but the zodiac signs does not.

• Depending on the complexity of the model f , we may be able
to understand how each component Xj of X affects Y .
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Choosing a possible model f

Is there an ideal f (X )? In particular, what is a good value for f (X )
at any selected value of X , say X = 4? There can be infinite
amount of candidates Y values at X = 4. A good value is

f (4) = E (Y |X = 4)

where E (Y |X = 4) means the expected values of Y given
X = 4.This model f (x) = E (Y |X = x) is called the regression
function. 7 / 35



The regression function f (x)

• This can be defined and written in a vector form

f (x) = f (x1, x2, x3) = E (Y |X1 = x1,X2 = x2,X3 = x3)

• Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f (x) = E (Y |X = x) is the
function that minimizes E [(Y − g(X ))2|X = x ] over all
functions of g at all points X = x .

• ε = Y − f (x) is the irreducible error, that is, even if we know
f (x), we would still make errors in prediction, since at each
X = x there is typically a distribution of possible Y values.

• We have

E [(Y − f̂ (X ))2|X = x ] = [f (x)− f̂ (x)]2 + Var(ε)

The first term is reducible and the second term in irreducible.
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How to estimate f ?

• Typically we have few if any data points with X = 4 exactly.
Therefore we can’t compute E (Y |X = x) directly.
• Relax the definition and let

f̂ (x) = Ave(Y |x ∈ N(x))

where N(x) is some neighborhood of x .
• Nearest neighbor averaging can be good when the number of

independent variables is not too large.
• Other smoothing methods like kernel and spline would be

discussed later.
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Curse of dimensionality

• Nearest neighbor methods can be bad when the number of
independent variables is too large.

• Curse of dimensionality: nearest neighbors tend to be far away
in high dimensions. Then the method loses it spirit of
estimating E (Y |X = x) by local averaging.
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Curse of dimensionality
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Parametric and structured models

The linear model is an important example of a parametric model:

FL(X ) = β0 + β1X1 + β2X2 + · · ·+ βpXp.

• A linear model is specified in terms of p + 1 parameters
β0, β1, . . . , βp.

• We estimate the parameters by fitting the model to training
data.

• Linear models are almost never correct. However, they are
often good for interpretation and sometimes do better than
complicated models in predicting.
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Some choice of models
Always have a scatter plot first if you have only one independent
variable.
• A linear model f̂L(X ) = β̂0 + β̂1X gives a good fit here.

• A quadratic model f̂Q(X ) = β̂0 + β̂1X + β̂2X
2 gives a good fit

here.
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Fitting the data – is it a good model?
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Some simulated example. Red dots are simulated values for income
from the model

income = f (education, seniority) + ε

f is the blue surface.
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Fitting the data – is it a good model?
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One dimensional case. Fix the other independent variable as a
constant.
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Fitting the data – is it a good model?
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Linear regression model fit to the simulated data.

f̂L(education, seniority) = β̂0 + β̂1 × education + β̂2 × seniority
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Fitting the data – is it a good model?
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More flexible regression model f̂S(education, seniority) fit to the
simulated data. Here the thin-spline method is used to fit a flexible
surface. The roughness of the fit is also controllable (chapter 7).
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Fitting the data – is it a good model?
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Even more flexible regression model f̂S(education, seniority) fit to
the simulated data. Here the fitted model makes no errors on the
training data. This is also known as overfitting.
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Trade-offs

• Prediction accuracy versus interpretability.
– Linear models are easy to interpret; thin-plate splines are
not.

• Good fit versus over-fit or under-fit
– How do we know when the fit is good enough?

• Parsimony versus black-box
– We often prefer a simpler model involving fewer variables
over a black-box predictor involving them all.
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Trade-off of models
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Assessing model accuracy

Suppose we fit a model f̂ (x) to some training data
Tr = {xi , yi}Ni=1, and we wish to see how well it performs.

• We could compute the average squared prediction error over
Tr :

MSETr = Avei∈Tr [yi − f̂ (xi )]2

This may be biased toward more overfit models.

• Instead we should, if possible, compute it using fresh test data
Te = {xi , yi}Mi=1:

MSETe = Avei∈Te [yi − f̂ (xi )]2
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MSE and flexibility
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Black curve is truth, the data is simulated from the true model.
Red curve on the right is MSETe , grey curve is MSETr . Orange,
blue, and green curves/squares correspond to fits of different
flexibility.
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MSE and flexibility
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Here the truth is smoother (close to linear), so the smoother fit
and linear model do really well. 23 / 35



MSE and flexibility
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Here the truth is wiggly and the noise is low, so the more flexible
fits do the best. 24 / 35



Bias-variance trade-off

• Suppose we have fit a model f̂ (x) to some training data Tr ,
and let (x0, y0) be a test observation drawn from the
population. If the true model is Y = f (X ) + ε (with
f (x) = E (Y |X = x)), then

E
(
y0 − f̂ (x0)

)2
= Var(f̂ (x0)) + [Bias(f̂ (x0))]2 + Var(ε).

• The expectation averages over the variability of y0 as well as
the variability in Tr . Note that Bias(f̂ (x0)) = E [f̂ (x0]− f (x0).

• Typically as the flexibility of f̂ increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.
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Bias-variance trade-off for the three
examples
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Classification problems

Here the response variable Y is qualitative – e.g. email is one of
C = (spam, ham) (ham = good email), digit class is one of
C = {0, 1, 2, . . . , 9}. The goal is to:

• Build a classifier C (X ) that assigns a class label from C to a
future unlabeled observation X .

• Access the uncertainty in each classification.

• Understand the roles of the different predictors among
X = (X1,X2, . . . ,XP).
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Binary classifier

Is there an ideal C (X )? Suppose the K elements in C are
numbered 1, 2, . . . ,K . Let

pk(x) = Pr(Y = k |X = x), k = 1, 2, . . . ,K .

These are the conditional class probabilities at x . Then the Bayes
optimal classifier at x is

C (x) = j if pj(x) = max{pj(x), p2(x), . . . , pK (x)}.
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Binary classifier

Nearest-neighbor averaging can be used as before. But this also
breaks when the dimension is large. However, the impact on Ĉ (x)
is less than on p̂k(x), k = 1, 2, . . . ,K .
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Classifications: some details

• Typically we measure the performance of Ĉ (x) using the
misclassification error rate:

ErrTe = Avei∈Te I [yi 6= Ĉ (xi )]

• The Bayes classifier (using the true pk(x)) has smallest error

• Support vector machines build structured model for C (x)

• We will also build structured models for representing the
pk(x). e.g. logistic regression, generalized additive models
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K-nearest neighbors in two dimensions
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K-nearest neighbors in two dimensions
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K-nearest neighbors in two dimensions
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K-nearest neighbors in two dimensions

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=1 KNN: K=100

34 / 35



Performance of K-nearest neighbors
method
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