Chapter 2: Overview of statistical learning

Yu-Tzung Chang and Hsuan-Wei Lee
Department of Political Science, National Taiwan University
2018.10.04

Outline

- What is statistical learning?
- Why and how to estimate the model?
- The trade-off between prediction accuracy and model interpretability
- Measuring quality of fit
- The bias-variance trade-off
- The classification setting

Introduction

The data shown are Sales vs TV, Radio, and Newspaper, with a blue linear-regression line fit separately to each.
We want to predict Sales using the information of the other three variables, that is, we want to find a model f such that

$$
\text { Sales } \approx f(T V, \text { Radio, Newspaper })
$$

Notations of the book

- Here Sales is a response or target that one wishes to predict, this is usually denoted as a response variable Y.
- The variables TV, Radio, and Newspaper are features, or inputs, or predictors; we name them as X_{1}, X_{2}, and X_{3}.
- The input vector could be written collectively as

$$
x=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

- The model could be written as

$$
Y=f(X)+\epsilon
$$

where ϵ captures measurement errors and other discrepancies.

The choices of the models f

There are infinite numbers of models f to choose from. For example,

$$
\text { Sales }=f(T V, \text { Radio, Newspaper })
$$

could be

- Sales $=\beta_{0}+\beta_{1}$ TV $+\beta_{2}$ Radio $+\beta_{3}$ Newspaper $+\epsilon$
- Sales $=e^{\beta_{0}+\beta_{1} T V+\beta_{2} \text { Radio }+\beta_{3} \text { Newspaper }}+\epsilon$
- Sales $=\log \left(\beta_{0}+\beta_{1}\right.$ TV $+\beta_{2}$ Radio $+\beta_{3}$ Newspaper $)+\epsilon$
- Sales $=\beta_{0}+\beta_{1} T V \times$ Radio $+\beta_{2}$ Newspaper $+\epsilon$

What is $f(X)$ good for?

- With a good model f, we can make predictions of Y at new points $X=x$.
- We can understand which components of $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ are important in explaining Y, and which are irrelevant. For example, age has a huge impact on height, but the zodiac signs does not.
- Depending on the complexity of the model f, we may be able to understand how each component X_{j} of X affects Y.

Choosing a possible model f

Is there an ideal $f(X)$? In particular, what is a good value for $f(X)$ at any selected value of X, say $X=4$? There can be infinite amount of candidates Y values at $X=4$. A good value is

$$
f(4)=E(Y \mid X=4)
$$

where $E(Y \mid X=4)$ means the expected values of Y given $X=4$. This model $f(x)=E(Y \mid X=x)$ is called the regression function.

The regression function $f(x)$

- This can be defined and written in a vector form

$$
f(x)=f\left(x_{1}, x_{2}, x_{3}\right)=E\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right)
$$

- Is the ideal or optimal predictor of Y with regard to mean-squared prediction error: $f(x)=E(Y \mid X=x)$ is the function that minimizes $E\left[(Y-g(X))^{2} \mid X=x\right]$ over all functions of g at all points $X=x$.
- $\epsilon=Y-f(x)$ is the irreducible error, that is, even if we know $f(x)$, we would still make errors in prediction, since at each $X=x$ there is typically a distribution of possible Y values.
- We have

$$
E\left[(Y-\hat{f}(X))^{2} \mid X=x\right]=[f(x)-\hat{f}(x)]^{2}+\operatorname{Var}(\epsilon)
$$

The first term is reducible and the second term in irreducible.

How to estimate f ?

- Typically we have few if any data points with $X=4$ exactly. Therefore we can't compute $E(Y \mid X=x)$ directly.
- Relax the definition and let

$$
\hat{f}(x)=\operatorname{Ave}(Y \mid x \in N(x))
$$

where $N(x)$ is some neighborhood of x.

- Nearest neighbor averaging can be good when the number of independent variables is not too large.
- Other smoothing methods like kernel and spline would be discussed later.

Curse of dimensionality

- Nearest neighbor methods can be bad when the number of independent variables is too large.
- Curse of dimensionality: nearest neighbors tend to be far away in high dimensions. Then the method loses it spirit of estimating $E(Y \mid X=x)$ by local averaging.

Curse of dimensionality

10\% Neighborhood

Parametric and structured models

The linear model is an important example of a parametric model:

$$
F_{L}(X)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}
$$

- A linear model is specified in terms of $p+1$ parameters $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$.
- We estimate the parameters by fitting the model to training data.
- Linear models are almost never correct. However, they are often good for interpretation and sometimes do better than complicated models in predicting.

Some choice of models

Always have a scatter plot first if you have only one independent variable.

- A linear model $\hat{f}_{L}(X)=\hat{\beta}_{0}+\hat{\beta}_{1} X$ gives a good fit here.

- A quadratic model $\hat{f}_{Q}(X)=\hat{\beta_{0}}+\hat{\beta_{1}} X+\hat{\beta_{2}} X^{2}$ gives a good fit here.

Fitting the data - is it a good model?

Some simulated example. Red dots are simulated values for income from the model

$$
\text { income }=f(\text { education, seniority })+\epsilon
$$

f is the blue surface.

Fitting the data - is it a good model?

One dimensional case. Fix the other independent variable as a constant.

Fitting the data - is it a good model?

Linear regression model fit to the simulated data.
$\hat{f}_{L}($ education, seniority $)=\hat{\beta_{0}}+\hat{\beta_{1}} \times$ education $+\hat{\beta_{2}} \times$ seniority

Fitting the data - is it a good model?

More flexible regression model \hat{f}_{S} (education, seniority) fit to the simulated data. Here the thin-spline method is used to fit a flexible surface. The roughness of the fit is also controllable (chapter 7).

Fitting the data - is it a good model?

Even more flexible regression model \hat{f}_{S} (education, seniority) fit to the simulated data. Here the fitted model makes no errors on the training data. This is also known as overfitting.

Trade-offs

- Prediction accuracy versus interpretability.
- Linear models are easy to interpret; thin-plate splines are not.
- Good fit versus over-fit or under-fit - How do we know when the fit is good enough?
- Parsimony versus black-box
- We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.

Trade-off of models

Flexibility

Assessing model accuracy

Suppose we fit a model $\hat{f}(x)$ to some training data $\operatorname{Tr}=\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$, and we wish to see how well it performs.

- We could compute the average squared prediction error over Tr:

$$
M S E_{T r}=A v e_{i \in \operatorname{Tr}}\left[y_{i}-\hat{f}\left(x_{i}\right)\right]^{2}
$$

This may be biased toward more overfit models.

- Instead we should, if possible, compute it using fresh test data

$$
T e=\left\{x_{i}, y_{i}\right\}_{i=1}^{M}:
$$

$$
M S E_{T e}=A v e_{i \in T e}\left[y_{i}-\hat{f}\left(x_{i}\right)\right]^{2}
$$

MSE and flexibility

Black curve is truth, the data is simulated from the true model. Red curve on the right is $M S E_{T e}$, grey curve is $M S E_{T_{r}}$. Orange, blue, and green curves/squares correspond to fits of different flexibility.

MSE and flexibility

Here the truth is smoother (close to linear), so the smoother fit and linear model do really well.

MSE and flexibility

Here the truth is wiggly and the noise is low, so the more flexible fits do the best.

Bias-variance trade-off

- Suppose we have fit a model $\hat{f}(x)$ to some training data Tr, and let $\left(x_{0}, y_{0}\right)$ be a test observation drawn from the population. If the true model is $Y=f(X)+\epsilon$ (with $f(x)=E(Y \mid X=x))$, then

$$
E\left(y_{0}-\hat{f}\left(x_{0}\right)\right)^{2}=\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\left[\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)\right]^{2}+\operatorname{Var}(\epsilon)
$$

- The expectation averages over the variability of y_{0} as well as the variability in Tr. Note that $\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)=E\left[\hat{f}\left(x_{0}\right]-f\left(x_{0}\right)\right.$.
- Typically as the flexibility of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a bias-variance trade-off.

Bias-variance trade-off for the three examples

Classification problems

Here the response variable Y is qualitative - e.g. email is one of $C=($ spam, ham $)($ ham = good email), digit class is one of $C=\{0,1,2, \ldots, 9\}$. The goal is to:

- Build a classifier $C(X)$ that assigns a class label from C to a future unlabeled observation X.
- Access the uncertainty in each classification.
- Understand the roles of the different predictors among $X=\left(X_{1}, X_{2}, \ldots, X_{P}\right)$.

Binary classifier

Is there an ideal $C(X)$? Suppose the K elements in C are numbered $1,2, \ldots, K$. Let

$$
p_{k}(x)=\operatorname{Pr}(Y=k \mid X=x), k=1,2, \ldots, K .
$$

These are the conditional class probabilities at x. Then the Bayes optimal classifier at x is

$$
C(x)=j \text { if } p_{j}(x)=\max \left\{p_{j}(x), p_{2}(x), \ldots, p_{K}(x)\right\}
$$

Binary classifier

Nearest-neighbor averaging can be used as before. But this also breaks when the dimension is large. However, the impact on $\hat{C}(x)$ is less than on $\hat{p}_{k}(x), k=1,2, \ldots, K$.

Classifications: some details

- Typically we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$
E r r_{T e}=\operatorname{Ave}_{i \in T_{e}} l\left[y_{i} \neq \hat{C}\left(x_{i}\right)\right]
$$

- The Bayes classifier (using the true $p_{k}(x)$) has smallest error
- Support vector machines build structured model for $C(x)$
- We will also build structured models for representing the $p_{k}(x)$. e.g. logistic regression, generalized additive models

K-nearest neighbors in two dimensions

K-nearest neighbors in two dimensions

K-nearest neighbors in two dimensions
KNN: K=10

K-nearest neighbors in two dimensions

KNN: K=1

KNN: K=100

Performance of K-nearest neighbors method

