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Outline

What is statistical learning?
Why and how to estimate the model?

The trade-off between prediction accuracy and model
interpretability

Measuring quality of fit
The bias-variance trade-off

The classification setting
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Introduction
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The data shown are Sales vs TV, Radio, and Newspaper, with a

blue linear-regression line fit separately to each.
We want to predict Sales using the information of the other three

variables, that is, we want to find a model f such that

Sales =~ f( TV, Radio, Newspaper).
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Notations of the book

Here Sales is a response or target that one wishes to predict,
this is usually denoted as a response variable Y.

The variables TV, Radio, and Newspaper are features, or
inputs, or predictors; we name them as X1, X5, and Xj.

The input vector could be written collectively as

X1
x = |Xs
X3
The model could be written as
Y =1f(X)+e

where € captures measurement errors and other discrepancies.
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The choices of the models f

There are infinite numbers of models f to choose from. For
example,
Sales = f( TV, Radio, Newspaper)

could be

® Sales = By + B1 TV + BrRadio + B3 Newspaper + €

® Sales = eﬂo—i—ﬂl TV+,6’2Radio+ﬁ3Newspaper+ €

o Sales = log(Bo + 81 TV + B2Radio + B3 Newspaper) + €

® Sales = By + B1 TV x Radio + By Newspaper + €
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What is f(X) good for?

® With a good model f, we can make predictions of Y at new
points X = x.

® We can understand which components of
X = (X1, X2, ..., Xp) are important in explaining Y, and
which are irrelevant. For example, age has a huge impact on
height, but the zodiac signs does not.

® Depending on the complexity of the model f, we may be able
to understand how each component X; of X affects Y.
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Choosing a possible model f

Is there an ideal f(X)? In particular, what is a good value for f(X)
at any selected value of X, say X = 47 There can be infinite
amount of candidates Y values at X = 4. A good value is

f(4)=E(Y|X =4)
where E(Y|X = 4) means the expected values of Y given

X = 4.This model f(x) = E(Y|X = x) is called the regression
function. 7/35



The regression function f(x)

This can be defined and written in a vector form
f(x) = f(x1,x2,x3) = E(Y|X1 = x1, X2 = x2, X3 = x3)

Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(x) = E(Y|X = x) is the
function that minimizes E[(Y — g(X))?|X = x] over all
functions of g at all points X = x.

e = Y — f(x) is the irreducible error, that is, even if we know
f(x), we would still make errors in prediction, since at each
X = x there is typically a distribution of possible Y values.

We have
E[(Y — F(X))?|X = x] = [f(x) = F()]* + Var(e)
The first term is reducible and the second term in irreducible.
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How to estimate 7
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Typically we have few if any data points with X = 4 exactly.
Therefore we can't compute E(Y|X = x) directly.
Relax the definition and let

f(x) = Ave(Y|x € N(x))
where N(x) is some neighborhood of x.
Nearest neighbor averaging can be good when the number of
independent variables is not too large.
Other smoothing methods like kernel and spline would be
discussed later.
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Curse of dimensionality

® Nearest neighbor methods can be bad when the number of
independent variables is too large.

® Curse of dimensionality: nearest neighbors tend to be far away
in high dimensions. Then the method loses it spirit of
estimating E(Y|X = x) by local averaging.
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Parametric and structured models

The linear model is an important example of a parametric model:

FL(X) =fBo+ 1 X1+ BXo+---+ 5po.

® A linear model is specified in terms of p + 1 parameters
/60761a e 7/3;7'

® We estimate the parameters by fitting the model to training
data.

® |inear models are almost never correct. However, they are
often good for interpretation and sometimes do better than
complicated models in predicting.
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Some choice of models

Always have a scatter plot first if you have only one independent
variable.

® A linear model fL(X) = Bo + 51X gives a good fit here.
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e A quadratic model fQ(X) = Bo + f1.X + $oX? gives a good fit
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Fitting the data — is it a good model?
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Some simulated example. Red dots are simulated values for income
from the model

income = f(education, seniority) + €
f is the blue surface.
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Fitting the data — is it a good model?
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Linear regression model fit to the simulated data.

fi (education, seniority)

= Bo + 31 X education + BAQ X seniority
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Fitting the data — is it a good model?
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More flexible regression model fs(education, seniority) fit to the
simulated data. Here the thin-spline method is used to fit a flexible
surface. The roughness of the fit is also controllable (chapter 7).
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Fitting the data — is it a good model?
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Even more flexible regression model fs(education, seniority) fit to
the simulated data. Here the fitted model makes no errors on the
training data. This is also known as overfitting.
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Trade-offs

® Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines are
not.

® Good fit versus over-fit or under-fit
— How do we know when the fit is good enough?

® Parsimony versus black-box
— We often prefer a simpler model involving fewer variables
over a black-box predictor involving them all.

19/35



Interpretability

Trade-off of models
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Assessing model accuracy

Suppose we fit a model f(x) to some training data
Tr = {X,',y,-},’-\’:l, and we wish to see how well it performs.

® We could compute the average squared prediction error over
Tr:
MSETr = AveieTr[}/i - f-(Xi)]2

This may be biased toward more overfit models.

® Instead we should, if possible, compute it using fresh test data
Te = {x,-,y,-}i’\il:

MSEt. = AveieTe[)/i - f(xi)]z
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MSE and flexibility
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Black curve is truth, the data is simulated from the true model.
Red curve on the right is MSE., grey curve is MSET,. Orange,
blue, and green curves/squares correspond to fits of different
flexibility.
22/35



MSE and flexibility
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Here the truth is smoother (close to linear), so the smoother fit
and linear model do really well. 23/35
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Here the truth is wiggly and the noise is low, so the more flexible

fits do the best.
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Bias-variance trade-off

* Suppose we have fit a model f(x) to some training data Tr,
and let (xo, yo) be a test observation drawn from the
population. If the true model is Y = f(X) + € (with
f(x) = E(Y|X = x)), then

E(yo — f(x0))? = Var(f(x0)) + [Bias(f(x0))]? + Var(e).

® The expectation averages over the variability of yg as well as
the variability in Tr. Note that Bias(f(xp)) = E[f(x0] — f(x0).

e Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.
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Classification problems

Here the response variable Y is qualitative — e.g. email is one of
C = (spam, ham) (ham = good email), digit class is one of
C={0,1,2,...,9}. The goal is to:
¢ Build a classifier C(X) that assigns a class label from C to a
future unlabeled observation X.
® Access the uncertainty in each classification.

® Understand the roles of the different predictors among
X = (X1, Xz,...,Xp).
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Binary classifier
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Is there an ideal C(X)? Suppose the K elements in C are
numbered 1,2,..., K. Let

pe(x) = Pr(Y =klX =x),k=1,2,...,K.

These are the conditional class probabilities at x. Then the Bayes
optimal classifier at x is

C(x) = j if pj(x) = max{pj(x), p2(x), ..., pr(x)}.
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Binary classifier
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Nearest-neighbor averaging can be used as before. But this also
breaks when the dimension is large. However, the impact on C(x)
is less than on pk(x), k=1,2,...,K.
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Classifications: some details

Typically we measure the performance of €(x) using the
misclassification error rate:

Errre = Avejcrellyi # C(xi)]

The Bayes classifier (using the true pi(x)) has smallest error
Support vector machines build structured model for C(x)

We will also build structured models for representing the
pk(x). e.g. logistic regression, generalized additive models
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Xs

K-nearest neighbors in two dimensions
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K-nearest neighbors in two dimensions
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Xo

K-nearest neighbors in two dimensions
KNN: K=10
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K-nearest neighbors in two dimensions

KNN: K=1 KNN: K=100
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Error Rate
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