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Outline

• The challenge of unsupervised learning

• Principal component analysis
• Clustering methods

• K -means clustering
• Hierarchical clustering
• Practical issues in clustering

• Example: NC160 Data
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Supervised and unsupervised learning

• Most of this course focuses on supervised learning methods
such as regression and classification.

• In that setting we observe both a set of features
X1,X2, . . . ,Xp for each object, as well as a response or
outcome variable Y . The goal is then to predict Y using
X1,X2, . . . ,Xp.

• Here we instead focus on unsupervised learning, we where
observe only the features X1,X2, . . . ,Xp. We are not
interested in prediction, because we do not have an associated
response variable Y .
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The goals of unsupervised learning

• The goal is to discover interesting things about the
measurements: is there an informative way to visualize the
data? Can we discover subgroups among the variables or
among the observations?
• We discuss two methods:

• principal components analysis, a tool used for data visualization
or data pre-processing before supervised techniques are applied

• clustering, a broad class of methods for discovering unknown
subgroups in data.
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The challenge of unsupervised learning

• Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.
• But techniques for unsupervised learning are growing

importance in a number of fields:
• subgroups of breast cancer patients groups by their gene

expression measurements,
• groups of shoppers characterized by their browsing and

purchase histories,
• movies grouped by the ratings assigned by movie viewers.
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Another advantage

• It is often easier to obtain unlabeled data – from a lab
instrument or a computer – than labeled data, which can
require human intervention.

• For example it is difficult to automatically assess the overall
sentiment of a movie review: is it favorite or not?
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Principal components analysis

• PCA produces a low-dimensional representation of a dataset.
It finds a sequence of linear combinations of the variables that
have maximal variance, and are mutually uncorrelated.

• Apart from producing derived variables for use in supervised
learning problems, PCA also serves as a tool for data
visualization.

7 / 49



Principal components analysis: details
• The first principal component of a set of features

X1,X2, . . . ,Xp is the normalized linear combination of the
features

Z1 = φ11X1 + φ21X2 + · · ·+ φp1Xp

that has the largest variance. By normalized, we mean that∑p
j=1 φ

2
j1 = 1.

• We refer to the elements φ11, . . . , φp1 as the loadings of the
first principal component; together, the loading make up the
principal component loading vector,

φ1 = (φ11φ21 . . . φp1)T .

• We constrain the loadings so that their sum of squares is
equal to one, since otherwise setting these elements to be
arbitrarily large in absolute value could result in an arbitrarily
large variance.
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Principal components analysis: example

The population size (normalized) and ad spending (ad) for 100
different cities are shown as purple circles. The green solid line
indicates the first principal component direction, and the blue
dashed line indicates the second principal component direction.
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Computation of principal components

• Suppose we have a n × p data set X . Since we are only
interested in variance, we assume that each of the variables in
X has been centered to have mean zero (that is, the column
means of X are zero).

• We then look for the linear combination of the sample feature
values of the form

zi1 = φ11xI1 + φ21xi2 + · · ·+ φp1xip

for i = 1, . . . , n that has largest sample variance, subject to
the constraint that

∑p
j=1 φ

2
j1 = 1.

• Since each of the xij has mean zero, then so does zi1 (for any
values of φj1). Hence the sample variance of the zi1 can be
written as 1

n

∑n
i=1 z

2
i1.
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Computation of principal components
(continued)

• Plugging in the first principal component equation loading
vector solves the optimization problem

maximizeφ11,...,φp1
1

n

n∑
i=1

( p∑
j=1

φj1xij

)2

subject to

p∑
j=1

φ2j1 = 1.

• This problem can be solved via a singular-value decomposition
of the matrix X , a standard technique in linear algebra.

• We refer to Z1 as the first principal component, with realized
values z11, . . . , zn1.
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Geometry of PCA

• The loading vector φ1 with elements φ11, . . . , φp1 defines a
direction in feature space along which the data vary the most.

• If we project the n data points x1, . . . , xn onto this direction,
the projected values are the principal component scores
z11, . . . , zn1 themselves.
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Further principal components

• The second principal component is the linear combination of
X1, . . . ,Xp that has maximal variance among all linear
combinations that are uncorrelated with Z1.

• The second principal component scores z12, z22, . . . , zn2 take
the form

zi2 = φ12xi1 + φ22xi2 + · · ·+ φp2xip,

where φ2 is the second principal component loading vector
with elements φ12, φ22, . . . , φp2.
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Further principal components (continued)

• It turns out that constraining Z2 to be uncorrelated with Z1 is
equivalent to constraining the direction φ2 to be orthogonal
(perpendicular) to the direction φ1. And so on.

• The principal component directions φ1, φ2, φ3, . . . are the
ordered sequence of right singular vectors of the matrix X ,
and the variances of the components are 1

n times the squares
of the singular values. There are at most min(n − 1, p)
principal components.
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Illustration

• USAarrests data: For each of the fifty states in the United
States, the data set contains the number of arrests per
100,000 residents for each of three crimes: assault, murder,
and rape. We also record UrbanPop (the percent of the
population in each state living in urban areas).

• The principal components score vectors have length n = 50,
and the principal component loading vectors have length
p = 4.

• PCA was performed after standardizing each variable to have
mean zero and standard deviation one.
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USAarrests data: PCA plots
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Figure details

The first two principal components for the USAarrests data:

• The blue dots are the scores for the first two principal
components of 50 states.

• The orange arrows indicate the first two principal component
loading vectors (with axes on the top and right). For example,
the loading for rape on the first component is 0.54, and its
loading on the second principal component is 0.17 [the word
rape is centered at the point (0.54, 0.17)].

• This figure is known as a biplot, because it displays both the
principal component scores and the principal component
loadings.
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PCA loadings
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Another interpretation of principal
components
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PCA finds the hyperplane closest to the
observations

• The first principal component loading vector has a very
special property: it defines the line in p-dimensional space
that is closest to the n observations (using average squared
Euclidean distance as a measure of closeness).

• The notion of principal components as the dimensions that
are closet to the n observations extends beyond just the first
principal component.

• For instance, the first two principal components of a data set
span the plane that is closest to the n observations, in terms
of average squared Euclidean distance.
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Scaling of the variable matters
• If the variables are in different units, scaling each to have

standard deviation equal to one is recommended.
• If they are in the same units, you might or might not scale the

variables.
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Proportion variance explained
• To understand the strength of each component, we are

interested in knowing the proportion of variance explained
(PVE) by each one.
• The total variance present in a data set (assuming that the

variables have been centered to have mean zero) is defined as
p∑

j=1

Var(Xj) =

p∑
j=1

1

n

n∑
i=1

x2ij ,

and the variance explained by the mth principal component is

Var(Zm) =
1

n

n∑
i=1

z2im.

• It can be shown that
p∑

j=1

Var(Xj) =
M∑

m=1

Var(Xm),

with M = min(n − 1, p). 22 / 49



Proportion variance explained (continued)
• Therefore, the PVE of the mth principal component is given

by the positive quantity between 0 and 1∑n
i=1 z

2
im∑p

j=1

∑n
i=1 x

2
ij

.

• The PVEs sum to one. We sometimes display the cumulative
PVEs.
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How many principal components should
we use?

If we use principal components as a summary of our data, how
many components are sufficient?
• No simple answer to this question, as cross-validation is not

available for this purpose.
• Why not?
• When could we use cross-validation to select the number of

components?

• The “scree plot” on the previous slide can be used as a guide:
we look for an “elbow”.
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Clustering

• Clustering refers to a very broad set of techniques for finding
subgroups, or clusters, in a data set.

• We seek a partition of the data into distinct groups so that the
observations within each group are quite similar to each other.

• To make this concrete, we must define what it means for two
or more observations to be similar or different.

• Indeed, this is often a domain-specific consideration that must
be made based on knowledge of the data being studied.
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PCA versus clustering

• PCA looks for a low-dimensional representation of the
observations that explains a good fraction of the variance.

• Clustering looks for homogeneous subgroups among the
observations.
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Clustering for market segmentation

• Suppose we have access to a large number of measurements
(e.g. median household income, occupation, distance from
nearest urban area, and so forth) for a large number of people.

• Our goal is to perform market segmentation by identifying
subgroups of people who might be more receptive to a
particular form of advertising, or more likely to purchase a
particular product.

• The task of performing market segmentation amounts to
clustering the people in the data set.
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Two clustering methods

• In K-mean clustering, we seek to partition the observations
into a pre-specified number of observations.

• In hierarchical clustering, we do not know in advance how
many clusters we want; in fact, we end up with a tree-like
visual representation of the observations, called a dendrogram,
that allows us to view at once the clusterings obtained for
each possible number of clusters, from 1 to n.
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K -means clustering

K=2 K=3 K=4

A simulated data set with 150 observations in 2-dimensional space.
Panels show the results of applying k-means clustering with
different values of K , the number of clusters. The color of each
observation indicates the cluster to which it was assigned using the
K -means clustering algorithm. Note that there is no ordering of
the clusters, so the cluster coloring is arbitrary. These cluster labels
were not used in clustering; instead, they are the outputs of the
clustering procedure.
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Details of K -means clustering

Let C1, . . . ,Ck denotes sets containing the indices of the
observations in each cluster. These sets satisfy two properties:

1 C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , n}. In other words, each
observation belongs to at least one of the K clusters.

2 Ck ∩ Ck ′ = ∅, ∀k 6= k ′. In other words, the clusters are
non-overlapping: no observation belongs to more than one
cluster.

For instance, if the ith observation is in the kth cluster, then
i ∈ Ck .
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Details of K -means clustering (continued)

• The idea behind K -means clustering is that a good clustering
is one for which the within-cluster variation is as small as
possible.

• The within-cluster variation for cluster Ck is a measure
WCV (Ck) of the amount by which the observations within a
cluster differ from each other.

• Hence we want to solve the problem

minimizeC1,...,CK

{ K∑
k=1

WCV (Ck)

}
.

• In words, this formula says that we want to partition the
observation into K clusters such that the total within-cluster
variation, summed over all K clusters, is as small as possible.
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How to define within-cluster variation?

• Typically we use Euclidean distance

WCV (Ck) =
1

|Ck |
∑

i ,i ′∈Ck

p∑
j=1

(xij − xi ′j)
2,

where |Ck | denotes the number of observations in the kth
cluster.

• Combining the previous two equations gives the optimization
problem that defines K -means clustering,

minimizeC1,...,CK

{ K∑
k=1

1

|Ck |
∑

i ,i ′∈Ck

p∑
j=1

(xij − xi ′j)
2

}
.
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K -means clustering algorithm

1 Randomly assign a number, from 1 to K , to each of the
observations. These serve as initial cluster assignments for the
observations.

2 Iterate until the cluster assignments stop changing:

1 For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for
the observations in the kth cluster.

2 Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).
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K -means clustering example

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results
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Properties of the K -means algorithm

• This algorithm is guaranteed to decrease the value of the
objective function at each step. Note that

1

|Ck |
∑

i ,i ′∈Ck

p∑
j=1

(xij − xi ′j)
2 = 2

∑
i∈Ck

p∑
j=1

(xij − x̄ij)
2,

where x̄kj = 1
|Ck |
∑

i∈Ck
xij is the mean for feature j in cluster

Ck .

• However, it is not guaranteed to give the global minimum.
Need random initialization!
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K -means clustering example (different
starting values)

320.9 235.8 235.8

235.8 235.8 310.9
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Hierarchical clustering

• K -means clustering requires us to pre-specify the number of
clusters K . This can be a disadvantage (later we discuss
strategies for choosing K ).

• Hierarchical clustering is an alternative approach which does
not require that we commit to a particular choice of K .

• In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.
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Hierarchical clustering: illustration
Builds a hierarchy in a “bottom-up” fashion.
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Hierarchical clustering algorithm
The approach in words:
• Start with each point in its own cluster.
• Identify the closet two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.
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An example
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45 observations generated in 2-dimensional space. In reality there
are three distinct classes, shown in separate colors. However, we
will treat these class labels as unknown and will seek to cluster the
observations in order to discover the classes from the data.

40 / 49



An example using hierarchical clustering
(continued)
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Details of the previous figure

• Left: Dendrogram obtained from hierarchically clustering the
data from previous slide, with complete linkage and Euclidean
distance.

• Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results in
two distinct clusters, shown in different colors.

• Right: The dendrogram from the left-hand panel, now cut at
a height of 5. This cut results in three distinct clusters, shown
in different colors. Note that the colors were not used in
clustering, but are simply used for display purposes in this
figure.
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Types of linkage
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Choice of dissimilarity measure
• So far we have used the Euclidean distance.
• An alternative is correlation-based distance which considers

two observations to be similar if their features are highly
correlated.
• This is an unusual use of correlation, which is normally

computed between variables; here it is computed between the
observation profiles for each pair of observations.
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Practical issues

• Scaling of the variables matters! Should the observations or
features first be standardized in some way? For instance,
maybe the variables should be centered to have mean zero
and scaled to have standard deviation one.
• In the case of hierarchical clustering

• What dissimilarity measure should be used?
• What type of linkage should be used?

• How many clusters to choose? (in both K -means and
hierarchical clustering). Difficult problem. No agreed-upon
method. See Elements of Statistical Learning, chapter 13 for
more details.

• Which features should we use to drive the clustering?
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Example: breast cancer microarray study

• “Repeated observations of breast tumor subtypes in
independent gene expression data sets;” Sorlie at el, PNAS
2003.

• Gene expression measurements for about ∼ 8000 genes, for
each of 88 breast cancer patients.

• Average linkage, correlation metric.

• Clustered samples using 500 intrinsic genes: each woman was
measured before and after chemotherapy. Intrinsic genes have
smallest within/between variation.
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Results: breast cancer microarray study
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Results: breast cancer microarray study
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Conclusions

• Unsupervised learning is important for understanding the
variation and grouping structure of a set of unlabeled data,
and can be a useful pre-processor for supervised learning.

• It is intrinsically more difficult than supervised learning
because there is no gold standard (like an outcome variable)
and no single objective (like test set accuracy).

• It is an active field of research, with many recently developed
tools such as self-organizing maps, independent components
analysis and spectral clustering. See The Elements of
Statistical Learning for details.
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