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Abstract
This paper studies the energy conversion efficiency for a rectified
piezoelectric power harvester. An analytical model is proposed, and an
expression of efficiency is derived under steady-state operation. In addition,
the relationship among the conversion efficiency, electrically induced
damping and ac–dc power output is established explicitly. It is shown that
the optimization criteria are different depending on the relative strength of
the coupling. For the weak electromechanical coupling system, the optimal
power transfer is attained when the efficiency and induced damping achieve
their maximum values. This result is consistent with that observed in the
recent literature. However, a new finding shows that they are not
simultaneously maximized in the strongly coupled electromechanical
system.

1. Introduction

Advances in low-power electronic design and fabrication
have opened the possibility of self-powered microsensors and
communication nodes [1]. At the same time, the need to
power remote systems or embedded devices independently
has motivated many research efforts harvesting electric energy
from various ambient sources, including solar power, thermal
gradients and vibration [2]. Among these energy scavenging
sources, mechanical vibration is a potential power source
that is abundant enough to be of use, is easily accessible
through microelectromechanical systems (MEMS) technology
for conversion to electric energy, and is ubiquitous in
applications ranging from small household appliances to large
infrastructures [3, 4].

Piezoelectric vibration-to-electricity converters have
received much attention as transducers, since they have high
electromechanical coupling, require no external voltage source
and are particularly attractive for use in MEMS [5–8]. As
a result, piezoelectric materials for scavenging energy from
ambient vibration sources have recently seen a dramatic rise
in use for power harvesting. This includes the use of resonant
piezoelectric-based structures of cantilever beam configuration
[9–15] as well as plate (membrane) configuration [16–19].
Other harvesting schemes include the use of long strips of
piezoelectric polymers in ocean or river-water flows [20, 21],

the use of piezoelectric ‘cymbal’ transducers [22, 23], and
the use of piezoelectric windmill for generating electric power
from wind energy [24].

Jeon et al [5] have successfully developed the first MEMS-
based micro-scale power generator using a {3-3} mode of
PZT transducer. A 170 µm × 260 µm PZT beam has been
fabricated, and a maximum dc voltage of 3 V across the
load 10.1 M� has been observed. In addition, the energy
density of the power generator has been estimated at around
0.74 mWh cm−2, which compares favourably to the use
of lithium ion batteries. Roundy et al [3] subsequently
created prototyes of thin PZT structures with a target volume
power density of 80 µW cm−3. Recently, duToit et al
[25] provided in-depth design principles for MEMS-scale
piezoelectric energy harvesters and proposed a prototype of
30 µW cm−3 from low-level vibration. Related works on
the modelling of miniaturized piezoelectric power harvesting
devices can be found in [26–28].

As the testing, characterization and fabrication of MEMS-
scale energy harvesters are not always available compared to
the similar tasks in bulk power harvesters, a normalization
scheme is particularly useful for comparing the performance
of micro-scale power harvesters. One good method uses
the parameter of efficiency of mechanical to electric energy
conversion. Umeda et al [29, 30] have studied the efficiency
of mechanical impact energy to electric energy using a
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Figure 1. An equivalent model for a piezoelectric vibration energy harvesting system.

piezoelectric vibrator. Goldfarb and Jones [31] subsequently
investigated the efficiency of the piezoelectric material in
a stack configuration for converting mechanical harmonic
excitation into electric energy. Roundy [32] provided an
expression for effectiveness that can be used to compare
various approaches and designs for vibration-based energy
harvesting devices. Recently, in contrast to efforts where
the conversion efficiency was examined numerically [29],
Richards et al [33] derived an analytic formula to predict
the energy conversion efficiency of piezoelectric energy
harvesters in the case of ac power output. Since the
electronic load requires a stabilized dc voltage while a
vibrating piezoelectric element generates an ac voltage, the
desired output needs to be rectified, filtered and regulated
to ensure the electric compatibility. Thus, we investigate
the conversion efficiency for a rectified piezoelectric power
harvesting system based on the analysis proposed by Shu and
Lien [34] in section 2. We show that the conversion efficiency
is dependent on the frequency ratio, the normalized resistance
and, in particular, the ratio of the electromechanical coupling
coefficient to the mechanical damping ratio. In general,
the conversion efficiency can be improved with a larger
coupling coefficient and smaller damping. Recently, Cho et al
[35, 36] performed a series of experiments and proposed a
set of design guidelines for the performance optimization
of micromachined piezoelectric membrane generators by
enhancing the electromechanical coupling coefficient.

When an energy harvester is applied to a system, energy
is removed from the vibrating structure and supplied to
the desired electronic components, resulting in additional
damping of the structure [37, 38]. Because the efficiency
is defined as the ratio of the time-averaged power dissipated
across the load to that done by the external force, electrically
induced damping can be defined explicitly, and its connection
to the conversion efficiency is established in section 3. It is
shown that the load to maximize the conversion efficiency is
the same as that to maximize the induced damping. However,
the extraction of harvested power may not be simultaneously
optimized. It is demonstrated in section 4 that optimization
criteria vary according to the relative strength of the coupling.
The conclusions are drawn in section 5.

Finally, our result can be applied to the investigation of
charging a battery from a vibrating piezoelectric harvester. It
is shown that direct charging will result in a low efficiency
of energy conversion, since the equivalent impedance of the
battery may not match that of the optimal load in most
situations. Ottman et al [39, 40] have developed an adaptive
electric circuit to optimize the energy transfer from the

piezoelectric element to the stored device. It is based on
the principle of load impedance adaptation by tuning the load
impedance to obtain a higher power flow. Related work based
on the synchronous electric charge extraction can be found in
[41–44].

2. A piezoelectric power harvesting model

Consider an energy conversion device which includes a
vibrating piezoelectric structure together with an energy
storage system. If the modal density of such a device is
widely separated and the structure is vibrating at around its
resonance frequency, we may model the power generator
as a mass+spring+damper+piezo structure, as schematically
shown in figure 1 [33, 39, 44]. It consists of a piezoelectric
element coupled to a mechanical structure. In this approach,
a forcing function F(t) is applied to the system and an
effective mass M is bounded on a spring of effective stiffness
K, on a damper of coefficient ηm, and on a piezoelectric
element characterized by effective piezoelectric coefficient
� and capacitance Cp. These effective coefficients are
dependent on the material constants and the design of energy
harvesters and can be derived using the standard modal
analysis [25, 38, 45, 46].

Let u be the displacement of the mass M, and Vp be
the voltage across the piezoelectric element. The governing
equations of the piezoelectric vibrator can be described by
[25, 38, 43, 44]

Mü(t) + ηmu̇(t) + Ku(t) + �Vp(t) = F(t), (1)

−�u̇(t) + CpV̇p(t) = −I (t), (2)

where I (t) is the current flowing into the specified circuit.
Since most applications of piezoelectric materials for power
generation involve the use of periodic straining of piezoelectric
elements, the vibrating generator is assumed to be driven at
around resonance by the harmonic excitation

F(t) = F0 sin wt, (3)

where F0 is the constant magnitude and w (in radians per
second) is the angular frequency of vibration.

The power generator considered here is connected to a
storage circuit system, as illustrated in figure 1. Since the
electrochemical battery needs a stabilized dc voltage while a
vibrating piezoelectric element generates an ac voltage, this
requires a suitable circuit to ensure the electric compatibility.
Typically an ac–dc rectifier followed by a filtering capacitance
Ce is added to smooth the dc voltage, as shown in figure 1.
A controller placed between the rectifier output and the battery
is included to regulate the output voltage. Figure 2 is a
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Figure 2. A typical ac–dc harvesting circuit.
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Figure 3. Typical waveforms of displacement u(t) and piezo
voltage Vp(t) for an ac–dc power harvesting circuit.

simplified energy harvesting circuit commonly adopted for
design analysis. It can be used to estimate an upper bound
of the real power that the piezoelectric generator is able to
deliver at a given excitation. Note that the regulation circuit
and battery are replaced with an equivalent resistor R and Vc

is the rectified voltage across it.
The common approach to having the stable output dc

voltage is to assume that the filter capacitor Ce is large enough
so that the rectified voltage Vc is essentially constant [39].
Specifically, Vc(t) = 〈Vc(t)〉 + Vripple, where 〈Vc(t)〉 and
Vripple are the average and ripple of Vc(t), respectively. This
average 〈Vc(t)〉 is independent of Ce provided that the time
constant RCe is much larger than the oscillating period of the
generator [43]. The magnitude of Vripple, however, depends
on Ce and is negligible for large Ce. Under this hypothesis,
Vc(t) ≈ 〈Vc(t)〉, and therefore in the following, we use Vc,
instead of 〈Vc(t)〉, to represent the average of Vc(t) for notation
simplicity.

The rectifying bridge shown in figure 2 is assumed to be
perfect here. Thus, it is open circuited if the piezo voltage |Vp|
is smaller than the rectified voltage Vc. As a result, the current
flowing into the circuit vanishes, and this implies V̇p(t) varies
proportionally with respect to u̇(t), as seen from (2). On the
other hand, when |Vp| reaches Vc, the bridge conducts and
the piezo voltage is kept equal to the rectified voltage, i.e.,
|Vp| = Vc. Finally, the conduction in the rectifier diodes is
blocked again when the absolute value of the piezo voltage
|Vp(t)| starts decreasing. Typical waveforms of u(t) and
Vp(t) satisfying these properties are schematically shown in
figure 3.

To solve (1)–(2) connected to an ac–dc circuit shown in
figure 2, we first determine the relation between the average
value of the rectified voltage and displacement magnitude.
From figure 3, the steady-state solution of u(t) is assumed to
take the following form:

u(t) = u0 sin (wt − θ) (4)

with u0 being the constant magnitude. Let T = 2π
w

be
the period of vibration, and ti and tf be two time instants(
tf − ti = T

2

)
such that the displacement u undergoes from the

minimum −u0 to the maximum u0, as illustrated in figure 3.
Assume that V̇p � 0 during the semi-period from ti to tf . It
follows that

∫ tf
ti

V̇p(t) dt = Vc − (−Vc) = 2Vc. Note that

CeV̇c(t) + Vc

R
= 0 for ti < t < t∗ during which the piezo

voltage |Vp| < Vc and I (t) = CeV̇c(t) + Vc

R
for t∗ � t < tf

during which the rectifier conducts. This gives

−
∫ tf

ti

I (t) dt = −T

2

Vc

R

since the average current flowing through the capacitance Ce

is zero, i.e.,
∫ tf
ti

CeV̇c(t) dt = 0 at the steady-state operation.
The integration of (2) from time ti to tf is therefore

−2�u0 + 2CpVc = −T

2

Vc

R
,

or

Vc = w�R

wCpR + π
2

u0. (5)

Note that (5) is identical with that derived by [39, 43, 44].
We next need to find out u0 to determine Vc. There are

two approaches to estimating it in the case of ac–dc power
harvesting system in the recent literature [39, 43, 44]. The
first one models the piezoelectric device as the current source
in parallel with its internal electrode capacitance Cp [5, 9,
11, 39]. It is based on the assumption that the internal current
source of the generator is independent of the external load
impedance. This is equivalent to assuming that the coupling
is very weak and the term �Vp can be dropped from (1). On
the other hand, if the coupling is not so weak, Guyomar et al
[43] and Lefeuvre et al [44] have provided another approach
to estimate the displacement magnitude by assuming that the
external forcing function and the velocity of the mass are
in phase. Recently, Shu and Lien [34] have proposed a new
method for determining u0 without the uncoupled and in-phase
assumptions. They have shown that this new estimation is
more accurate than the other two. We here briefly outline the
steps of derivation of u0 since some of them are required to
derive the efficiency of energy conversion.

Consider the balance of energy. Let (1) be multiplied by
u̇(t) and (2) be multiplied by Vp(t). Integration of the addition
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of these two equations from time ti to tf gives the equation of
the energy balance∫ tf

ti

F (t)u̇(t) dt =
∫ tf

ti

ηmu̇2(t) dt +
∫ tf

ti

Vp(t)I (t) dt, (6)

where ∫ tf

ti

F (t)u̇(t) dt = π

2
F0u0 sin θ,

∫ tf

ti

ηmu̇2(t) dt = π

2
ηmwu2

0,

∫ tf

ti

Vp(t)I (t) dt = π

w

V 2
c

R
.

(7)

Note that (3) and (4) are used to derive (7).
Right now there are two equations (5) and (6) and three

unknowns u0, Vc and θ . We need the third one to solve them.
Differentiating (1) with respect to time t and using (2), we have

M
d

dt
ü(t) + ηm

d

dt
u̇(t)

+

(
K +

�2

Cp

)
d

dt
u(t) − �

Cp

I (t) = d

dt
F (t). (8)

Integrating (8) with respect to time t from ti to tf and using (4)
provides the third equation

(
K − Mw2 +

�2

Cp

)
u0 − π�

2CpwR
Vc = F0 cos θ. (9)

Thus, the unknown variable θ can be eliminated from (7) and
(9). This gives{

ηmwu0 +
2

wR

V 2
c

u0

}2

+

{(
K − Mw2 +

�2

Cp

)
u0 − π�

2CpwR
Vc

}2

= F 2
0 . (10)

As the magnitude of displacement u0 is related with the
rectified voltage Vc by (5), the above equation (10) can be
further simplified to find u0. The result is

u0 = F0{(
ηmw + 2w�2R

(CpwR+ π
2 )2

)2
+

(
K − w2M + w�2R

CpwR+ π
2

)2} 1
2

.

The average harvested power can also be obtained once u0 is
determined since

P = V 2
c

R
= w2�2R(

wCpR + π
2

)2 u2
0. (11)

To summarize, the normalized displacement u0, rectified
voltage V c and average harvested power P can be expressed
by

u = u0
F0
K

= 1{(
2ζm + 2k2

e r

(r�+ π
2 )2

)2
�2 +

(
1 − �2 + �k2

e r

r�+ π
2

)2} 1
2

, (12)

V c = Vc

F0
�

=
(

r�

r� + π
2

)

× k2
e{(

2ζm + 2k2
e r

(r�+ π
2 )2

)2
�2 +

(
1 − �2 + �k2

e r

r�+ π
2

)2} 1
2

, (13)

P = P

F 2
0

wscM

= 1(
r� + π

2

)2

× k2
e�

2r{(
2ζm + 2k2

e r

(r�+ π
2 )2

)2
�2 +

(
1 − �2 + �k2

e r

r�+ π
2

)2} , (14)

where several non-dimensionless variables are introduced by

k2
e = �2

KCp

, ζm = ηm

2
√

KM
, wsc =

√
K

M
,

� = w

wsc
, r = CpwscR.

(15)

Above k2
e is the alternative electromechanical coupling

coefficient1, ζm the mechanical damping ratio, wsc the natural
frequency of the short circuit, � and r the normalized
frequency and electric resistance. Note that there are two
resonances for the system since the piezoelectric structure
exhibits both short circuit and open circuit stiffness. They
are defined by

�sc = 1, �oc =
√

1 + k2
e , (16)

where �sc and �oc are the frequency ratios of the short circuit
and the open circuit, respectively. Note that the shift in
device natural frequency is pronounced if the coupling factor
k2
e is large. Besides, (12), (13) and (14) are validated both

numerically and experimentally, and are also compared well
with other existing estimates in [34].

Since (14) is expressed in terms of non-dimensionless
parameters, it can be used as the power normalization scheme
to compare the performance and efficiency of the devices
relatively. This is particularly useful in the design of a MEMS-
scale power generator since the testing, characterization
and fabrication of micro-scale energy harvesters are not
always available compared to the similar tasks in bulk power
harvesters. Further, in most vibration-based power harvesting
systems the vibration source is due to the periodic excitation
of some base. This gives F0 = MA, where A is the magnitude
of acceleration of the exciting base. Therefore, the harvested
average power per unit mass is described by

P

M
= A2

wsc
P

(
r,�, k2

e , ζm

)
.

This shows that the harvested average power per unit mass
depends on the input vibration characteristics (frequency ratio
� and acceleration A), the normalized electric resistance r,
the short circuit resonance wsc, the mechanical damping ratio
ζm and the overall electromechanical coupling coefficient k2

e

of the system. Thus, the scheme to optimize the power
either by tuning the electric resistance, selecting suitable
operation points, or adjusting the coupling coefficient by
optimal structural design can be guided completely by (14).

3. Conversion efficiency and electrically induced
damping

The efficiency of mechanical to electrical energy conversion is
a fundamental parameter in order to compare energy harvesters
of various sizes and with different vibration inputs. If the

1 The definition of k2
e here is slightly different from that used by [47].
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generator is excited by a harmonic forcing function as in (3),
the energy conversion efficiency is commonly defined as the
time-averaged power ratio by

eff = We

Win
, We = −

∫
V 2

c

R
dt, W in = −

∫
F(t)u̇ dt,

(17)

where −∫ · · · dt denotes the average over time [26, 33]. Above
We is the time-averaged power dissipated across the load
resistor R and Win is the time-averaged power done by the
external force. The balance of energy in (6) gives

Win = Wm + We, Wm = −
∫

ηmu̇2 dt,

where Wm is the time-averaged power dissipated due to the
structural damping. Further, the use of (7) provides an
expression of efficiency of energy conversion under the steady-
state operation. Indeed, it is given by

eff =
π
w

V 2
c

R

π
2 ηmwu2

0 + π
w

V 2
c

R

=
2
(

Vc

u0

)2

ηmw2R + 2
(

Vc

u0

)2

= 2�2R2w2

ηmw2R
(
wCpR + π

2

)2
+ 2�2R2w2

(18)

due to (5). It can also be written in terms of the non-
dimensionless parameters defined in (15) by

eff =
r

k2
e

ζm(
r� + π

2

)2
+ r

k2
e

ζm

. (19)

It is clear from (19) that the conversion efficiency depends on
the normalized resistance r, the applied frequency ratio � and,
in particular, the relative magnitudes of the electromechanical
coupling coefficient k2

e and the mechanical damping ratio ζm.
However, one has to be cautious when applying (19) to the
study of conversion efficiency far below resonance since the
dielectric loss term is not included in the present model. We
refer to [29] which has studied the effect of dielectric loss on
the efficiency of mechanical impact energy transformed into
electric energy.

Williams and Yates [48] have proposed a model to study
the conversion of the kinetic energy to electric power without
specifying the mechanism by which the conversion process
takes place. It is based on the idea that the conversion of energy
from the oscillating mass to electricity is similar to a linear
damper in the conventional mass-spring system. According
to their model, the total damping ratio of the system can be
decomposed as

ζtot = ζm + ζe,

where ζe is the electrically induced damping ratio due to the
removal of mechanical energy from the vibrating system.
Using the efficiency derived in (19), we can determine
the induced damping ζe for an ac–dc piezoelectric power
harvesting system. Indeed, the efficiency of the energy
conversion can be re-defined by

eff = ζe

ζm + ζe

(20)

if the effect of the electric system on the mechanical system
is proportional to the velocity of the oscillating mass. Thus,
from (19) and (20), the induced damping added to the system
can be found to be

ζe = rk2
e(

r� + π
2

)2 . (21)

Note that ζe is small at a small load resistance since only a
slight fraction of energy is removed from the system. It is also
small at a larger electric load since the circuit behaves like an
open-circuit condition, preventing the generated charges from
flowing out of the piezoelectric elements.

Another quantity known as the loss factor is commonly
used for comparing the damping capacity of a vibrating system.
It is defined as the ratio of the energy dissipated per radian and
the total strain energy, and is related to the total damping ratio
by

(loss factor)tot
∼= 2ζtot = 2(ζm + ζe)

for small values of damping [49]. Thus, the loss factor added
to the system due to the energy dissipated across the load
resistor is therefore

(loss factor)e ∼= 2ζe = 2rk2
e(

r� + π
2

)2 . (22)

We now turn to the study of the optimal efficiency
of energy conversion which is important in the design of
an energy harvester. From (19), the normalized load reff

to maximize efficiency for fixed �, k2
e , ζm can be obtained

according to

∂

∂r
eff

(
r,�, k2

e , ζm

)∣∣
�,k2

e ,ζm
= 0.

This gives

reff = π

2�
and effmax =

k2
e

ζm

2π� + k2
e

ζm

. (23)

Besides, it can be shown from (21) that the electrically induced
damping ratio evaluated at reff has also achieved the maximum
value; i.e.,

ζe|r=reff = ζ max
e = k2

e

2�π
. (24)

This in turn gives the maximum value of the electrically
induced loss factor

(loss factor)max
e

∼= 2ζ max
e = k2

e

�π
. (25)

Lesieutre et al [37] have studied the induced electric
damping associated with a piezoelectric energy harvesting
system and derived an expression for the maximum loss factor.
It is

(loss factor)max
e = k2

sys

π
, (Lesieutre et al [37]) (26)

for small values of k2
sys which is defined by

k2
sys = �2

oc − �2
sc

�2
oc

= k2
e

1 + k2
e

.
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Obviously, (25) and (26) are almost identical provided that
the coupling coefficient k2

e is small and the applied frequency
ratio � ≈ 1. Note that Lesieutre et al [37] have derived an
expression of the maximum loss factor by assuming that it
occurs at the condition of the optimal power transfer. Their
argument is in generally true for most common cases except

the situation where the ratio k2
e

ζm
is large. We will discuss it in

the next section.

4. Discussion

The shift in device natural frequency from �sc to �oc is
pronounced if the electromechanical coupling coefficient k2

e is
large, as seen from (16). It occurs often in devices whose the
piezoelectric element’s contribution to the overall structural
stiffness is significant [25]. In addition, this frequency shift
could be large at the piezoelectric micro power generator
operated utilizing the {3-3} mode since the piezoelectric effect
is further enhanced in the longitudinal mode [5, 25]. The
consequence of pronounced shift in natural frequency from
�sc to �oc leads to completely distinct optimization schemes
for maximum power extraction. Shu and Lien [34] have
studied the ac–dc power output for a rectified piezoelectric-
based harvesting device. They have shown that the average
harvested power has two identical peaks evaluated at two
different electric loads at the respective operating points

provided that k2
e

ζm
� 1 while it has only one peak otherwise.

Thus, the study of relation among the conversion efficiency,
electrically induced damping and power transfer has to be
classified according to the relative magnitudes of the coupling
coefficient and the mechanical damping ratio.

4.1. Weak electromechanical coupling

In the following, we take k2
e = 0.16 and ζm = 0.03 which are

typical parameters for piezoelectric power generators designed
as the cantilever-beam type and operated in the {3-1} mode.

The conversion efficiency, normalized displacement and
harvested power against the frequency ratio are plotted in
figure 4(a)–(c) for various normalized resistances. In addition,
they are also plotted versus normalized resistance, with varying
frequency ratios in figures 4(d)–(f ). Consider figures 4(a)
and (d) first. The conversion efficiency is small and around
18% for very small load at r = 0.1, and is increasing as the
resistance becomes large. According to (23), it achieves its
maximum value

effmax ≈
k2
e

ζm

2π + k2
e

ζm

= 46% (27)

at reff = π
2�

= 1.57 for � ≈ 1. The conversion efficiency then
decreases as the load exceeds reff . Besides, the overlapping
of curves in figure 4(d) shows that the efficiency of energy
conversion is not sensitive with respect to the frequency ratio
in the case of the weak electromechanical coupling.

We next consider figures 4(b) and (e). Each curve of
displacement has a peak around the resonance whose value
depends on the resistance. From (21) the electrically induced
damping ζe is small at both small and large electric loads

while it attains its maximum value at reff , which in turn also
gives the maximum conversion efficiency of the generator.
As a result, the peak of displacement descends until to the
point which corresponds to the maximum induced damping
as well as efficiency. When r moves past reff , the induced
damping decreases, resulting in the elevation of the peak
of displacement. Figure 4(e) illustrates the dependence of
displacement on resistance at the different operating points.
The displacement becomes monotonically decreasing if the
device is excited in the vicinity of its short circuit resonance
while it becomes monotonically increasing at the open circuit
resonance. If the frequency is operated around the middle point
of �sc and �oc, the curve has a local minimum at the turning
point close to reff where the induced damping is maximized.

Note that our theoretical prediction on the behaviour of
displacement against frequency ratio for various electric loads,
as illustrated in figure 4(b), qualitatively agrees well with the
experimental results observed by Lesieutre et al (see figure 6
in [37]).

Each curve of harvested power has a maximum around
the resonance whose value depends on the resistance, as
demonstrated in figure 4(c). In contrast with displacement,
the peak of power and the electrically induced damping ζe

simultaneously ascend as the electric load increases. It attains
the maximum value at reff corresponding to the local minimum
of displacement as well as the maximum of efficiency. After
that, the peak of power descends when the load exceeds reff .
Finally, the optimal load to maximize the harvested power is
illustrated in figure 4(f ) with varying frequency ratios. The
peaks of power are slightly higher for frequencies operated
around �sc than those operated around �oc. However, unlike
the conversion efficiency in figure 4(d) which is insensitive to
the frequency ratio, a small derivation from the optimal load
results in a more significant drop in power operated around
�sc than that operated around �oc.

4.2. Strong electromechanical coupling

We use k2
e = 1 and ζm = 0.025 here to demonstrate the

effect of strong coupling on the relation among the efficiency,
damping and the power transfer.

The conversion efficiency, normalized displacement and
power versus frequency ratio are plotted, with varying load
resistances in figures 5(a)–(c). Besides, they are also plotted
against normalized resistance in figures 5(d)–(f ) for a variety
of frequency ratios. Unlike the case of weak coupling, the
average harvested power has two identical optimal peaks
evaluated at different resistances and frequencies; i.e.,

max
r,�

P̄ (r,�) = P̄
(
r

opt
1 ,�

opt
1

) = P̄
(
r

opt
2 ,�

opt
2

)
, (28)

where (
r

opt
1 ,�

opt
1

) = (0.07, 1.02),(
r

opt
2 ,�

opt
2

) = (18.27, 1.39).
(29)

Obviously, �
opt
1 ≈ �sc = 1,�

opt
2 ≈ �oc = 1.41 as illustrated

in figure 5(c), and r
opt
1 � 1, r

opt
2 � 1 as demonstrated in

figure 5(f ). In contrast with figure 4(c), the peak of harvested
power decreases while the electrically induced damping ζe

increases as the load exceeds r
opt
1 . The envelope of these peaks

2434



Efficiency of energy conversion for a piezoelectric power harvesting system

0.9 0.95 1 1.05 1.1 1.15

Frequency Ratio

0.5

0.4

0.3

0.2

0.1

0

r:0.25
r :0.5

r :20

r:0.1

r :5
r :10

r: /2π

C
o

n
ve

rs
io

n
E

ff
ic

ie
n

c y

0.5

0.4

0.3

0.2

0.1

0
0 4 8 12 16 20

Normalized Resistance

Ω :1.024
Ω :1.032
Ω :1.039

Ω :1.062

Ω :1.016

Ω :1.047
Ω :1.055

C
o

n
ve

rs
io

n
E

ff
ic

ie
n

cy

(a) (d )

0.9 0.95 1 1.05 1.1 1.15

Frequency Ratio

15

12

9

6

3

N
o

rm
a

liz
e

d
D

is
p

la
ce

m
e

n
t

r :0.25
r :0.5

r :20

r:0.1

r :5
r :10

r: /2π
Ω :1.024
Ω :1.032
Ω :1.039

Ω :1.062

Ω :1.016

Ω :1.047
Ω :1.055

0 4 8 12 16 20

Normalized Resistance

15

13.5

12

10.5

9

7.5

N
o

rm
a

liz
e

d
D

is
p

la
ce

m
e

n
t

(b) (e)

0.9 0.95 1 1.05 1.1 1.15

Frequency Ratio

2

1.75

1.5

1.25

1

0.75

0.5

0.25

0

N
o

rm
a

liz
e

d
P

o
w

e
r

r :0.25
r :0.5

r :20

r:0.1

r :5
r :10

r: /2π
2

1.75

1.5

1.25

1

0.75

0.5

0.25

0

N
o

rm
a

liz
e

d
P

o
w

e
r

0 4 8 12 16 20

Normalized Resistance

Ω :1.024
Ω :1.032
Ω :1.039

Ω :1.062

Ω :1.016

Ω :1.047
Ω :1.055

(c) ( f )

Figure 4. Weak electromechanical coupling demonstrated using k2
e = 0.16 and ζm = 0.03: (a), (b) and (c) are the conversion efficiency,

displacement and power against frequency ratio for various resistances, while (d), (e) and (f ) are those against resistance with varying
frequency ratios.

has a local minimum which is closely related to the maximum
induced damping ζe. When the load further increases, the
peak of power then rises to the second maximum, closely
corresponding to �oc as described by (29). Figure 5(f ) shows
the dependence of the harvested power versus the normalized
resistance for a variety of frequency ratios. Switching between
these two peaks, corresponding to r

opt
1 and r

opt
2 , is attained by

varying the applied frequency from �sc to �oc. It indicates
the importance of selecting the correct operating point in the
case of strong coupling.

The dependence of conversion efficiency on the frequency
as well as on the load resistance in the strong coupling case
is qualitatively similar to the case of weak coupling. But
the magnitude of conversion efficiency is much higher here
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Figure 5. Strong electromechanical coupling demonstrated using k2
e = 1 and ζm = 0.025: (a), (b) and (c) are the conversion efficiency,

displacement and power against frequency ratio for various resistances, while (d), (e) and (f ) are those against resistance with varying
frequency ratios.

because of the relatively large ratio k2
e

ζm
. Our current example

points out effmax ≈ 90% which is much larger than that (46%
in (27)) in the weak coupling case. Besides, the condition
to maximize the conversion efficiency does not lead to the
maximum power transfer in the strong electromechanical
coupling; instead, it is closely related to the local minimum
of the power envelope. The conversion efficiency takes on the

smaller value around 50% at the optimal power generation, as
shown in figures 5(d) and (f ).

Finally, we consider figures 5(b) and (e). The effect of the
induced electric damping is much pronounced in the strong
coupling case than that in the case of weak coupling since,
from (21), ζe is proportional to k2

e . As a result, at the maximum
induced damping, the envelope of the peaks of displacement
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has a local minimum whose value is much smaller than that
of the first peak. Figure 5(b) demonstrates that the peak of
displacement decreases approximately from 10 to 2 at the
maximum induced damping, while the weak coupling case
shows a moderate descent in figure 4(b). Unlike the power, the
second maximum of these peaks due to the reduction of ζe at
large r is smaller than the first one since the system has more
damping at the open-circuit condition. Finally, in contrast
with the results obtained in the weak coupling case, the two
pronounced peaks of displacement evaluated around �sc and
�oc correspond to the maximum extraction of power rather
than the local minimum point of the envelope of displacement
by comparing figures 5(b) and (c) with figures 4(b) and (c).

5. Conclusion

This paper establishes the relation among the energy
conversion efficiency, electrically induced damping and power
transfer for a rectified piezoelectric power harvester. An
analytical model is proposed, and an exact formula for
the conversion efficiency is derived under the steady-state
operation. It is shown that the efficiency depends on
the normalized resistance r, the frequency ratio � and, in
particular, the relative magnitudes of the electromechanical
coupling coefficient k2

e and the mechanical damping ratio ζm.
In general, high energy conversion efficiency can be achieved

with large k2
e

ζm
; the improvement of the coupling coefficient

k2
e for micromachined piezoelectric membrane harvesters has

been recently investigated by Cho et al [35, 36].
The induced damping added to the system due to the

removal of mechanical energy from the vibrating structure
is obtained based on the derived formula of conversion
efficiency. It is shown that the maximum conversion efficiency
corresponds to the maximum induced electric damping as
well as the optimal power transfer in the case of weak
electromechanical coupling. This result is consistent with
that observed by Lesieutre et al [37].

However, unlike [37], a new finding shows that the optimal
electric load maximizing the conversion efficiency and induced
electric damping is very different from that maximizing
the harvested power in strongly coupled electromechanical
systems. This gives completely distinct optimization schemes,
since the harvested power has two identical peaks evaluated at
two different electric loads at the respective operating points,

provided that k2
e

ζm
� 1, while it has only one peak otherwise.
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