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11.1 Basic Concepts

Partial differential equation <= Ordinary differential equation

order of differential equation
linear <= nonlinear
homogeneous <= nonromogeneous

For examples:

5 = c 9 one-dimensional wave equation

% — 02% one-dimensional heat equation

gz;é + 22;; =0 two-dimensional Laplace equation
gz;é + 22;; = f(z,y) two-dimensional Poisson’s equation

Z,

®

ot
u(z,y) = x° — y*, e®cosy and In(x? + y) all satisfy the two-dimensional

Laplace equation
= “boundary condition” makes the solution unique
(or “initial condition” when t is one of the variable).
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Theorem|: Superposition of solutions

If u; and us are any solutions of a ltnear and homogeneous partial differ-
ential equation in R

= u = Ccju] + coug, where ¢; and ¢y are constant, is also solution of the
equation in R o
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11.2 Modeling: Vibrating String. Wave Equation

Consider a vibrating, elastic string with length L and deformation u(x,t).

Assumptions:

homogeneous string (i.e. constant density)

perfectly elastic and cannot sustain bending

neglect gravitation force (i.e. tension > gravitational force)
small deformation (i.e. du/dx is small)

A

u is in a plane only
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Since du/dx (slope) is small
=> no horizontal motion
= constant horizontal tension

Ticosa=Thcos =T

in vertical direction:

o0%u
Thsin 8 —Tisina = pAx——| =T
(gsmﬁ 1sina = p x@ﬁ)
TrsinB Tisina  pAx 0%u
TocosB Ticosa T Ot

Az 0?
étanﬁ—tana:pTx- (‘%7;
ou ou
bl Ap — [ 22
N (32), 2 (), _p Pu
Az T Ot?
Ax — 0
O*u 10%u , T
éwzgw Wherec:; 0
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11.3 Separation of Variables. Use of Fourier Series

One-dimensional wave equation:

O*u  ,0%u

o2~ Cor (1)

Boundary conditions:

u(0,t) =0

u(L,t) =0

Initial conditions:

u(z,0) = f(2) (@)
n e (5)

Method of separation of variables (product method):

u(x,t) = F(x)G(t)

O*u d*G .
—— =F—=FG
Ot? dt?
=
0*u  d*F
= G=F"G
or?  dx?
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(1) = FG=cA3F'G

G P
~ _ - L
e £

function of ¢ function of x
where k 1s constant to be determined.
F'"—kF=0 ——(6)

: .o
G-kG=0 — ()

F'—kF=0 F(0)=F(L)=0

olf k=0 = F(x)=azx+Db

F0)=b=0
{F(L)aLO
=a=b=0

= Fx)=0 = u(z,t)=0 X

olfk=p>>0 = F(z)= Ae!' + Be "

F0)=A+B=0
F(L) = Ae't + Be "t =0

= A=B=0

= F(z)=0 =u(z,t)=0 X
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Sok=—-p°<0 = F(x)= Acospr + Bsinpx

F0O)=A=0

F(L)= BsinpL =0
= pL =nm ip:n%, n=123...
éF(x)EFn(x):sinn%az, n=1273...

=G+ XNG=0, N\ =-—

G(t) = G,(t) = By cos A\t + B sin A\t

oo un(xn t) = Fn(x)Gn(t)

n
= (B, cos Ayt + B, sin \,t) sin %az (n=1,2,3...)
So far, u,(x,t) satisfies the differential equation (1), and the boundary con-
ditions (2) and (3).
u,(x,t) is called eigenfunction or characteristic function.
A 18 called eigenvalue or characteristic value.
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A single solution w,(z,t) does not satisfy initial condition.
Since the differential equation (1) is linear and homogeneous, we therefore
assume the solution of (1) is

u(x,t) =

M8

Up(x, 1)
1

(B, cos Ayt + B, sin A t)sin%.r

ﬁMg

1

Initial conditions:

u,0) = @ (4)
5 =g (5)

nm

(4) = u(z,0) = Z B, sin TE= f(z) (Fourier sine series of f(x))

2
= Bn:E/OLf(az)sinnzxdaz n=1273...
5) = 2 = S (B cos At)psin T
— oS sin
Otli=o  n=1 = L
= § B\, sin ? = g(x) (Fourier sine series of g(x))
n=1
By 2 /L mmcd
= Bod=7 g(x)sin x
o B = 2 [P () sin g 1,2,3
= x) sin ——dx n = .
n )\nL 0 g L y < o

10
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B Discussion of eigenfunctions and eigenvalues:

(1) The eigenfunction

up(z,t) = (B, cos A\t + B sin \,t) sin n%az

A cn
represents a harmonic motion having frequency (cycles/unit time) 2—” =57
T
This motion is called the normal mode.

(2) The frequency (eigenvalue)

cn 5 T
wy, =, C =—
2L 0

where T" = tension, p = density

= increase tension or reduce density will increase the frequency.

11
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M Discussion of the solution:

u(x,t) = i% Up(x, 1)

= :%{(B cos At + B, sin A,t) sin n%x
Ay = %
B, = %/OL f(x)sin ?dm u(z,0) = f(x)
B! )\iL /OL g(x)sin ?dm % T g(x)

Consider the special case in which the string starts from rest, i.e. g(x) = 0,
and B = 0, then

u(x,t) = Z B, coschﬁt sinn%:c
1§ { mr( £+ s nw( —I—t)}
= — —(x — in —
2.5 SN I T C S I X C
I = 1
=5 E B, sin%(m—ct) +5 nle sm%(xcht)
Fourier sine series of f*(z—ct) Fourier sine series of f*(x+ct)

= @ ct) + £+ ct)

where f*(e) is an odd periodic function, and f(e) = f*(e) for e € [0,2L)].

12
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1
Physical meaning of u(zx,t) = é[f*(x —ct)+ ff(x +ct)] :

13
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Fz
g(x) =0
2k O<z < L
il o< =
LY 2
flz) = . .
f(L — ), 5 <7< L
B =0
2 L nmwx
B, =—= /" f(x)sin dx
L
8k o [ (=1)"1  (2n—1)m (2n — 1)wc
2ol en-12 L L

14
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11.4 Heat Equation

Consider the heat conduction along a heat-conducting homogeneous rod with
temperature distribution u(x,t).

Assumptions:

1. homogeneous rod with uniform cross section A and constant density p,
specific heat ¢, thermal conductivity &

2. insulated laterally so heat flows only in x-direction only
3. temperature is constant at all points of a cross section

4. rate of heat conduction is proportional to —0u/dx

We are going to derive the differential equation governing the temperature
distribution u(x,t) along the rod by conservation of energy.

The amount of internal energy within Az segment is:
Qx,t) = /;JFM opAu(z,t)dx

where o = specific heat (amount of energy required to raise the temperature
of a unit mass by one unit).

15
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e Rate of change of internal energy within Az

0 r+Ax ou , ~
= a—? :/er UpAa(az,t)daz

e Rate at which heat flows into Az

e Rate at which heat flows out of Ax

ou
= —kA—(x+ Ax,t
9 )
.*. conservation of energy requires that

a_Q . /:1:+A3: ou

_ A
ot op

A E(az, t)dz

= UpA(Zu(ﬁ ) Az (r <& <z + Az) |[by mean value theorem]

ou ou
= —ﬁAax(az t) + HAax(az + Az, t)
ou ou
= O'pA (f t)Ax = KA ax(aH—Aa: t) —%(az t)
ou ou
u(g ) p %(erAx,t) — %(ac,t) i
t op Ax
As Az — 0
ou ,0%u k

- - 2:_
at(m t)—c 52 5(x,t) =0 c -

16
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Initial condition:
w(z,0) = flz) (0<z<L)
Boundary condition:

w(0,8) =0, w(L,t)=0  (t>0)

Note:
For 3 — D heat equation (see §9.8):

0%u N 0%u N 0%u
oxr?  0OJy> 022

ou
E—C

17
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B Fourier series solution of the heat equation:

ou  ,0%u
a—c@:() for t>0, 0<x<L

u(0,t) =0 for t>0, =0 } )

u(L,t)=0 for t>0, z=1L

u(x,0)= f(z) for t=0, 0<az<L ——(3)
By method of separation of variables:

u(x,t) = F(x) - G(t)

(1) = FG = 2F"G

PP =G =G = Gt)=Ce Pl x
G " _
:CQG—F— 0 = G=0 = G(t)=C X
_p2
F'+p’F =0 — (6)
= :
G+cp*G=0 — (7

18
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F(x):

(6) = F(x) = Acospx + Bsinpx

(2) = F(0)G(t)=0, F(L)G(t)=0
Since G(t) #0 = F(0)=F(L)=0

e A=0 BsinpL=0

Since B#0 = sinpL =0, ie. pL = nm,

nnx

L

F,(x) = sinpx = sin

n=1,2,3...

n=1,2,3...

19
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G(t):

B)=G+XNG=0 N\ =—

= |Gu(t) = Bue ™| n=1,2,3...

. cigenfunction u,(x,t)

nTr  _\2,
n

up(z,t) = Fp(x) - Gp(t) = By, sinT ce

with corresponding eigenvalue A,

W@, t) = 3 up(z,t) = 3 By sin ket
X . N . : :
= u(z,0) = f(x) = > B, sin—— (Fourier sine series of f(x))
n=1
B 2 (L : d
= ”_Z/O f(z)sinnmxdr o

20
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Note:

= . NTET 2
u(z,t) = Y B,sin—— - e !
n=1 L

= the temperature alway decays.

21
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B Physical meanings of the boundary conditions

u(0,t) = u(L,t) = constant

= Temperatures at x = 0 and L remain constant, but heat can still transfer
across * = 0 and L

ou ou
%(O,t) = %(Iﬁt) =0

= No heat transfer across x = 0 and L, i.e. these two ends are insulated,
but the temperature at these two boundary may vary.

(See Page 654, Problem Set 11.5, Problem 13)

22
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11.5 Laplace Equation in a Rectangular Domain

Consider the steady-state two-dimensional heat flow:

ou  ,(0%*u Ou .o
5 = ¢ (8:132 + 3@/2) =0 (° steady state)

0*u  O0*u

= Vi = 972 + 502 0 <« two-dimensional Laplace equation
Z Y

e Boundary value problem (bvp) :

If the boundary conditions are given as
u given = Dirichlet problem

du

5 given = Neumann problem
n

ou

u given on some boundary , I given on the rest boundary
n

= mixed problem

23



Applied Mathematics — Partial Differential Equation

Wu-ting Tsai

Fx:

Method of separation of variables :

u(z,y) = F(z)G(y)

d*F d*G
hadiell J il
= deG—F 0 0
1 d*°F 1 d°G
===
Fdx? G dy?
d*F
—— + kF = 1
oot 0 (1)
=
d*G
— — kG =0 2
- 2)

24
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Iflk <0f:

(1) = F(z) = AeV¥ + Be vk
Boundary conditions: u(0,y) =0 and u(a,y) =0
= F(0)=0, F(a)=0

N A+B=0
AeVhe 4 BemVha —

= A(e‘/E“ — 6_\/%) =0

o A=0, B=0 X

If|lk>0]|:

(1) = F(x)= AcosVkx + BsinVkx
Boundary conditions:

F0)=0 =A=0

Fla)=0 = F(a)=BsinvVka=0 = k:%ﬁ
= |k —("—”)2
" a

and | F},(x) = sin —=x

25
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d*G
2 :>—— =
() y k,G =0

= G(y) = G,(y) = A, eV 4 B e Viny
Boundary condition:
u(z,0)=0 = G(0)=

= A, +B,=0

= Goly) = A,(eViny — e~ VEw) =24,

2
So |Guly) = AXsinh VE,y A =2A,
o e Un<$a y) — Fn(x) ) Gn(y>
= A’ sin nre sinh nmy
a a
= lu(z,y) = § up(x,y) = Z Al sin L sinh Y
n=1 a a
Since u(x,b) = f(x) :
00 b
u(x,b) = Y A sinh B2 gin T = f(x)
n=1 a a
=b,
b 2
=b,=A smhE —/O Sin@d.r
. 7T
e 1A asmh mb /0 )sin a dr| o

26
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11.6 Two-Dimensional Wave Equation. Use of Double Fourier
Series

Consider the motion of a stretched elastic membrane, such as a drumhead.

= T'wo dimensional wave equation:

0
ot?

O*u  O*u 5
+ ),
ox?  Oy?

:CZ(

u(x,y,t) = vertical deformation
T = tension force per unit length
p = mass of the membrane per unit area

27
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Consider the problem of a vibrating rectangular membrane:

@_ 5 82u+82u
a2~ \ox2 oy? )’

0<zx<a

— — Y

0<y<b

Boundary conditions:

u(x,y,t) =0 on the boundary for ¢ > 0

(2)

Initial condition:

u(m,y,()) - f(xay) - (3)
g0 =glry) )

By method of separation of variables we first determine the solutions of (1)
that satisfy the boundary condition (2) :

u(z,y,t) = F(z,y) - G(t)

(1) = FG = *(F.,G + F,,G) =+ (PFQG)
G 1 o, -
= 20~ f<Fm + Fy) = —v (cannot be zero or posititice)
G+XNG=0 (A=) — (6)
=
Fo,+F,+v*'F=0 —(7)

28
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G+XNG=0 — (6)
Fo+ Fy+1’F=0 ——(7)

(7) is called two-dimensional Helmholtz equation, if v = 0 it become Laplace
equation.

29
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e Solution of Helmholtz equation (7) F,, + F,, + v*F =0

Again, using method of separation of variables :

F(z,y) = H(z) Qy)

PH 8
(M) = —5Q+ de? +PHQ =0 + (HQ)

1 d*H 1 d
= Fo = 0 ( dycg +17Q) = —k* (must be negative)

d*H

—— +kK’H=0
dx? *
=
d2Q
a + (- =0 (VP -k=p)

H(x) = Acoskx + Bsinkx

Q(y) = Ccospy + Dsinpy

Since u(z,y,t) =0 onz =0, z=a, y=0, y=2>,

HO0)=0 =A=0
H(a)=0 = sinka=0 ik:m,mzl,Q,S...
a
“100)=0 =C=0
. nm
Qb)=0 =sinpb=0 :>p:T,n:1,2,3...

30
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. H(z) = H,(z) =sin m;m:
- Qy) = Quly) = Sinn—zy

= F(x7y> - an<$7y) - Hm<$> Qn(y>

LGRS LU (m,n=1,2,3...)
a b

= sin

e Solution of (6) G + A\’G =0

= A=cV12=c/p>+ k2= CJ (%)2 + (%)2

m?  n?
:>>\:>\mn:C7T y—kﬁ

(6) = G+X,G=0

= G(t) = Gn(t) = B cos Ayt + By sin Ayt

0.0 umn(xa Y, t) — an(x7 y) ) Gmn(t)

mmx n
= ( Bpn co8 At + B sin A\t ) - sin T . NTY

« SIN ——

a b

Umn (2, Y, t) is the eigenfunction with the corresponding eigenvalue A,

31



Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Since every u,,(x,y, t) satisfies (1) and (2), so is the summation:

’LL(.f,:g,t) = § i::lumn<$7y7t)

i% § ( Binn €08 At + B, sin Ayt ) - sin mne. sin %
m: : (I
Now apply the initial conditions (3) and (4):
00 00 . mTx . nm
(3) = ule.y,0)= X ¥ Byysin© “sin Y = flay) ()
ou . mmx . nw
(4) = Z(2,9,0) = X % Bl sin e sin TV — g(z,y) — (9)
ot m=1n=1 a b

(8) and (9) are called double Fourier series of f(x,y) and g(x,y).

We can generalized the Euler formula in one dimension to two dimension:

/

m'rxr . n
/0/0 8) sin " gin 7Tyda:dy

b
= /0 /0 mzl nzl B sin m;ra; - sin m’;m; - sin % - sin n’;ry dzdy
= /0 /0 x,y)sin m’;r:c - 8in n/;;ydxdy
= mzl nzl B /0 (Sin m;r.r sin mZm:)dx X Ob(sin % - sin /;Tydy)}

- m/rmx | n'my
_/0/0 (x,y)sin s dxdy

32
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« . mmx | mnx
/0 sin - sin dx
a a
1 T LML
= 5/0 [cos(m —m )7 — cos(m +m )T]dac
=0
—/O cos(m — m)mjdaﬁ
a
O if m#EM
e if m=m

Similarly,

/b. nry . nwydy{o if n+#n

sin —= - sin ,
%b if n=n

0 b b

b a . .
= B (g) (5) = /0 /Ob f(x)sin T sin n—;:ydxdy

a

o o = /0/0 .rysinm;m-sin%dxdy (m,n=1,2,3...

Similarly, from (9) we have:

* —
an T

4 a rb . mmx . nmy
Y /O/Og(a:,y)sm - -sdexdy 0

33
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11.7 Heat Equation: Use of Fourier Integral

Consider the heat equation along a heat conducting rod extending to +oo:

u _ a0 (—00 < & < 400)
ot~ o meEsT
u(zx,0) = f(x) (—o0 < x < +00)

Again by method of separation of variables:
u(x,t) = F(x) - G(t)

F" + p?F =0 = F(x) = Acospz + Bsinpx
G+ p*G =0 = G(t) = e <P
w(z, t:p) = F(z) - G(t) = (Acospz + Bsinpz)e 7"

Note that there are no boundary conditions to determine p
This means any values of p is fine.

'« We therefor write

/0 u(x,t;p)d

— /0 [A cos pr + Bsin px]e‘c%ztdp

34
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Recall the Fourier integral for f(x) ( /_Ozo |f(z)|dz < oo)
= /OOO [A(w) coswz + B(w) sinwzx|dw
Alw) = %/_Ozo f(x) coswzdz
B(w) =1 [ f(&)sinwidi
Now apply the initial conditions:
u(x,0) = /OOO[A cos pr + Bsinpzldp = f(x)
A(p) = %/_O; f(x) cos prdz

B(p) = %/_O; f(z)sin pxrdz

Cou(z,t) = %/OOO [ ( /_O; f(x) cos pTdT ) cos px

+ ( /_Ozo £(% ) sinpida )sinpz ] e 7 tdp

— _/OOO[/OO f(Z)(cos pZ cos pxr + sin p& sin px)dT | e
T — 00

1
:_/O / f(z)cosp(x — x)dT | e “Vldp

= —/ f(x /0 cosp(T — x) - _Cp2tdp]d

35
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d
Let pEi d i

NG
/Oocosp(iz—az) ¢ thdp

0
2 ds (T —x)

= /Oocosc\/_(ac—x) e ol b VG
= (/0 cos 2bs- e~ ds)

(e

t

<~

%%\Hx\

_(i—;)Q
= e c4t
2c\/t
IS Vo @)
0.. 7t — 0 4c2t d
u(x,t) 7T/_OO f(x) 26\/%6 T

(T—z)

1 00 . _ N
- 2cy/Tt /—oo f(@)-e i dz

36
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Lz
If f(x) =

(i—a)?

4c2t df

u(x,t) = -

U /1 o
2c/mt /-1

If Uy=100°C, ¢*=1cm?*/sec.

37
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11.8 Heat Equation: Use of Fourier Transform

ou 0%
5 = C o (—o0 < x < ) (1)
u(x,0) = f(x) (—oo < x < 00) (2)

Recall that:
iw) = Flulz)} = % [ u(z)evrdz
Flu'(z)} = iwF{u(z)}

Flu"(x)} = —w*F{u(z)}

Take Fourier Transform of (1),

ou 9 aQU o 2,2
Also,
ou A N A B )
75} = Vo Lo = g e ] = )

38
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0 29
= 8t.7:{u}— cw F(u)

i.e. di(w,?) = —cwu(w,t) —— (3)

ot

* we have transformed the partial differential equation (1) into an ordinary
differential equation (3) !!

Similarly, taking Fourier transform of the initial condition (2), gives:

i(w, 0) = f(w) (4)

39
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Take inverse Fourier transform of u(w, t):
u(w) = \/% /_Ozo u(z)e " dx

u(x) = \/% /_Ozo w(w)e™ " dw

_ 2 ;
cw t . ezwxdw

. P 2,2 .
m)e ““xda:]e cwt.ezwxdw

:%7/—030[727/—0;“

—zw e c2w2td,w
L@ dz |
/ f / —zw T—x) 6—02w2td,w } di

— %/_O; f(z) [/OOO cosw(T —x)-e ° "0t | dx
N

f— (& 4c2t

2c4/t

Same as using Fourier integral ! g

40
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11.9 Heat Equation. Use of Fourier Cosine and Sine Trans-
forms

Consider the heat equation along a semi-infinite rod:

ou 0%
- = - <
5~ € 5.2 (0 <x < o0)

Recall Fourier cosine and sine transforms of derivatives :
FALY =wFA{f} — 2(0)

FAf'} = —wFAS}

FAL"} = —w?F{f} = 2£(0)

FAL"} = —wF{f} +\2wf(0)

where  FAf} = fo(w \/> /0 ) coswzxdx
FAS} = folw \/7/0 ) sinwzxdz

=
If the boundary condition at x = 0 is :

u(0.t) = g(t) we use Fourier sine transform
ou
0x

—(0,t) = g(t) we use Fourier cosine transform

41
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Fz
0 0
8—?_68—;2 0<zx< o0 (1)
u(z,0) = f(x) 0<2x<o0 (2)
u(0,t) =0 t>0 —(3)

Take Fourier sine transform of (1) :

Ou)  Ots 5 [0%u] 5 . JQ
= F, {875} el ]:3{8902} = —c'wFs{u} + qu((),t)

= 1,(w,t) = C(w)e "
Take Fourier sine transform of the initial condition (2): u(x,0) = f(x)

= G,(w, 0) = fo(w) = C(w)

~ A _ 2,2
oo Us(w,t) = fs(w s . /0 )sinwadz| e "
Take inverse Fourier sine Transform:
02w2t : ~
oo u(x,t) —/0 /0 )sinwz - e -sinwx drdw o

42
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11.10 Wave Equation. Use of Fourier Transform

Consider wave equation along an infinitely long string :

O*u  ,0%u

52 = C 92 (—o0 < x < ) (1)
u(z,0) = f(z) (2)

u(z,0) =0 —— (3)

u—0, u, —0  as|z| — oo (4)

Take Fourier transform of (1):

ou o4 d*u 5
f{@} 8t2f{u} c? {8962} —cw* F{u}

= Uy +ccw*a =0, u=1u(w,t)
o o U(w,t) = A(w) cos cwt + B(w) sin cwt
Take Fourier transform of the initial conditions (2) and (3):
i(w, 0) = f(w) = A(w)

ut(w,0) =0 = cwB(w)

= u(w,t) = f(w)coscwt

]E(w) {eicwt n e—icwt]

DO | — S,
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F{f(x —a)} T —a)e "dr r—a=p, dvr=dp
(e —ah =[5 11

1 o —iw(p+a
= \/727/_00 f(ple ot )dp

1

T

ie. F{f(x —a)} = e ™ F{f(x)}
o FHFL = aly = F e M F @)} = S - a)
i.e. the inverse Fourier Transform of e "W F {f(x)}is f(x — a)

Similarly, the inverse Fourier transform of et F{f(z)} is f(x + a)

f(’U)) [eicwt n 6—icwt}

O | —

Since u(w,t) =

Sl ) = %[ Flo—ct) + flz+ct)] o
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