APPLIED MATHEMATICS

Part 5:

Partial Differential Equations

Wu-ting Tsai

Contents

11	Part	ial Differential Equations	2
	11.1	Basic Concepts	3
	11.2	Modeling: Vibrating String. Wave Equation	5
	11.3	Separation of Variables. Use of Fourier Series	7
	11.4	Heat Equation	15
	11.5	Laplace Equation in a Rectangular Domain	23
	11.6	Two-Dimensional Wave Equation. Use of Double Fourier Series	27
	11.7	Heat Equation: Use of Fourier Integral	34
	11.8	Heat Equation: Use of Fourier Transform	38
	11.9	Heat Equation. Use of Fourier Cosine and Sine Transforms .	41
	11.10	Wave Equation. Use of Fourier Transform	43

Chapter 11

Partial Differential Equations

11.1 Basic Concepts

Partial differential equation \iff Ordinary differential equation

order of differential equation linear ←⇒ nonlinear homogeneous ←⇒ nonromogeneous

For examples:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial r^2}$$
 one-dimensional wave equation

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 one-dimensional heat equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 two-dimensional Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$
 two-dimensional Poisson's equation

Note:

 $u(x,y) = x^2 - y^2$, $e^x \cos y$ and $\ln(x^2 + y)$ all satisfy the two-dimensional Laplace equation

 \Rightarrow "boundary condition" makes the solution unique (or "initial condition" when t is one of the variable).

Theorem: Superposition of solutions

If u_1 and u_2 are any solutions of a linear and homogeneous partial differential equation in \mathcal{R}

 $\Rightarrow u = c_1u_1 + c_2u_2$, where c_1 and c_2 are constant, is also solution of the equation in \mathcal{R}

11.2 Modeling: Vibrating String. Wave Equation

Consider a vibrating, elastic string with length L and deformation u(x,t).

Assumptions:

- 1. homogeneous string (i.e. constant density)
- 2. perfectly elastic and cannot sustain bending
- 3. neglect gravitation force (i.e. tension \gg gravitational force)
- 4. small deformation (i.e. du/dx is small)
- 5. u is in a plane only

Since du/dx (slope) is small

- \Rightarrow no horizontal motion
- \Rightarrow constant horizontal tension

$$T_1 \cos \alpha = T_2 \cos \beta = T$$

in vertical direction:

$$\left(T_2 \sin \beta - T_1 \sin \alpha = \rho \Delta x \frac{\partial^2 u}{\partial t^2}\right) \div T$$

$$\Rightarrow \frac{T_2 \sin \beta}{T_2 \cos \beta} - \frac{T_1 \sin \alpha}{T_1 \cos \alpha} = \frac{\rho \Delta x}{T} \cdot \frac{\partial^2 u}{\partial t^2}$$

$$\Rightarrow \tan \beta - \tan \alpha = \frac{\rho \Delta x}{T} \cdot \frac{\partial^2 u}{\partial t^2}$$

$$\Rightarrow \frac{\left[\left(\frac{\partial u}{\partial x}\right)_x + \Delta x - \left(\frac{\partial u}{\partial x}\right)_x\right]}{\Delta x} = \frac{\rho}{T} \cdot \frac{\partial^2 u}{\partial t^2}$$

$$\Delta x \to 0$$

$$\Rightarrow \boxed{\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}} \quad \text{where } c^2 \equiv \frac{T}{\rho} \quad \Box$$

11.3 Separation of Variables. Use of Fourier Series

One-dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad ---- (1)$$

Boundary conditions:

$$u(0,t) = 0 \quad ---- (2)$$

$$u(L,t) = 0 \quad ---- (3)$$

Initial conditions:

$$u(x,0) = f(x) \quad ----- (4)$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = g(x)$$
 (5)

Method of separation of variables (product method):

$$u(x,t) = F(x)G(t)$$

$$\Rightarrow \begin{cases} \frac{\partial^2 u}{\partial t^2} = F \frac{d^2 G}{dt^2} \equiv F \ddot{G} \\ \frac{\partial^2 u}{\partial x^2} = \frac{d^2 F}{dx^2} G \equiv F'' G \end{cases}$$

$$(1) \Rightarrow F\ddot{G} = c^2 F''G$$

$$\Rightarrow \frac{\ddot{G}}{\underline{c}^2 G} = \underbrace{\frac{F''}{F}}_{\text{function of } t \text{ function of } x} = k$$

where k is constant to be determined.

$$\Rightarrow \begin{cases} F'' - kF = 0 & ----- (6) \\ \ddot{G} - c^2 kG = 0 & ----- (7) \end{cases}$$

$$F'' - kF = 0$$
 $F(0) = F(L) = 0$

• If
$$k = 0$$
 $\Rightarrow F(x) = ax + b$

$$\begin{cases} F(0) = b = 0 \\ F(L) = aL = 0 \end{cases}$$

$$\Rightarrow a = b = 0$$

$$\Rightarrow F(x) = 0 \Rightarrow u(x,t) = 0 \times$$

• If
$$k = \mu^2 > 0$$
 $\Rightarrow F(x) = Ae^{\mu x} + Be^{-\mu x}$

$$\left\{ \begin{array}{l} F(0)=A+B=0 \\ F(L)=Ae^{\mu L}+Be^{-\mu L}=0 \end{array} \right.$$

$$\Rightarrow A = B = 0$$

$$\Rightarrow F(x) = 0 \Rightarrow u(x,t) = 0$$

 \times

•••
$$k = -p^2 < 0 \implies F(x) = A \cos px + B \sin px$$

$$\begin{cases} F(0) = A = 0 \\ F(L) = B \sin pL = 0 \end{cases}$$

$$\Rightarrow pL = n\pi \quad \Rightarrow p = \frac{n\pi}{L}, \qquad n = 1, 2, 3 \dots$$

$$\Rightarrow F(x) \equiv F_n(x) = \sin \frac{n\pi}{L}x, \qquad n = 1, 2, 3 \dots$$
and $k = -p^2 = -\left(\frac{n\pi}{L}\right)^2$

 $\overline{G}(t)$

$$\ddot{G} - c^2 \left(-\left(\frac{n\pi}{L}\right)^2 \right) G = 0$$

$$\Rightarrow \ddot{G} + \lambda_n^2 G = 0, \qquad \lambda_n = \frac{cn\pi}{L}$$

$$G(t) \equiv G_n(t) = B_n \cos \lambda_n t + B_n^* \sin \lambda_n t$$

••
$$u_n(x,t) = F_n(x)G_n(t)$$

$$= (B_n \cos \lambda_n t + B_n^* \sin \lambda_n t) \sin \frac{n\pi}{L} x \qquad (n = 1, 2, 3...)$$

So far, $u_n(x,t)$ satisfies the differential equation (1), and the boundary conditions (2) and (3).

 $u_n(x,t)$ is called eigenfunction or characteristic function.

 λ_n is called *eigenvalue* or *characteristic value*.

A single solution $u_n(x,t)$ does not satisfy initial condition.

Since the differential equation (1) is linear and homogeneous, we therefore assume the solution of (1) is:

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t)$$
$$= \sum_{n=1}^{\infty} (B_n \cos \lambda_n t + B_n^* \sin \lambda_n t) \sin \frac{n\pi}{L} x$$

Initial conditions:

$$\begin{cases} u(x,0) = f(x) & ---- (4) \\ \frac{\partial u}{\partial t}\Big|_{t=0} = g(x) & ---- (5) \end{cases}$$

(4)
$$\Rightarrow u(x,0) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi}{L} x = f(x)$$
 (Fourier sine series of $f(x)$)

$$\Rightarrow B_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx \qquad n = 1, 2, 3 \dots$$

(5)
$$\Rightarrow \frac{\partial u}{\partial t}\Big|_{t=0} = \sum_{n=1}^{\infty} (B_n^* \lambda_n \cos \lambda_n t)_{t=0} \sin \frac{n\pi x}{L}$$

 $= \sum_{n=1}^{\infty} B_n^* \lambda_n \sin \frac{n\pi x}{L} = g(x)$ (Fourier sine series of $g(x)$)

$$\Rightarrow B_n^* \lambda_n = \frac{2}{L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx$$

$$\Rightarrow \left[B_n^* = \frac{2}{\lambda_n L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx \right] \qquad n = 1, 2, 3 \dots \quad \Box$$

Discussion of eigenfunctions and eigenvalues:

(1) The eigenfunction

$$u_n(x,t) = (B_n \cos \lambda_n t + B_n^* \sin \lambda_n t) \sin \frac{n\pi}{L} x$$

represents a harmonic motion having frequency (cycles/unit time) $\frac{\lambda_n}{2\pi} = \frac{cn}{2L}$. This motion is called the *normal mode*.

(2) The frequency (eigenvalue)

$$w_n = \frac{cn}{2L}, \quad c^2 = \frac{T}{\rho}$$

where T = tension, $\rho = \text{density}$

 \Rightarrow increase tension or reduce density will increase the frequency.

Discussion of the solution:

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t)$$

$$= \sum_{n=1}^{\infty} (B_n \cos \lambda_n t + B_n^* \sin \lambda_n t) \sin \frac{n\pi}{L} x$$

$$\lambda_n = \frac{cn\pi}{L}$$

$$\begin{cases} B_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx, & u(x,0) = f(x) \\ B_n^* = \frac{2}{\lambda_n L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx, & \frac{\partial u}{\partial t} \Big|_{t=0} = g(x) \end{cases}$$

Consider the special case in which the string starts from rest, i.e. g(x) = 0, and $B_n^* = 0$, then

$$u(x,t) = \sum_{n=1}^{\infty} B_n \cos \frac{cn\pi}{L} t \sin \frac{n\pi}{L} x$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} B_n \left\{ \sin \frac{n\pi}{L} (x - ct) + \sin \frac{n\pi}{L} (x + ct) \right\}$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} B_n \sin \frac{n\pi}{L} (x - ct) + \frac{1}{2} \sum_{n=1}^{\infty} B_n \sin \frac{n\pi}{L} (x + ct)$$
Fourier sine series of $f^*(x - ct)$ Fourier sine series of $f^*(x + ct)$

$$= \frac{1}{2} [f^*(x - ct) + f^*(x + ct)]$$

where $f^*(\bullet)$ is an odd periodic function, and $f(\bullet) = f^*(\bullet)$ for $\bullet \in [0, 2L]$.

Physical meaning of $u(x,t) = \frac{1}{2}[f^*(x-ct) + f^*(x+ct)]$:

 \underline{Ex} :

$$g(x) = 0$$

$$f(x) = \begin{cases} \frac{2k}{L}x, & 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x), & \frac{L}{2} < x < L \end{cases}$$

$$B_n^* = 0$$

$$B_{n} = \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

$$= \frac{8k}{\pi^{2}} \sum_{n=1}^{\infty} \left[\frac{(-1)^{n+1}}{(2n-1)^{2}} \sin \frac{(2n-1)\pi}{L} x \cdot \cos \frac{(2n-1)\pi c}{L} t \right]$$

11.4 Heat Equation

Consider the heat conduction along a heat-conducting homogeneous rod with temperature distribution u(x,t).

Assumptions:

- 1. homogeneous rod with uniform cross section A and constant density ρ , specific heat c, thermal conductivity κ
- 2. insulated laterally so heat flows only in x-direction only
- 3. temperature is constant at all points of a cross section
- 4. rate of heat conduction is proportional to $-\partial u/\partial x$

We are going to derive the differential equation governing the temperature distribution u(x,t) along the rod by conservation of energy.

The amount of internal energy within Δx segment is:

$$Q(x,t) = \int_x^{x+\Delta x} \sigma \rho Au(\tilde{x},t) d\tilde{x}$$

where σ = specific heat (amount of energy required to raise the temperature of a unit mass by one unit).

• Rate of change of internal energy within Δx

$$= \frac{\partial Q}{\partial t} = \int_{x}^{x+\Delta x} \sigma \rho A \frac{\partial u}{\partial t}(\tilde{x}, t) d\tilde{x}$$

• Rate at which heat flows into Δx

$$= -\kappa A \frac{\partial u}{\partial x}(x,t)$$

• Rate at which heat flows out of Δx

$$= -\kappa A \frac{\partial u}{\partial x} (x + \Delta x, t)$$

•• conservation of energy requires that

$$\frac{\partial Q}{\partial t} = \int_{x}^{x+\Delta x} \sigma \rho A \frac{\partial u}{\partial t}(\tilde{x}, t) d\tilde{x}$$

$$= \sigma \rho A \frac{\partial u}{\partial t}(\xi, t) \Delta x \qquad (x < \xi < x + \Delta x) \quad [\text{by mean value theorem}]$$

$$= -\kappa A \frac{\partial u}{\partial x}(x, t) + \kappa A \frac{\partial u}{\partial x}(x + \Delta x, t)$$

$$\Rightarrow \sigma \rho A \frac{\partial u}{\partial t}(\xi, t) \Delta x = \kappa A \left[\frac{\partial u}{\partial x}(x + \Delta x, t) - \frac{\partial u}{\partial x}(x, t) \right]$$

$$\Rightarrow \frac{\partial u}{\partial t}(\xi, t) - \frac{\kappa}{\sigma \rho} \left[\frac{\partial u}{\partial x}(x + \Delta x, t) - \frac{\partial u}{\partial x}(x, t) \right] = 0$$

As $\Delta x \to 0$

$$\boxed{\frac{\partial u}{\partial t}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0} \qquad c^2 = \frac{k}{\sigma \rho}$$

Initial condition:

$$u(x,0) = f(x) \qquad (0 \le x \le L)$$

Boundary condition:

$$u(0,t) = 0, \quad u(L,t) = 0 \qquad (t \ge 0)$$

Note:

For 3 - D heat equation (see §9.8):

$$\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

Fourier series solution of the heat equation:

$$\frac{\partial u}{\partial t} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \quad \text{for} \quad t \ge 0, \quad 0 \le x \le L \quad ----- (1)$$

$$u(0, t) = 0 \quad \text{for} \quad t \ge 0, \quad x = 0$$

$$u(L, t) = 0 \quad \text{for} \quad t \ge 0, \quad x = L$$

$$u(x, 0) = f(x) \quad \text{for} \quad t = 0, \quad 0 \le x \le L \quad ----- (3)$$

By method of separation of variables:

$$u(x,t) = F(x) \cdot G(t)$$

$$(1) \Rightarrow F\dot{G} = c^2 F''G$$

$$\Rightarrow \frac{\dot{G}}{c^2 G} = \frac{F''}{F} = \left\{ \begin{array}{ll} p^2 & \Rightarrow \dot{G} = c^2 p^2 G & \Rightarrow G(t) = C e^{c^2 p^2 t} \\ \\ 0 & \Rightarrow \dot{G} = 0 \\ \\ -p^2 \end{array} \right. \Rightarrow G(t) = C e^{c^2 p^2 t} \times \left. \right.$$

$$\Rightarrow \begin{cases} F'' + p^2 F = 0 & ----- (6) \\ \dot{G} + c^2 p^2 G = 0 & ----- (7) \end{cases}$$

F(x):

$$(6) \Rightarrow F(x) = A\cos px + B\sin px$$

$$(2) \Rightarrow F(0)G(t) = 0, \quad F(L)G(t) = 0$$

Since
$$G(t) \neq 0 \implies F(0) = F(L) = 0$$

••
$$A=0$$
 $B\sin pL=0$

Since $B \neq 0 \implies \sin pL = 0$, i.e. $pL = n\pi$, n = 1, 2, 3...

$$\Rightarrow \boxed{p = \frac{n\pi}{L}} \quad n = 1, 2, 3 \dots$$

$$F_n(x) = \sin px = \sin \frac{n\pi x}{L} \quad n = 1, 2, 3 \dots$$

 $\underline{G(t)}$:

$$(3) \Rightarrow \dot{G} + \lambda_n^2 G = 0 \qquad \lambda_n = \frac{cn\pi}{L}$$

$$\Rightarrow G_n(t) = B_n e^{-\lambda_n^2 t} \qquad n = 1, 2, 3 \dots$$

•• eigenfunction $u_n(x,t)$:

$$u_n(x,t) = F_n(x) \cdot G_n(t) = B_n \sin \frac{n\pi x}{L} \cdot e^{-\lambda_n^2 t}$$

with corresponding $eigenvalue \lambda_n$:

$$\lambda_n = \frac{cn\pi}{L}$$

In order to satisfy initial conduction (3) at t = 0:

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L} e^{-\lambda_n^2 t}$$

$$\Rightarrow u(x,0) = f(x) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L}$$
 (Fourier sine series of $f(x)$)

$$\Rightarrow B_n = \frac{2}{L} \int_0^L f(x) \sin n\pi x dx$$

Note:

$$u(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L} \cdot e^{-\lambda_n^2 t}$$

 \Rightarrow the temperature alway decays.

<u>Ex</u> :

Physical meanings of the boundary conditions

$$u(0,t) = u(L,t) = \text{constant}$$

 \Rightarrow Temperatures at x=0 and L remain constant, but heat can still transfer across x=0 and L

$$\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(L,t) = 0$$

 \Rightarrow No heat transfer across x=0 and L, i.e. these two ends are insulated, but the temperature at these two boundary may vary.

(See Page 654, Problem Set 11.5, Problem 13)

Laplace Equation in a Rectangular Domain 11.5

Consider the steady-state two-dimensional heat flow:

$$\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0 \quad (\bullet, \bullet \text{ steady state})$$

$$\Rightarrow \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \leftarrow \text{two-dimensional Laplace equation}$$

• Boundary value problem (bvp) :

If the boundary conditions are given as

$$u$$
 given \Rightarrow Dirichlet problem

$$\frac{\partial u}{\partial n}$$
 given \Rightarrow Neumann problem

$$\begin{cases} u \text{ given } \Rightarrow \text{Dirichlet problem} \\ \frac{\partial u}{\partial n} \text{ given } \Rightarrow \text{Neumann problem} \\ u \text{ given on some boundary }, \frac{\partial u}{\partial n} \text{ given on the rest boundary } \\ \Rightarrow \text{mixed problem} \end{cases}$$

Ex :

Method of separation of variables:

If k < 0:

(1)
$$\Rightarrow F(x) = Ae^{\sqrt{k}x} + Be^{-\sqrt{k}x}$$

Boundary conditions: u(0, y) = 0 and u(a, y) = 0

$$\Rightarrow F(0) = 0, \quad F(a) = 0$$

$$\Rightarrow \begin{cases} A + B = 0 \\ Ae^{\sqrt{k}a} + Be^{-\sqrt{k}a} = 0 \end{cases}$$

$$\Rightarrow A(e^{\sqrt{k}a} - e^{-\sqrt{k}a}) = 0$$

$$\bullet \bullet A = 0, \quad B = 0 \quad \times$$

If k > 0:

(1)
$$\Rightarrow F(x) = A\cos\sqrt{k}x + B\sin\sqrt{k}x$$

Boundary conditions:

$$F(0) = 0 \implies A = 0$$

$$F(a) = 0 \implies F(a) = B \sin \sqrt{k}a = 0 \implies \sqrt{k} = \frac{n\pi}{a}$$

$$\Rightarrow \left[k_n = \left(\frac{n\pi}{a}\right)^2\right]$$

and
$$F_n(x) = \sin \frac{n\pi}{a}x$$

$$(2) \Rightarrow \frac{d^2G}{dy^2} - k_n G = 0$$
$$\Rightarrow G(y) = G_n(y) = A_n e^{\sqrt{k_n}y} + B_n e^{-\sqrt{k_n}y}$$

Boundary condition:

$$u(x,0) = 0 \implies G(0) = 0$$

$$\Rightarrow A_n + B_n = 0$$

$$\Rightarrow G_n(y) = A_n (e^{\sqrt{k_n}y} - e^{-\sqrt{k_n}y}) = 2A_n \frac{(e^{\sqrt{k_n}y} - e^{-\sqrt{k_n}y})}{2}$$

$$\bullet \bullet G_n(y) = A_n^* \sinh \sqrt{k_n}y \qquad A_n^* \equiv 2A_n$$

••
$$u_n(x,y) = F_n(x) \cdot G_n(y)$$

$$= A_n^* \sin \frac{n\pi x}{a} \sinh \frac{n\pi y}{a}$$

$$\Rightarrow u(x,y) = \sum_{n=1}^{\infty} u_n(x,y) = \sum_{n=1}^{\infty} A_n^* \sin \frac{n\pi x}{a} \sinh \frac{n\pi y}{a}$$

Since u(x,b) = f(x):

$$\Rightarrow u(x,b) = \sum_{n=1}^{\infty} \underbrace{A_n^* \sinh \frac{n\pi b}{a}}_{=== b_n} \sin \frac{n\pi x}{a} = f(x)$$

$$\Rightarrow b_n = A_n^* \sinh \frac{n\pi b}{a} = \frac{2}{a} \int_0^a f(x) \sin \frac{n\pi x}{a} dx$$

$$\bullet^{\bullet} \bullet \boxed{A_n^* = \frac{2}{a \sinh(\frac{n\pi b}{a})} \int_0^a f(x) \sin\frac{n\pi x}{a} dx} \quad \Box$$

11.6 Two-Dimensional Wave Equation. Use of Double Fourier Series

Consider the motion of a stretched elastic membrane, such as a drumhead.

 \Rightarrow Two dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \qquad c^2 = \frac{T}{\rho}$$

u(x, y, t) = vertical deformation

T =tension force per unit length

 $\rho = \text{ mass of the membrane per unit area}$

Consider the problem of a vibrating rectangular membrane:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \qquad 0 \le x \le a, \quad 0 \le y \le b \quad ----- (1)$$

Boundary conditions:

$$u(x, y, t) = 0$$
 on the boundary for $t \ge 0$ — (2)

Initial condition:

$$\begin{cases} u(x, y, 0) = f(x, y) & ---- (3) \\ \frac{\partial u}{\partial t}(x, y, 0) = g(x, y) & ---- (4) \end{cases}$$

By method of separation of variables we first determine the solutions of (1) that satisfy the boundary condition (2):

$$u(x, y, t) = F(x, y) \cdot G(t)$$

$$(1) \Rightarrow F\ddot{G} = c^{2}(F_{xx}G + F_{yy}G) \qquad \div (c^{2}FG)$$

$$\Rightarrow \frac{\ddot{G}}{c^{2}G} = \frac{1}{F}(F_{xx} + F_{yy}) \equiv -\nu^{2} \qquad \text{(cannot be zero or posititice)}$$

$$\Rightarrow \begin{cases} \ddot{G} + \lambda^{2}G = 0 & (\lambda \equiv c\nu) & ---- (6) \\ F_{xx} + F_{yy} + \nu^{2}F = 0 & ---- (7) \end{cases}$$

$$\begin{cases} \ddot{G} + \lambda^2 G = 0 & ---- (6) \\ F_{xx} + F_{yy} + \nu^2 F = 0 & ---- (7) \end{cases}$$

(7) is called two-dimensional Helmholtz equation, if $\nu=0$ it become Laplace equation.

• Solution of Helmholtz equation (7) $F_{xx} + F_{yy} + \nu^2 F = 0$

Again, using method of separation of variables:

$$F(x,y) = H(x) \ Q(y)$$

$$(7) \Rightarrow \frac{d^2H}{dx^2}Q + H\frac{d^2Q}{dy^2} + \nu^2HQ = 0 \qquad \div (HQ)$$

$$\Rightarrow \frac{1}{H}\frac{d^2H}{dx^2} = -\frac{1}{Q}\left(\frac{d^2Q}{dy^2} + \nu^2Q\right) \equiv -k^2 \qquad \text{(must be negative)}$$

$$\Rightarrow \begin{cases} \frac{d^2H}{dx^2} + k^2H = 0 \\ \frac{d^2Q}{dy^2} + (\nu^2 - k^2)Q = 0 \qquad (\nu^2 - k^2 \equiv p^2) \end{cases}$$

$$\Rightarrow \left\{ \begin{aligned} H(x) &= A\cos kx + B\sin kx \\ Q(y) &= C\cos py + D\sin py \end{aligned} \right.$$

Since u(x, y, t) = 0 on x = 0, x = a, y = 0, y = b,

$$\Rightarrow \begin{cases} H(0) = 0 & \Rightarrow A = 0 \\ H(a) = 0 & \Rightarrow \sin ka = 0 & \Rightarrow k = \frac{m\pi}{a}, \ m = 1, 2, 3 \dots \\ Q(0) = 0 & \Rightarrow C = 0 \\ Q(b) = 0 & \Rightarrow \sin pb = 0 & \Rightarrow p = \frac{n\pi}{b}, \ n = 1, 2, 3 \dots \end{cases}$$

••
$$\begin{cases} H(x) = H_m(x) = \sin \frac{m\pi x}{a} \\ Q(y) = Q_n(y) = \sin \frac{n\pi y}{b} \end{cases}$$

$$\Rightarrow F(x,y) = F_{mn}(x,y) = H_m(x) Q_n(y)$$
$$= \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \qquad (m, n = 1, 2, 3...)$$

• Solution of (6) $\ddot{G} + \lambda^2 G = 0$

$$\lambda = c\nu \qquad p^2 = \nu^2 - k^2$$

$$\Rightarrow \lambda = c\sqrt{\nu^2} = c\sqrt{p^2 + k^2} = c\sqrt{(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2}$$

$$\Rightarrow \lambda = \lambda_{mn} = c\pi\sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2}}$$

(6)
$$\Rightarrow \ddot{G} + \lambda_{mn}^2 G = 0$$

 $\Rightarrow G(t) = G_{mn}(t) = B_{mn} \cos \lambda_{mn} t + B_{mn}^* \sin \lambda_{mn} t$

••
$$u_{mn}(x, y, t) = F_{mn}(x, y) \cdot G_{mn}(t)$$

= $(B_{mn} \cos \lambda_{mn} t + B_{mn}^* \sin \lambda_{mn} t) \cdot \sin \frac{m\pi x}{a} \cdot \sin \frac{n\pi y}{b}$

 $u_{mn}(x,y,t)$ is the eigenfunction with the corresponding eigenvalue λ_{mn} .

Since every $u_{mn}(x, y, t)$ satisfies (1) and (2), so is the summation:

$$u(x,y,t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} u_{mn}(x,y,t)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(B_{mn} \cos \lambda_{mn} t + B_{mn}^* \sin \lambda_{mn} t \right) \cdot \sin \frac{m\pi x}{a} \cdot \sin \frac{n\pi y}{b}$$

Now apply the initial conditions (3) and (4):

$$\begin{cases} (3) \Rightarrow u(x,y,0) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} = f(x,y) - (8) \\ (4) \Rightarrow \frac{\partial u}{\partial t}(x,y,0) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{mn}^* \lambda_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} = g(x,y) - (9) \end{cases}$$

$$(4) \Rightarrow \frac{\partial u}{\partial t}(x,y,0) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{mn}^* \lambda_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} = g(x,y) - (9)$$

(8) and (9) are called double Fourier series of f(x,y) and g(x,y).

We can generalized the Euler formula in one dimension to two dimension:

$$\int_0^b \int_0^a (8) \sin \frac{m'\pi x}{a} \sin \frac{n'\pi y}{b} dx dy$$

$$\Rightarrow \int_0^a \int_0^b \sum_{m=1}^\infty \sum_{n=1}^\infty B_{mn} \sin \frac{m\pi x}{a} \cdot \sin \frac{m'\pi x}{a} \cdot \sin \frac{n\pi y}{b} \cdot \sin \frac{n'\pi y}{b} dx dy$$

$$= \int_0^a \int_0^b f(x,y) \sin \frac{m'\pi x}{a} \cdot \sin \frac{n'\pi y}{b} dx dy$$

$$\Rightarrow \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{mn} \Big[\int_0^a \Big(\sin \frac{m\pi x}{a} \cdot \sin \frac{m'\pi x}{a} \Big) dx \times \int_0^b \Big(\sin \frac{n\pi y}{b} \cdot \sin \frac{n'\pi y}{b} dy \Big) \Big]$$

$$= \int_0^a \int_0^b f(x, y) \sin \frac{m'\pi x}{a} \cdot \sin \frac{n'\pi y}{b} dx dy$$

$$\int_0^a \sin \frac{m\pi x}{a} \cdot \sin \frac{m'\pi x}{a} dx$$

$$= \frac{1}{2} \int_0^a \left[\cos(m - m') \frac{\pi x}{a} - \underbrace{\cos(m + m') \frac{n\pi x}{a}} \right] dx$$

$$= \frac{1}{2} \int_0^a \cos(m - m') \frac{\pi x}{a} dx$$

$$= \begin{cases} 0 & \text{if } m \neq m' \\ \frac{1}{2}a & \text{if } m = m' \end{cases}$$

Similarly,

$$\int_0^b \sin \frac{n\pi y}{b} \cdot \sin \frac{n'\pi y}{b} dy = \begin{cases} 0 & \text{if } n \neq n' \\ \frac{1}{2}b & \text{if } n = n' \end{cases}$$

$$\Rightarrow B_{mn}\left(\frac{a}{2}\right)\left(\frac{b}{2}\right) = \int_0^a \int_0^b f(x) \sin\frac{m\pi x}{a} \cdot \sin\frac{n\pi y}{b} dx dy$$

••
$$B_{mn} = \frac{4}{ab} \int_0^a \int_0^b f(x,y) \sin \frac{m\pi x}{a} \cdot \sin \frac{n\pi y}{b} dxdy$$
 $(m,n=1,2,3...)$

Similarly, from (9) we have:

$$B_{mn}^* = \frac{4}{ab\lambda_{mn}} \int_0^a \int_0^b g(x,y) \sin \frac{m\pi x}{a} \cdot \sin \frac{n\pi y}{b} dx dy \quad \Box$$

11.7 Heat Equation: Use of Fourier Integral

Consider the heat equation along a heat conducting rod extending to $\pm \infty$:

$$\begin{cases} \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} & (-\infty < x < +\infty) \\ u(x,0) = f(x) & (-\infty < x < +\infty) \end{cases}$$

Again by method of separation of variables:

$$u(x,t) = F(x) \cdot G(t)$$

$$\begin{cases} F'' + p^2 F = 0 & \Rightarrow F(x) = A \cos px + B \sin px \\ \dot{G} + c^2 p^2 G = 0 & \Rightarrow G(t) = e^{-c^2 p^2 t} \end{cases}$$

$$\bullet \bullet u(x,t;p) = F(x) \cdot G(t) = (A \cos px + B \sin px)e^{-c^2 p^2 t}$$

Note that there are no boundary conditions to determine p. This means any values of p is fine.

•• We therefor write

$$u(x,t) = \int_0^p u(x,t;p)dp$$

=
$$\int_0^p [A\cos px + B\sin px]e^{-c^2p^2t}dp$$

Recall the Fourier integral for
$$f(x)$$
 $\left(\int_{-\infty}^{\infty} |f(x)| dx < \infty\right)$

$$f(x) = \int_0^\infty [A(w)\cos wx + B(w)\sin wx]dw$$

$$\begin{cases} A(w) = \frac{1}{\pi} \int_{-\infty}^\infty f(\tilde{x})\cos w\tilde{x}d\tilde{x} \\ B(w) = \frac{1}{\pi} \int_{-\infty}^\infty f(\tilde{x})\sin w\tilde{x}d\tilde{x} \end{cases}$$

Now apply the initial conditions:

$$u(x,0) = \int_0^\infty [A\cos px + B\sin px]dp = f(x)$$

$$\Rightarrow \begin{cases} A(p) = \frac{1}{\pi} \int_{-\infty}^\infty f(\tilde{x})\cos p\tilde{x}d\tilde{x} \\ B(p) = \frac{1}{\pi} \int_{-\infty}^\infty f(\tilde{x})\sin p\tilde{x}d\tilde{x} \end{cases}$$

$$\bullet \bullet \bullet u(x,t) = \frac{1}{\pi} \int_0^\infty \left[\left(\int_{-\infty}^\infty f(\tilde{x}) \cos p\tilde{x} d\tilde{x} \right) \cos px + \left(\int_{-\infty}^\infty f(\tilde{x}) \sin p\tilde{x} d\tilde{x} \right) \sin px \right] e^{-c^2 p^2 t} dp$$

$$= \frac{1}{\pi} \int_0^\infty \left[\int_{-\infty}^\infty f(\tilde{x}) (\cos p\tilde{x} \cos px + \sin p\tilde{x} \sin px) d\tilde{x} \right] e^{-c^2 p^2 t} dp$$

$$= \frac{1}{\pi} \int_0^\infty \left[\int_{-\infty}^\infty f(\tilde{x}) \cos p(\tilde{x} - x) d\tilde{x} \right] e^{-c^2 p^2 t} dp$$

$$= \frac{1}{\pi} \int_{-\infty}^\infty f(\tilde{x}) \left[\int_0^\infty \cos p(\tilde{x} - x) \cdot e^{-c^2 p^2 t} dp \right] d\tilde{x}$$

Let
$$p \equiv \frac{s}{c\sqrt{t}}$$
, $dp = \frac{ds}{c\sqrt{t}}$

$$\int_0^\infty \cos p(\tilde{x} - x) \cdot e^{-c^2 p^2 t} dp$$

$$= \int_0^\infty \cos \frac{s}{c\sqrt{t}} (\tilde{x} - x) \cdot e^{-s^2} \frac{ds}{c\sqrt{t}} \qquad b \equiv \frac{(\tilde{x} - x)}{2c\sqrt{t}}$$

$$= \frac{1}{c\sqrt{t}} \left(\int_0^\infty \cos 2bs \cdot e^{-s^2} ds \right)$$

$$= \frac{1}{c\sqrt{t}} \left(\frac{\sqrt{\pi}}{2} e^{-b^2} \right)$$

$$= \frac{\sqrt{\pi}}{2c\sqrt{t}} e^{-\frac{(\tilde{x} - x)^2}{4c^2 t}}$$

••
$$u(x,t) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tilde{x}) \left[\frac{\sqrt{\pi}}{2c\sqrt{t}} e^{-\frac{(\tilde{x}-x)^2}{4c^2t}} \right] d\tilde{x}$$

$$= \frac{1}{2c\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tilde{x}) \cdot e^{-\frac{(\tilde{x}-x)^2}{4c^2t}} d\tilde{x}$$

<u>Ex</u> :

If
$$f(x) =$$

$$u(x,t) = \frac{u_0}{2c\sqrt{\pi t}} \int_{-1}^{1} e^{-\frac{(\tilde{x}-x)^2}{4c^2t}} d\tilde{x}$$

If
$$U_0 = 100$$
 °C, $c^2 = 1$ cm²/sec.

11.8 Heat Equation: Use of Fourier Transform

$$\begin{cases} \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} & (-\infty < x < \infty) & ----- (1) \\ u(x,0) = f(x) & (-\infty < x < \infty) & ----- (2) \end{cases}$$

Recall that:

$$\hat{u}(w) = \mathcal{F}\{u(x)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x)e^{-iwx}dx$$

$$\mathcal{F}\{u'(x)\} = iw\mathcal{F}\{u(x)\}$$

$$\mathcal{F}\{u''(x)\} = -w^2\mathcal{F}\{u(x)\}$$

Take Fourier Transform of (1),

$$\Rightarrow \mathcal{F}\left\{\frac{\partial u}{\partial t}\right\} = c^2 \mathcal{F}\left\{\frac{\partial^2 u}{\partial x^2}\right\} = -c^2 w^2 \mathcal{F}\{u\}$$

Also,

$$\mathcal{F}\left\{\frac{\partial u}{\partial t}\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u}{\partial t} e^{-iwx} dx = \frac{1}{\sqrt{2\pi}} \frac{\partial}{\partial t} \left[\int_{-\infty}^{\infty} u e^{-iwx} dx\right] = \frac{\partial}{\partial t} \mathcal{F}\{u\}$$

$$\Rightarrow \ \frac{\partial}{\partial t} \mathcal{F}\{u\} = -c^2 w^2 \mathcal{F}(u)$$

i.e.
$$\frac{\partial \hat{u}(w,t)}{\partial t} = -c^2 w^2 \hat{u}(w,t)$$
 — (3)

•• we have transformed the partial differential equation (1) into an ordinary differential equation (3) !!

Similarly, taking Fourier transform of the initial condition (2), gives:

$$\hat{u}(w,0) = \hat{f}(w) \quad ----- (4)$$

$$(3) \quad \Rightarrow \hat{u}(w,t) = Ce^{-c^2w^2t}$$

$$(4) \quad \Rightarrow \hat{u}(w,0) = C = \hat{f}(w)$$

$$\bullet \bullet \hat{u}(w,t) = \hat{f}(w) \cdot e^{-c^2 w^2 t}$$

Take inverse Fourier transform of $\hat{u}(w,t)$:

$$\begin{cases} \hat{u}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x) e^{-iwx} dx \\ u(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{u}(w) e^{iwx} dw \end{cases}$$

$$\begin{split} \hat{u}(w,t) &= \hat{f}(w) \cdot e^{-c^2 w^2 t} \\ \Rightarrow u(x,t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) \cdot e^{-c^2 w^2 t} \cdot e^{iwx} dw \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\tilde{x}) e^{-iw\tilde{x}} d\tilde{x} \right] e^{-c^2 w^2 t} \cdot e^{iwx} dw \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tilde{x}) e^{-iw(\tilde{x}-x)} d\tilde{x} \right] \cdot e^{-c^2 w^2 t} dw \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\tilde{x}) \left[\int_{-\infty}^{\infty} e^{-iw(\tilde{x}-x)} \cdot e^{-c^2 w^2 t} dw \right] d\tilde{x} \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tilde{x}) \left[\int_{0}^{\infty} \cos w(\tilde{x}-x) \cdot e^{-c^2 w^2 t} dw \right] d\tilde{x} \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\tilde{x}) \left[\int_{0}^{\infty} \cos w(\tilde{x}-x) \cdot e^{-c^2 w^2 t} dw \right] d\tilde{x} \end{split}$$

Same as using Fourier integral!!

11.9 Heat Equation. Use of Fourier Cosine and Sine Transforms

Consider the heat equation along a semi-infinite rod:

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad (0 \le x < \infty)$$

Recall Fourier cosine and sine transforms of derivatives:

$$\begin{cases} \mathcal{F}_c\{f'\} = w\mathcal{F}_s\{f\} - \sqrt{\frac{2}{\pi}}f(0) \\ \mathcal{F}_s\{f'\} = -w\mathcal{F}_c\{f\} \end{cases}$$
$$\begin{cases} \mathcal{F}_c\{f''\} = -w^2\mathcal{F}_c\{f\} - \sqrt{\frac{2}{\pi}}f'(0) \\ \mathcal{F}_s\{f''\} = -w^2\mathcal{F}_s\{f\} + \sqrt{\frac{2}{\pi}}wf(0) \end{cases}$$

where $\mathcal{F}_c\{f\} = \hat{f}_c(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos wx dx$

$$\mathcal{F}_s\{f\} = \hat{f}_s(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin wx dx$$

 \Rightarrow

If the boundary condition at x = 0 is :

u(0.t) = g(t) we use Fourier sine transform

 $\frac{\partial u}{\partial x}(0,t) = g(t)$ we use Fourier cosine transform

Ex :

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial u}{\partial x^2} \qquad 0 \le x < \infty \qquad (1)$$

$$u(x,0) = f(x) \qquad 0 \le x < \infty \qquad (2)$$

$$u(0,t) = 0 \qquad t \ge 0 \qquad (3)$$

Take Fourier sine transform of (1):

$$\Rightarrow \mathcal{F}_s \left\{ \frac{\partial u}{\partial t} \right\} = \frac{\partial \hat{u}_s}{\partial t} = c^2 \mathcal{F}_s \left\{ \frac{\partial^2 u}{\partial x^2} \right\} = -c^2 w^2 \mathcal{F}_s \{u\} + \sqrt{\frac{2}{\pi}} w u(0, t)$$

$$= -c^2 w^2 \hat{u}_s(w, t)$$
i.e.
$$\frac{\partial \hat{u}_s}{\partial t} = -c^2 w^2 \hat{u}_s$$

$$\Rightarrow \hat{u}_s(w, t) = C(w) e^{-c^2 w^2 t}$$

Take Fourier sine transform of the initial condition (2): u(x,0) = f(x)

$$\Rightarrow \hat{u}_s(w,0) = \hat{f}_s(w) = C(w)$$

$$\bullet \bullet \hat{u}_s(w,t) = \hat{f}_s(w)e^{-c^2w^2t} = \left[\sqrt{\frac{2}{\pi}} \int_0^\infty f(\tilde{x})\sin w\tilde{x}d\tilde{x}\right]e^{-c^2w^2t}$$

Take inverse Fourier sine Transform:

••
$$u(x,t) = \frac{2}{\pi} \int_0^\infty \int_0^\infty f(\tilde{x}) \sin w \tilde{x} \cdot e^{-c^2 w^2 t} \cdot \sin w x \ d\tilde{x} dw$$

11.10 Wave Equation. Use of Fourier Transform

Consider wave equation along an infinitely long string:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} & (-\infty < x < \infty) & ----- (1) \\ u(x,0) = f(x) & ----- (2) \\ u_t(x,0) = 0 & ----- (3) \\ u \to 0, \ u_x \to 0 & \text{as } |x| \to \infty & ----- (4) \end{cases}$$

Take Fourier transform of (1):

$$\mathcal{F}\left\{\frac{\partial u}{\partial t^2}\right\} = \frac{\partial^2}{\partial t^2} \mathcal{F}\{u\} = c^2 \mathcal{F}\left\{\frac{\partial^2 u}{\partial x^2}\right\} = -c^2 w^2 \mathcal{F}\{u\}$$

$$\Rightarrow \hat{u}_{tt} + c^2 w^2 \hat{u} = 0, \qquad \hat{u} = \hat{u}(w, t)$$

••
$$\hat{u}(w,t) = A(w)\cos cwt + B(w)\sin cwt$$

Take Fourier transform of the initial conditions (2) and (3):

$$\hat{u}(w,0) = \hat{f}(w) = A(w)$$

$$\hat{u}_t(w,0) = 0 = cwB(w)$$

$$\begin{split} \Rightarrow \hat{u}(w,t) &= \hat{f}(w) \cos cwt \\ &= \frac{1}{2} \hat{f}(w) \left[e^{icwt} + e^{-icwt} \right] \end{split}$$

$$\mathcal{F}\{f(x-a)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-a)e^{-iwx}dx \qquad x-a \equiv p, \ dx = dp$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(p)e^{-iw(p+a)}dp$$

$$= \frac{1}{\sqrt{2\pi}} e^{-iwa} \int_{-\infty}^{\infty} f(p)e^{-iwp}dp$$

i.e.
$$\mathcal{F}\{f(x-a)\} = e^{-iwa}\mathcal{F}\{f(x)\}$$

••
$$\mathcal{F}^{-1}\{\mathcal{F}\{f(x-a)\}\} = \mathcal{F}^{-1}\{e^{-iwa}\mathcal{F}\{f(x)\}\} = f(x-a)$$

i.e. the inverse Fourier Transform of $e^{-iwa}\mathcal{F}\{f(x)\}$ is f(x-a)

Similarly, the inverse Fourier transform of $e^{+iwa}\mathcal{F}\{f(x)\}$ is f(x+a)

Since
$$\hat{u}(w,t) = \frac{1}{2}\hat{f}(w)\left[e^{icwt} + e^{-icwt}\right]$$

$$\bullet \bullet \ u(x,t) = \frac{1}{2}[f(x-ct) + f(x+ct)] \quad \Box$$