APPLIED MATHEMATICS

Part 1:

Ordinary Differential Equations

Wu-ting Tsai

Contents

1	Firs	st Order Differential Equations	3
	1.1	Basic Concepts and Ideas	4
	1.2	Separable Differential Equations	8
	1.3	Modeling	10
	1.4	Reduction to Separable Form	11
	1.5	Exact Differential Equation	13
	1.6	Integrating Factors	16
	1.7	Linear Differential Equation	22
2	Sec	ond-Order Linear Differential Equation	27
	2.1	Homogeneous Linear 2nd-order ODE	28
	2.2	Homogeneous Equations with Constant Coefficients	32
	2.3	Homogeneous Equations with Constant Coefficients (continued)	32
	2.4	Differential Operators. Optional	38
	2.4 2.5	Differential Operators. Optional	38 39
	2.5	Free Oscillations of Mass-Spring system	39
	2.5 2.6	Free Oscillations of Mass-Spring system Euler-Cauchy Equation	39 44

2.10	Solution	by	Variation	of	Parameters				•	•			•	57
		U												

Chapter 1

First Order Differential Equations

1.1 Basic Concepts and Ideas

Ordinary differential equation (ode):

Equation which contains one or several derivatives of an unknown function of one variable

<u>Ex</u>: Unknown y = y(x)

$$y' = \cos x$$

$$x^2y'''y' + 2e^xy'' = (x^2 + 2)y^2 \quad \Box$$

cf: partial differential equation (pde):

Equation which contains one or several partial derivatives of an unknown function of multiple variables

 $\blacksquare \text{ physics modeling} \implies \text{mathematics} \implies \text{solutions}$ \underline{Ex} d^2u

$$m\frac{d^2y}{dt^2} + ky = 0$$
$$l\frac{d^2\theta}{dt^2} + g\sin\theta = 0$$

<u>Order</u> of an ode is the order of the highest derivative.

<u>Ex</u>: F(x, y, y') = 0 is a first order ode. $F(x, y, y', y'', \dots y^{(n)}) = 0$ is an *n*-th order ode.

Solution of ode, y(x), can be <u>explicit</u>: y = h(x)or <u>implicit</u>: H(x, y) = 0<u>Ex</u>: xy' = 2y explicit solution : $y = x^2$ $yy' = -x \ (-1 < x < 1)$ implicit solution : $x^2 + y^2 - 1 = 0 \ (y > 0)$

General and particular solutions of an ode.

 $\begin{array}{l} \underline{Ex}\\ \frac{dy}{dx} = \cos x\\ \Longrightarrow \int \frac{dy}{dx} = \int \cos x dx\\ \Longrightarrow y(x) = -\sin x + c \quad \leftarrow \mbox{general solution}\\ y(x) = -\sin x + 1 \mbox{ or } 0.8 \dots \quad \leftarrow \mbox{particular solution} \quad \Box \end{array}$

<u>Ex</u>:

 $y'^2=-1$ has no solution. |y'|+|y|=0 has no general solution ${}^{\bullet}{}_{\bullet}{}^{\bullet}\;y(x)\equiv 0$ $\ \ \Box$

■ <u>Initial value problems</u> (IVP) (cf: Boundary value problems) A differential equation with initial conditions.

<u>Ex</u>:

Physical system —

Experiments show that a radioactive substance decomposes at a rate proportional to the amount present.

 \Downarrow

$Mathematical \ model$ —

Let y(t) be the amount of substance at time t then

 $\frac{dy}{dt} = ky$, where k is a physical constant

 \Downarrow

General solution —

 $y(t) = ce^{kt}$, where c is a constant

₩

 $\begin{array}{l} Particular \ solution - \\ \text{If at } t = 0, \ y = 2 \quad (\text{initial condition}) \\ \bullet \bullet \ y(0) = c = 2 \\ \Longrightarrow y(t) = 2e^{kt} \quad (\text{particular solution}) \quad \Box \end{array}$

<u>Ex</u>: $y' = f(x, y), \qquad y(x_0) = y_0$ $F(x, y, y') = 0, \qquad y(x_0) = y_0$

<u>Ex</u>:

Find the curve y(x) through (1,1) in the x-y plane having at each of its points the slope -y/x

<u>Sol</u>:

 $\frac{dy}{dx} = -\frac{y}{x}$ $\implies y(x) = \frac{c}{x} \qquad c = \text{arbitrary constant}$ i.e. xy = c = 1 (•• x = 1, y = 1) $\implies \text{The curve is} \quad xy = 1 \quad \Box$

1.2 Separable Differential Equations

For first order ode with the form:

$$g(y)\frac{dy}{dx} = f(x)$$

$$\implies \int g(y)\frac{dy}{dx}dx = \int f(x)dx + c$$

$$\implies \int g(y)dy = \int f(x)dx + c$$

$$Ex: \quad 9yy' + 4x = 0$$

$$\int 9y\frac{dy}{dx}dx = \int (-4x)dx + c$$

$$\implies 9\int ydy = -2x^2 + c$$

$$\implies \frac{9}{2}y^2 = -2x^2 + c$$

$$\implies \frac{9}{2}y^2 = -2x^2 + c$$

$$\implies \frac{9}{2}y^2 = -2x^2 + c$$

The solution is in implicit form. $\hfill\square$

$$\underline{Ex}:$$

$$y' = ky, \quad k = \text{constant}, \quad y(0) = 2$$

$$\implies \frac{1}{y} \frac{dy}{dx} = k$$

$$\implies \int \frac{1}{y} \frac{dy}{dx} dx = \int k dx + c$$

$$\implies \int \frac{dy}{y} = kx + c$$

$$\implies \ln |y| = kx + c$$

$$\implies |y| = e^{kx + c} = e^c e^{kx}$$

$$\bullet \quad y = \pm e^c e^{kx} \equiv c^* e^{kx}$$

Apply the initial condition.

$$y(0) = 2 \Longrightarrow c^* = 2$$

•• $y(x) = 2e^{kx}$

1.3 Modeling

1.4 Reduction to Separable Form

Certain first order ode's, which are not separable, can be made separable by changing of variables.

<u>Ex</u>:

 $y' = g(\frac{y}{x})$ Let $\frac{y}{x} \equiv u$ $\implies y = ux$ and y' = u + xu' $\bullet \bullet u + x\frac{du}{dx} = g(u)$ $\implies x\frac{du}{dx} = g(u) - u$ $\implies x\frac{du}{dx} = g(u) - u$ $\implies \frac{1}{g(u) - u}\frac{du}{dx} = \frac{1}{x}$ $\implies \frac{du}{g(u) - u} = \frac{dx}{x} \leftarrow \text{this is separable}$ <u>Ex</u>: $2xyy' - y^2 + x^2 = 0 \quad ---- (*)$ $(*) \div x^2$ $\implies 2\left(\frac{y}{x}\right)y' - \left(\frac{y}{x}\right)^2 + 1 = 0 \qquad \implies y' = \frac{\left(\frac{y}{x}\right)^2 - 1}{2\left(\frac{y}{x}\right)} = g\left(\frac{y}{x}\right)$ • Let $u \equiv \frac{y}{x}$ $\implies 2u(u+xu')-u^2+1=0 \qquad \implies 2u^2+2ux\frac{du}{dx}-u^2+1=0$ $\implies 2ux\frac{du}{dx} = -(u^2 + 1) \qquad \implies \frac{2u}{(u^2 + 1)}\frac{du}{dx} = \frac{1}{x} \quad \dots \quad (**)$ $\int (**) dx$ $\implies \int \frac{2u}{(u^2+1)} du = -\ln|x| + c^*$ $\implies \ln(1+u^2) = -\ln|x| + c^* \equiv \ln\frac{1}{|x|} + \ln c = \ln\frac{c}{|x|}$ $\bullet \bullet \bullet 1 + u^2 = \frac{c}{x} \qquad (x > 0)$ $\implies 1 + \frac{y^2}{x^2} = \frac{c}{x} \implies x^2 + y^2 = cx \quad \leftarrow \text{general solution}$

1.5 Exact Differential Equation

Function u(x, y) has continuous partial derivatives \implies its total or exact differential is

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy$$

•• If
$$u(x,y) = c \implies du = 0$$

$$\underline{Ex}: u = x + x^2 y^2 = c$$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = (1 + 2xy^2) dx + (2x^2y) dy = 0$$

$$\Longrightarrow \frac{dy}{dx} = -\frac{1 + 2xy^2}{2x^2y}$$

differential equation with solution $x + x^2 y^2 = c$

A first order ode of the form:

is call exact, if M(x, y)dx + N(x, y)dy = du = 0

i.e.
$$M(x,y) = \frac{\partial u}{\partial x}, \quad N(x,y) = \frac{\partial u}{\partial y}$$

 $\implies u(x,y) = c$ is the solution of (*)

Since
$$\frac{\partial u}{\partial x} = M$$
, $\frac{\partial u}{\partial y} = N$
 $\implies \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial M}{\partial y}$, $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial N}{\partial x}$
 $\implies \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ if (*) is an exact ode

The solution is:

$$\frac{\partial u}{\partial x} = M \quad \Longrightarrow u(x,y) = \int M(x,y) dx + k(y)$$

or

$$\frac{\partial u}{\partial y} = N \quad \Longrightarrow u(x,y) = \int N(x,y) dy + l(x) \quad \Box$$

$$\underline{Ex}: \quad (x^3 + 3xy^2) + (3x^2y + y^3)y' = 0. \qquad \text{Solve for } y(x).$$

$$\implies (x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$$

$$\underline{Sol}: \qquad \text{Is the differential equation exact? i.e.}$$

$$\frac{\partial u}{\partial x} = x^3 + 3xy^2 \qquad (1)$$

$$\frac{\partial u}{\partial y} = 3x^2y + y^3 \qquad (2)$$

$$\implies \frac{\partial(1)}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x}\right) = 6xy = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y}\right) = \frac{\partial(2)}{\partial x} \quad \bullet \text{ exact}$$

$$(1) \implies u(x, y) = \int (x^3 + 3xy^2)dx = \frac{1}{4}x^4 + \frac{3}{2}x^2y^2 + k(y)$$

$$(2) \implies \frac{\partial u}{\partial y} = 3x^2y + \frac{dk}{dy} = 3x^2y + y^3$$

$$\bullet \quad \bullet \quad k(y) = \frac{1}{4}y^4 + c'$$

• The solution is $u(x,y) = \frac{1}{4}x^4 + \frac{3}{2}x^2y^2 + \frac{1}{4}y^4 + c' = \text{constant}$

i.e. The implicit form for y(x) is: $\frac{1}{4}x^4 + \frac{3}{2}x^2y^2 + \frac{1}{4}y^4 = c$ (*)

Check the solution:

$$\frac{d(*)}{dx} \Longrightarrow x^3 + 3xy^2 + 3x^2y\frac{dy}{dx} + y^3\frac{dy}{dx} = 0$$
$$\implies (x^3 + 3xy^2) + (3x^2y + y^3)\frac{dy}{dx} = 0 \quad \Box$$

Integrating Factors

Consider a first order ode:

$$P(x, y)dx + Q(x, y)dy = 0,$$

which is not exact.

1.6

i.e.
$$P \neq \frac{\partial u}{\partial x}$$
 and $Q \neq \frac{\partial u}{\partial y}$
or $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$

But a suitable function F(x, y) can make

$$\begin{split} F(x,y)P(x,y)dx + F(x,y)Q(x,y)dy &= 0 \\ \text{exact, i.e.} \quad F(x,y)P(x,u) &= \frac{\partial u}{\partial x}, \quad F(x,y)Q(x,y) = \frac{\partial u}{\partial y} \\ \implies \frac{\partial (FP)}{\partial y} &= \frac{\partial (FQ)}{\partial x} \end{split}$$

F(x,y) is then called the integrating factor. \Box

How to find F(x, y) ?

i.e. we are looking for F(x, y) that satisfies,

$$\frac{\partial(FP)}{\partial y} = \frac{\partial(FQ)}{\partial x}$$

 $\Longrightarrow F(x) = e^{\int R(x) dx}$

$$\implies \frac{\partial F}{\partial y}P + F\frac{\partial P}{\partial y} = \frac{\partial F}{\partial x}Q + F\frac{\partial Q}{\partial x} \quad ----- (*)$$

This is a partial differential equation to solve for F(x, y) !! Even more difficult !!!

 $\bullet\bullet\bullet$ Only under certain conditions, can the integrating factor be found systematically.

Let say, if
$$F = F(x)$$
 (function of x only)
 $(*) \Longrightarrow F \frac{\partial P}{\partial y} = \frac{dF}{dx}Q + F \frac{\partial Q}{\partial x} \quad \dots \quad (**)$
 $\frac{1}{FQ} \times (**) \Longrightarrow \frac{1}{F} \frac{dF}{dx} = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) \equiv R$
 $\cdot \cdot \frac{1}{F} \frac{dF}{dx}$ is a function of x only $\Longrightarrow F(x)$ exist only when $R = R(x)$
 $\implies \frac{1}{F} dF = R dx$ (separable)

If
$$\overline{F = F(y)}$$
 (function y only)
 $(*) \Longrightarrow \frac{dF}{dy}P + F\frac{\partial P}{\partial y} = F\frac{\partial Q}{\partial x} - \cdots + (***)$
 $\frac{1}{FP} \times (***) \Longrightarrow \frac{1}{F}\frac{\partial F}{dy} = \frac{1}{P}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \equiv \tilde{R}$
••• $\frac{1}{F}\frac{\partial F}{dy}$ is a function of y only $\Longrightarrow F(y)$ exist only when $\tilde{R} = \tilde{R}(y)$
 $\Longrightarrow \frac{1}{F}dF = \tilde{R}dy$ (separable)
 $\Longrightarrow F(y) = e^{\int \tilde{R}(y)dy}$

If $F = F(x, y) \Longrightarrow F(x, y)$ can only be found by inspection !!

<u>*Ex*</u>: Consider an initial value problem:

$$2xydx + (4y + 3x^2)dy = 0, \qquad y(0.2) = -1.5.$$

Solve for y(x).

$$\frac{\partial}{\partial y}(2xy) = 2x \neq \frac{\partial}{\partial x}(4y + 3x^2) = 6x$$

- \bullet^{\bullet} the differential is not exact.
- (A) Assume integrating factor F = F(x)

$$\frac{\partial}{\partial y} \left(F(x) \times (2xy) \right) = \frac{\partial}{\partial x} \left(F(x) \times (4y + 3x^2) \right)$$
$$\implies F \times (2x) = \frac{dF}{dx} \times (4y + 3x^2) + F \times 6x$$
$$\implies \frac{dF}{dx} \times (4y + 3x^2) = -4x \times F$$
$$\frac{1}{F} \frac{dF}{dx} = \frac{-4x}{4y + 3x^2} \qquad \text{is a function of } x \text{ and } y$$

(B) Assume F = F(y) $\frac{\partial}{\partial y} (F(y) \times (2xy)) = \frac{\partial}{\partial x} (F(y) \times (4y + 3x^2))$ $\implies \frac{dF}{dy} \times (2xy) + F \times (2x) = F \times (6x)$ $\implies \frac{1}{F} \frac{dF}{dy} = \frac{4x}{2xy} = \frac{2}{y}$ $\therefore F(y) = y^2$ $\implies y^2 [2xydx + (4y + 3x^2)dy] = 0$ $\implies 2xy^3dx + (4y^3 + 3x^2y^2)dy = 0$ $\implies \frac{\partial(2xy^3)}{\partial y} = 6xy^2 = \frac{\partial(4y^3 + 3x^2y^2)}{\partial x} = 6xy^2$

• exact!!

i.e. the solution is u(x, y) = constant

$$\begin{aligned} \frac{\partial u}{\partial x} &= 2xy^3 \quad \Longrightarrow u(x,y) = x^2y^3 + k(y) \\ \frac{\partial u}{\partial y} &= 4y^3 + 3x^2y^2 = 3x^2y^2 + \frac{dk}{dy} \implies \frac{dk}{dy} = 4y^3 \implies k(y) = y^4 + c' \\ \bullet \bullet u(x,y) &= x^2y^3 + y^4 = c \quad \text{is the general solution.} \end{aligned}$$

Apply the initial condition y(0.2) = -1.5

$$\implies (0.2)^2 \times (-1.5)^3 + (-1.5)^4 = c$$

$$\implies c = 4.9275$$

•• $u(x,y) = x^2y^3 + y^4 = 4.9275$ is the particular solution. \Box

1.7 Linear Differential Equation

 $\begin{array}{l} \hline y' + p(x)y = r(x) \\ \text{If } r(x) = 0 \Longrightarrow \text{ homogeneous differential equation} \\ r(x) \neq 0 \Longrightarrow \text{ non-homogeneous} \end{array}$

$$\boxed{r(x) = 0} \quad (\text{homogeneous})$$

$$y' + p(x)y = 0$$

$$\implies \frac{dy}{y} = -p(x)dx \quad (\text{separable})$$

$$\implies \int \frac{dy}{y} = -\int p(x)dx$$

$$\implies \ln|y| = -\int p(x)dx + c^*$$

$$\implies |y| = e^{-\int p(x)dx + c^*}$$

$$\implies y(x) = ce^{-\int p(x)dx}$$

If c = 0, $y(x) = 0 \leftarrow$ trivial solution.

$$\boxed{r(x) \neq 0} \quad (\text{non-homogeneous})$$

$$\frac{dy}{dx} + p(x)y = r(x)$$

$$\implies [p(x)y - r(x)]dx + (1)dy = 0 \quad ---- (*)$$

To find integrating factor F(x):

$$\frac{\partial}{\partial y} [F(x)(p(x)y - r(x))] = \frac{\partial}{\partial x} [F(x)]$$

$$\implies F(x) \cdot p(x) = \frac{dF}{dx}$$

$$\implies \int \frac{dF}{F} = \int p(x)dx$$

$$\implies \ln |F| = \int p(x)dx$$

$$\implies F(x) = e^{\int p(x)dx}$$

••• $F(x) \times (*)$

$$\implies e^{\int p(x)dx}[p(x)y - r(x)]dx + e^{\int p(x)dx}dy = 0$$
 is exact.

Check:

$$\frac{\partial}{\partial y} \left\{ e^{\int p(x)dx} [p(x)y - r(r)] \right\} = e^{\int p(x)dx} \cdot p(x) = \frac{\partial}{\partial x} \left(e^{\int p(x)dx} \right)$$

 \bullet^{\bullet} the new equation is exact.

$$\begin{aligned} \frac{\partial u}{\partial x} &= e^{\int p(x)dx} [p(x) \cdot y - r(x)] \quad ----- (1) \\ \frac{\partial u}{\partial y} &= e^{\int p(x)dx} \quad ----- (2) \\ (2) &\Longrightarrow u(x,y) = y e^{\int p(x)dx} + k(x) \\ (1) &\Longrightarrow \frac{\partial u}{\partial x} = y p(x) e^{\int p(x)dx} + \frac{dk}{dx} = e^{\int p(x)dx} [p(x)y - r(x)] \\ &\Longrightarrow \frac{\partial k}{dx} = -r(x) e^{\int p(x)dx} \\ & \bullet \bullet k(x) = -\int \left(r(x) e^{\int p(x)dx} \right) dx + c^* \end{aligned}$$

•• The solution is:

$$ye^{\int p(x)dx} - \int \left(r(x)e^{\int p(x)dx}\right)dx + c^* = 0$$

or

$$y(x) = \frac{\int \left(r(x) \cdot e^{\int p(x) dx} \right) dx + c}{e^{\int p(x) dx}} \quad \Box$$

Ex:
$$y' - y = e^{2x}$$

Separable? No
Exact? No
First order linear ordinary differential equation? Yes!

$$y' + p(x)y = r(x)$$

$$p(x)=-1, \quad r(x)=e^{2x}$$

••
$$y(x) = \frac{\int \left(e^{2x} \cdot e^{\int (-1)dx}\right) dx + c}{e^{\int (-1)dx}}$$

$$= \frac{\int \left(e^{2x} \cdot e^{-x}\right) dx + c}{e^{-x}}$$
$$= e^x \cdot (e^x + c)$$
$$= ce^x + e^{2x} \Box$$

$$\underline{Ex}: \quad y' + (\tan x)y = \sin 2x, \qquad y(0) = 1$$
First order linear ordinary differential equation
$$p(x) = \tan x, \quad r(x) = \sin 2x$$

$$\implies y(x) = \frac{\int \left(\sin 2x \cdot e^{\int \tan x dx}\right) dx + c}{e^{\int \tan x dx}}$$

$$= \frac{\int \left(\sin 2x \cdot e^{\ln|\sec x|}\right) dx + c}{e^{\ln|\sec x|}}$$

$$= \frac{\int (\sin 2x \cdot \sec x) \cdot dx + c}{\sec x}$$

$$= \frac{\int (2\sin x \cdot \cos x \cdot \sec x) dx + c}{\sec x}$$

 $= \cos x (c - 2\cos x)$

Initial condition y(0) = 1:

$$\implies y(0) = \cos 0(c - 2\cos 0) = 1(c - 2) = 1$$
$$\implies c = 3$$
$$\bullet \cdot \cdot \cdot y(x) = \cos x(3 - 2\cos x) \quad \Box$$

26

Chapter 2

Second-Order Linear Differential Equation

2.1 Homogeneous Linear 2nd-order ODE

$$y'' + p(x)y' + q(x)y = 0$$

where p(x) and q(x) are the coefficients.

<u>Ex</u>: y'' - y = 0 $y = e^x$, $y = e^{-x}$, $y = -3e^x + 8e^{-x}$, $y = c_1e^x + c_2e^{-x}$ all are solutions of the equation. \Box

Theorem : Superposition or Linearity Principle If $y = y_1(x)$ and $y = y_2(x)$ are solutions of y'' + p(x)y' + q(x)y = 0 $\implies y = c_1y_1 + c_2y_2$ is also solution.

$$y'' + py' + qy$$

= $(c_1y_1 + c_2y_2)'' + p(c_1y_1 + c_2y_2)' + q(c_1y_1 + c_2y_2)$
= $c_1(y''_1 + py'_1 + qy_1) + c_2(y''_2 + py'_2 + qy_2)$
= 0

<u>Note</u>:

(1) Only the linear and homogeneous differential equations have the superposition property.

(2) Nonlinear differential equations and non-homogeneous differential equations do not have the superposition property.

<u>Ex</u>: Nonhomogeneous linear differential equation y'' + y = 1. Both $y = 1 + \cos x$ and $y = 1 + \sin x$ are solutions. But $y = 2(1 + \cos x)$ or $y = (1 + \cos x) + (1 + \sin x)$ are NOT.

<u>Ex</u>: Nonlinear differential equation y''y - xy' = 0. Both $y = x^2$ and y = 1 are solutions.

But $y = -x^2$ or $y = x^2 + 1$ are NOT.

Initial Value Problem, Boundary Value Problem

• For *first-order* ordinary differential equations:

General solution has one constant.

Initial condition is used to find the constant \implies particular solution.

• For second-order homogeneous linear ordinary differential equations: y'' + p(x)y' + q(x)y = 0

General solution is $y = c_1y_1 + c_2y_2$, c_1 and c_2 are constants. Need TWO conditions for the constants:

 $y(x_0) = k_0, \quad y'(x_0) = k_1 \quad \leftarrow \text{ initial condition}$ or $y(x_1) = k_1, \quad y(x_2) = k_2 \quad \leftarrow \text{ boundary condition}$ $\implies particular \ solution$

Ex:
$$y'' - y = 0$$
, $y(0) = 5$, $y'(0) = 3$.

Both e^x and e^{-x} are solutions.

• general solution: $y = c_1 e^x + c_2 e^{-x}$

Apply initial conditions:

$$y(0) = c_1 + c_2 = 5$$

 $y'(0) = c_1 - c_2 = 3$

• $c_1 = 4, c_2 = 1 \Longrightarrow$ particular solution: $y = 4e^x + e^{-x}$

However, if we let the general solution: $y = c_1 e^x + c_2 e^x$

$$y(0) = c_1 + c_2 = 5$$

 $y'(0) = c_1 + c_2 = 3$ oops!!?

Basis or Fundamental System

If y_1 and y_2 are solutions of y'' + p(x)y' + q(x)y = 0, and $y_1 \neq ky_2$ or $y_2 \neq ly_1$, i.e. y_1 and y_2 are not proportional.

 $\implies y_1 \text{ and } y_2 \text{ are called a basis or fundamental system of the equation.}$

 \implies The general solution is $y = c_1 y_1 + c_2 y_2$.

 $y_1 \neq ky_2$ or $y_2 \neq ly_1$

 $\implies k_1 y_1 + k_2 y_2 = 0 \quad \text{iff} \quad k_1 = k_2 = 0$

 $\implies y_1$ and y_2 are linearly independent

 \implies If y_1 and y_2 are basis of *solution*, then y_1 and y_2 are linearly independent.

2.2 Homogeneous Equations with Constant Coefficients

2.3 Homogeneous Equations with Constant Coefficients (continued)

 $y'' + ay' + by = 0 \qquad (1)$

where a and b are real constants.

Assume the form of the solution is $y = e^{\lambda x}$. Substitute y(x) into (1):

$$\implies \lambda^2 e^{\lambda x} + a\lambda e^{\lambda x} + b e^{\lambda x} = 0$$

$$(\lambda^2 + a\lambda + b)e^{\lambda x} = 0$$

Since $e^{\lambda x}$ cannot be zero $\implies \lambda^2 + a\lambda + b = 0 \quad \leftarrow \text{characteristic} \text{ or auxiliary equation of (1)}$ Solutions of the characteristic equation:

$$\lambda_{1,2} = \frac{1}{2}(-a \pm \sqrt{a^2 - 4b})$$

•• the solutions of (1) is:

$$y_1 = e^{\lambda_1 x}, \quad y_2 = e^{\lambda_2 x}$$

If
$$a^2 - 4b > 0$$

i.e. λ_1 and λ_2 are two distinct real roots.

 $\implies y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ is the general solution of (1).

If
$$a^2 - 4b = 0$$

i.e. $\lambda_1 = \lambda_2 = -\frac{a}{2}$,
 $\implies y_1 = e^{-\frac{a}{2}x}$

To find another basis, try $y_2 = u(x)y_1$

$$y_{2}'' + ay_{2}' + by_{2} = 0$$

$$\implies (u'y_{1} + uy_{1}')' + a(u'y_{1} + uy_{1}') + b(uy_{1}) = 0$$

$$\implies (u''y_{1} + 2u'y_{1}' + uy_{1}'') + a(u'y_{1} + uy_{1}') + b(uy_{1}) = 0$$

$$\implies u''y_{1} + u' \underbrace{(2y_{1}' + ay_{1})}_{(\bullet \bullet} + u \underbrace{(y_{1}'' + ay_{1}' + by_{1})}_{= 0} = 0$$

$$\stackrel{\bullet}{\longrightarrow} u''y_{1} = 0 \text{ and } y_{1} \neq 0$$

$$\implies u'' = 0 \implies u = d_{1}x + d_{2}$$

$$\stackrel{\bullet}{\bullet} y_{2} = xy_{1} \text{ i.e., } y = (c_{1} + c_{2}x)e^{-\frac{a}{2}x}$$

If
$$a^2 - 4b < 0$$

 $\lambda_{1,2} = \frac{1}{2}(-a \pm i\sqrt{4b - a^2})$
 $= -\frac{a}{2} \pm i\sqrt{b - \frac{a^2}{4}} \equiv -\frac{a}{2} \pm iw$
 $\implies y = c_1^* e^{(-\frac{a}{2} + iw)x} + c_2^* e^{(-\frac{a}{2} - iw)x}$
 $= c_1^* e^{-\frac{a}{2}x} \cdot e^{iwx} + c_2^* e^{-\frac{a}{2}x} \cdot e^{-iwx}$

Euler formula: $e^{iwx} = \cos wx + i \sin wx$ For real y(x), the bases are $[e^{-\frac{a}{2}x} \cos wx]$ and $[e^{-\frac{a}{2}x} \sin wx]$.

• •
$$y = c_1 e^{-\frac{a}{2}x} \cos wx + c_2 e^{-\frac{a}{2}x} \sin wx$$

Summary :

Case	Roots	Basis	General solution						
$b^2 - 4ac > 0$	distinct real roots λ_1, λ_2	$e^{\lambda_1 x}, e^{\lambda_2 x}$	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$						
$b^2 - 4ac = 0$	real double root λ	$e^{\lambda x}, x e^{\lambda x}$	$y = (c_1 + c_2 x)e^{\lambda x}$						
$b^2 - 4ac < 0$	complex conjugate $\lambda_1 = \lambda + iw$ $\lambda_2 = \lambda - iw$	$e^{\lambda x} \cos wx \\ e^{\lambda x} \sin wx$	$y = e^{\lambda x} (c_1 \cos wx + c_2 \sin wx)$						

<u>Ex</u>: y'' + y' - 2y = 0, y(0) = 4, y'(0) = -5<u>Sol</u>:

Characteristic equation: $\lambda^2 + \lambda - 2 = 0$

$$\implies \lambda_1 = \frac{1}{2}(-1 + \sqrt{9}) = 1, \quad \lambda_2 = \frac{1}{2}(-1 - \sqrt{9}) = -2$$

•• the general solution is $y(x) = c_1 e^x + c_2 e^{-2x}$

Apply the initial conditions:

$$y(0) = c_1 + c_2 = 4$$

 $y'(0) = c_1 - 2c_2 = -5$

 $\implies c_1 = 1, \quad c_2 = 3$

•• the particular solution is $y(x) = e^x + 3e^{-2x}$

<u>Ex</u>: y'' - 4y' + 4y = 0, y(0) = 3, y'(0) = 1<u>Sol</u>:

Characteristic equation: $\lambda^2 - 4\lambda + 4 = 0$

 $\implies \lambda_1 = \lambda_2 = 2$

•• the general solution is $y(x) = (c_1 + c_2 x)e^{2x}$

Apply the initial conditions:

$$y(0) = c_1 = 3$$
$$y'(0) = c_2 + 2c_1 = 1$$
$$\implies c_1 = 3, \quad c_2 = -5$$

•• the particular solution is $y(x) = (3 - 5x)e^{2x}$

 $\underline{Ex}: y'' + y = 0, \qquad y(0) = 3, \quad y'(2\pi) = -3$ <u>Sol</u>:

Characteristic equation: $\lambda^2 + 1 = 0$

$$\implies \lambda_1 = i, \quad \lambda_2 = -i$$

• the general solution is $y(x) = c_1 \cos x + c_2 \sin x$

Apply the *boundary* conditions:

$$y(0) = c_1 = 3$$

 $y'(2\pi) = c_2 = -3$

•• the particular solution is $y(x) = 3\cos x - 3\sin x$

2.4 Differential Operators. Optional

2.5 Free Oscillations of Mass-Spring system

Undamped System

my'' + ky = 0

 \implies characteristic equation:

$$m\lambda^{2} + k = 0 \implies \lambda = \frac{0 \pm \sqrt{-4mk}}{2m} = \pm i\sqrt{\frac{k}{m}}$$
$$\implies y(t) = A\cos\omega_{0}t + B\sin\omega_{0}t \qquad \omega_{0} = \sqrt{\frac{k}{m}}$$
$$\equiv c\cos(\omega_{0}t - \delta)$$

where $c = \sqrt{A^2 + B^2}$ $\delta = \tan^{-1} \frac{B}{A}$

period = $\frac{1}{\text{frequency}} = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$

Damped System

my'' + cy' + ky = 0

where c is the damping constant, assuming the viscous damping force $\propto y'(t)$ (velocity).

 \implies characteristic equation:

$$\lambda^{2} + \frac{c}{m}\lambda + \frac{k}{m} = 0$$
$$\lambda_{1,2} = -\frac{c}{2m} \pm \frac{1}{2m}\sqrt{c^{2} - 4mk}$$
$$= -\alpha \pm \beta$$

(1) $\underline{c^2 > 4mk}: \lambda_1, \lambda_2$ are distinct real roots

$$y(t) = c_1 e^{-(\alpha - \beta)t} + c_2 e^{-(\alpha + \beta)t}$$

$$\alpha = \frac{c}{2m} > 0$$

$$\beta = \frac{1}{2m} \sqrt{c^2 - 4mk} > 0$$

$$\beta^2 = \frac{c^2 - 4mk}{4m^2} = \frac{c^2}{4m^2} - \frac{k}{m} = \alpha^2 - \frac{k}{m}$$

$$\implies \alpha > \beta$$

$$\implies y(t) \to 0 \quad \text{when} \quad t \to 0$$

 \Rightarrow overdamping

(2)
$$\underline{c^2 = 4mk}$$
: one real root $\lambda = -\frac{c}{2m} \equiv -\alpha$
 $y(t) = (c_1 + c_2 t) \underline{e}^{-\alpha t}$

$$y(t) = \underbrace{(c_1 + c_2 t)}_{=0 \text{ at } t = -\frac{c_1}{c_2}} \underbrace{e}_{\neq 0}$$

 $\implies y(t)$ may have at most one zero at $t = -\frac{c_1}{c_2}$

\implies critical damping

(3) $\underline{c^2 < 4mk}$: $\lambda_{1,2}$ are complex conjugate roots.

$$\lambda_{1,2} = -\frac{c}{2m} \pm \frac{i}{2m}\sqrt{4mk - c^2} \equiv -\alpha \pm i\omega^*$$

$$\omega^* = \frac{1}{2m}\sqrt{4mk - c^2} = \sqrt{\frac{k}{m} - \frac{c^2}{4m^2}}$$

$$y(t) = e^{-\alpha t} (c_1 \cos \omega^* t + c_2 \sin \omega^* t)$$
$$\equiv c e^{-\alpha t} \cos(\omega^* t - \delta)$$
$$(c^2 = c_1^2 + c_2^2, \quad \delta = \tan^{-1} \frac{c_2}{c_1})$$

\Rightarrow underdamping

2.6 Euler-Cauchy Equation

 $x^2y'' + axy' + by = 0$ a, b are constants.

We assume the form of the solution is $y = x^m$ $\implies x^2m(m-1)x^{m-2} + axmx^{m-1} + bx^m = 0$ $\implies m(m-1) + am + b = 0$ $\implies m^2 + (a-1)m + b = 0$

(1)
$$(a-1)^2 - 4b > 0$$
:
Two distinct real $m_{1,2} = \frac{-(a-1)\pm\sqrt{a-1)^2 - 4b}}{2}$

••
$$y(x) = c_1 x^{m_1} + c_2 x^{m_2}$$

(2)
$$(a-1)^2 - 4b = 0$$
:
One real root $m = \frac{1-a}{2}$

$$\implies y_1 = x^{\frac{(1-a)}{2}}$$

Assume the other solution $y_2 = u(x)y_1$, and find u(x).

$$\begin{aligned} x^2 y'' + axy' + by &= 0 \\ \implies x^2 (u''y_1 + 2u'y_1' + uy_1') + ax(u'y_1 + uy_1') + buy_1 &= 0 \\ \implies u''x^2y_1 + u'x \underbrace{(2xy_1' + ay_1)}_{\equiv (*)} + u\underbrace{(x^2y_1'' + 1xy_1' + by_1)}_{= 0} = 0 \\ (*) &= 2x \frac{(1-a)}{2} x^{(1-a-1)} + ax^{\frac{(1-a)}{2}} = (1-a)x^{(1-a)} + ax^{(1-a)} = x^{\frac{(1-a)}{2}} = y_1 \\ \implies u''x^2y_1 + u'xy_1 &= 0 \\ \text{or} \quad (u''x^2 + u'x)y_1 = 0 \\ \text{Since} \quad y_1 \neq 0 \implies u''x^2 + u'x = 0 \\ \implies \underbrace{(u')'}_{\equiv z'} x + \underbrace{(u')}_{\equiv z} = 0 \\ \implies \underbrace{dz}_{z} = -\frac{dx}{x} \quad (\text{separable}) \\ \implies \ln |z| = \ln |u'| = -\ln x \quad x > 0 \\ \implies u' = \frac{1}{x} \implies u = \ln x \quad x > 0 \\ \implies y_2 = \ln x \cdot x^{\frac{(1-a)}{2}} \end{aligned}$$

(3)
$$(a-1)^2 - 4b < 0$$
:

Two complex roots
$$m_{1,2} = \frac{-(a-1) \pm i\sqrt{4b - (a-1)^2}}{2} \equiv u \pm i\nu$$

Since
$$\begin{cases} x^{i\nu} = e^{i\nu \ln x} = \cos(\nu \ln x) + i\sin(\nu \ln x) \\ x^{-i\nu} = e^{-i\nu \ln x} = \cos(\nu \ln x) - i\sin(\nu \ln x) \end{cases}$$

$$\implies y(x) = c_1 x^u \cos(\nu \ln x) + c_2 x^u \sin(\nu \ln x)$$
$$= x^u (c_1 \cos(\nu \ln x) + c_2 \sin(\nu \ln x)) \quad \Box$$

2.7 Existence and Uniqueness Theory. Wronskian

$$y'' + p(x)y' + q(x)y = 0 \qquad (1)$$

p(x), q(x) are continuous functions

 \implies general solution of (1):

 $y(x) = c_1 y_1(x) + c_2 y_2(x)$ (2)

 $y_1(x)$ and $y_2(x)$ form a basis.

i.e. y_1 and y_2 are linear independent

i.e. $k_1y_1(x) + k_2y_2(x) = 0$ only when $k_1 = 0$ and $k_2 = 0$]

If y_1 and y_2 are linear dependent

 $\implies y_1 = ay_2 \text{ or } y_2 = by_1$, where a, b are constants \implies Wronskian (Wronski determinant) W

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1 = 0$$

•• W = $(ay_2)y'_2 - y_2(ay'_2) = 0$
or W = $y_1(by'_1) - (by_1)y'_1 = 0$

Theorem :

Second order homogeneous, linear ordinary differential equation (1) with continuous p(x), q(x) on some interval I.

 \implies (1) has a general solution on I, and the solution has the from $y(x) = c_1 y_1(x) + c_2 y_2(x)$, where y_1 and y_2 are linear independent. \Box

Initial value problem : (1) with initial conditions: $y(x_0) = k_0$, $y'(x_0) = k_1$ (3) $\implies c_1 \text{ and } c_2 \text{ of } (2) \text{ are determined from } (3) \square$

Theorem :

Second order homogeneous, linear ordinary differential equation (1) with continuous p(x), q(x) on some interval I, and initial condition (3) at some x_0 on I

 \implies The initial value problem (1) and (3) has a *unique* solution on the interval I. \Box

Given $y_1(x)$, how to obtain $y_2(x)$: method of reduction of order

$$y'' + p(x)y' + q(x)y = 0$$
 (1)

Given
$$y_1(x)$$

Assume $y_2(x) \equiv u(x)y_1(x)$
 $y'_2 = u'y_1 + uy'_1$
 $y''_2 = u'y_1 + 2u'y'_1 + uy''_1$
(1) $\implies u''y_1 + u'(2y'_1 + py_1) + u(y''_1 + py'_1 + qy_1) = 0$
 $\implies u''y_1 + u'(2y'_1 + py_1) = 0$
 $u' \equiv U$
 $\implies U'y_1 + U(2y'_1 + py_1) = 0 \quad \leftarrow \text{ separable}$
 $\implies U'y_1 + U(2y'_1 + py_1) = 0 \quad \leftarrow \text{ separable}$
 $\implies U'y_1 + U(2y'_1 + py_1) = 0 \quad \leftarrow \text{ separable}$
 $\implies U'y_1 - \int pdx$
 $\implies U'y_1 + U(2y'_1 + py_1) dx$
 $\implies U'y_1 + U'y_1$

<u>Ex</u> :

$$(x^{2} - 1)y'' - 2xy' + 2y = 0$$

$$y_{1} = x, \quad \text{find } y_{2}$$

$$\implies y'' - \frac{2x}{\underbrace{x^{2} - 1}}y' + \underbrace{\frac{2}{\underbrace{x^{2} - 1}}}_{= p(x)}y = 0$$

$$y_2 = u \cdot y_1$$

$$\begin{aligned} u(x) &= \int \frac{e^{-\int p dx}}{y_1^2} dx = \int \frac{e^{\int \frac{2x}{x^2 - 1} dx}}{x^2} dx \\ &= \int \frac{e^{\ln|x^2 - 1|}}{x^2} dx = \int \frac{x^2 - 1}{x^2} dx = \int (1 - \frac{1}{x^2}) dx \\ &= x + \frac{1}{x} \end{aligned}$$

$$\implies y_2(x) = \left(x + \frac{1}{x}\right)x = x^2 + 1$$

•• $y(x) = c_1x + c_2(x^2 + 1)$

2.8 Nonhomogeneous Equations

 $y'' + p(x)y' + q(x)y = r(x), \qquad r(x) \neq 0$ (1)

cf: homogeneous equation:

y'' + p(x)y' + q(x)y = 0 (2)

The general solution of (1) is $y(x) = y_h(x) + y_p(x)$, where

 $y_h(x)$ is the *general* solution of the homogeneous equation (2),

 $y_p(x)$ is any *particular* solution of the nonhomogeneous equation (1).

What is the particular solution of (1)?

$$\implies y(x) = \underbrace{c_1 y_1(x) + c_2 y_2(x)}_{= y_h(x)} + y_p(x)$$

where c_1 and c_2 have specific values.

<u>Ex</u>:

$$y'' - 4y' + 3y = 10e^{-2x}, \qquad y(0) = 1, y'(0) = -3$$

(1) $y_h(x)$

Characteristic equation:

 $\lambda^2 - 4\lambda + 3 = 0 \implies \lambda = 1 \text{ or } 3$ $\implies y_h(x) = c_1 e^x + c_2 e^{3x}$

(2) $y_p(x)$ Since $r(x) = 10e^{-2x}$

$$\implies y_p(x) = ce^{-2x}$$
$$\implies 4ce^{-2x} + 8ce^{-2x} + 3ce^{-2x} = 10e^{-2x}$$
$$\implies 15c = 10 \quad \bullet \bullet c = \frac{2}{3}$$
$$\bullet \bullet y(x) = c_1e^x + c_2e^{3x} + \frac{2}{3}e^{-2x} \quad \Box$$

2.9 Solution by Undetermined Coefficients

y'' + ay' + by = r(x) where a, b are constants

The general solution is: $y(x) = y_h(x) + y_p(x)$

Rules to find $y_p(x)$:

(A) Given the following types of r(x), $y_p(x)$ has the form of:

r(x)	$y_p(x)$
ke^{rx}	ce^{rx}
$kx^n (n=0,1,2\ldots)$	$k_n x^n + k_{n-1} x^{n-1} \dots + k_1 x + k_0$
$k\cos wx$	$k_1 \cos wx + k_2 \sin wx$
$k\sin wx$	$\kappa_1 \cos \omega x + \kappa_2 \sin \omega x$
$ke^{\alpha x}\cos wx$	$e^{\alpha x}(k, \cos wx + k, \sin wx)$
$ke^{lpha x}\sin wx$	$e^{\alpha x}(k_1\cos wx + k_2\sin wx)$

The constants c or k_n are determined by substituting $y_p(x)$ into the nonhomogeneous equation.

(B) If $y_p(x)$ in the above table is a solution of the homogeneous solution. \implies Assume the new $y_p(x) = xy_p(x)$ (or new $y_p(x) = x^2y_p(x)$ if the homogeneous solution corresponds to a double root of the characteristic equation)

$$\underline{Ex}: \qquad y'' + 4y = 8x^2$$
(1) $\underline{y_h(x)}:$

$$\lambda^2 + 4 = 0 \Longrightarrow \lambda = \pm 2i$$

$$\bullet \cdot y_h(x) = A \cos 2x + B \sin 2x$$
(2) $\underline{y_p(x)}:$

$$y_p(x) \equiv c_2 x^2 + c_1 x + c_0$$

$$\Longrightarrow (2c_2) + 4(c_2 x^2 + c_1 x + c_0) = 8x^2$$

$$\Longrightarrow c_2 = 2, \quad c_1 = 0, \quad c_0 = -1$$

$$\bullet \cdot y_p(x) = 2x^2 - 1$$

•• $y(x) = A\cos 2x + B\sin 2x + 2x^2 - 1$

$$\underline{Ex}: \qquad y'' - 3y' + 2y = e^x$$
(1) $\underline{y_h(x)}:$

$$\lambda^2 - 3\lambda + 2 = 0 \Longrightarrow \lambda = 2, 1$$

$$\Longrightarrow y_h(x) = c_1 e^x + c_2 e^{2x}$$
(2) $\underline{y_p(x)}:$

$$y_p(x) \equiv cx e^x$$

$$\Longrightarrow c(2+x)e^x - 3c(1+x)e^x + 2cx e^x = e^x$$

$$\Longrightarrow c = -1$$

••
$$y(x) = c_1 e^x + c_2 e^{2x} - x e^x$$

$$\underline{Ex}: \quad y'' - 2y' + y = e^x + x \quad y(0) = 1, \ y'(0) = 0$$
(1) $\underline{y_h(x)}:$

$$\lambda - 2\lambda + 1 = 0 \Longrightarrow \lambda = 1$$

$$\Rightarrow y_h(x) = (c_1 + c_2 x)e^x$$
(2) $\underline{y_p(x)}:$

$$y_p(x) \equiv cx^2 e^x + k_1 x + k_0$$

$$y'_p = c(2xe^x + x^2e^x) + k_1 = ce^x(2x + x^2) + k_1$$

$$y''_p = ce^x(2x + x^2) + ce^x(2 + 2x) = ce^x(x^2 + 4x + 2)$$

$$\Rightarrow ce^x(x^2 + 4x + 2) - 2ce^x(2x + x^2) - 2k_1 + cx^2e^x + k_1x + k_0 = e^x + x$$

$$\Rightarrow 2ce^x + k_1x - 2k_1 + k_0 = e^x + x$$

$$\Rightarrow c = \frac{1}{2} \quad k_1 = 1 \quad k_0 = 2$$

•• the general solution is $y(x) = (c_1 + c_2 x)e^x + \frac{1}{2}x^2e^x + x + 2$

Apply the initial conditions:

$$y(0) = 1 \Longrightarrow c_1 + 2 = 1 \Longrightarrow c_1 = -1$$

$$y'(0) = 0 \Longrightarrow c_2 + c_1 + 1 = 0 \Longrightarrow c_2 = 0$$

•• the particular solution is $y(x) = -e^x + \frac{1}{2}x^2e^x + x + 2$

2.10 Solution by Variation of Parameters

y'' + ay' + by = r(x) where a, b are constants — (*) The general solution is: $y(x) = y_h(x) + y_p(x)$

We know that the homogeneous solution $y_h(x)$ has the from: $y_h(x) = c_1y_1(x) + c_2y_2(x)$ where y_1 and y_2 from a basis.

■ Method of variation of "parameters": Replace the parameters c_1 and c_2 by u(x) and v(x) $\implies y_p(x) = u(x)y'(x) + v(x)y_2(x)$ Substitute $y_p = uy_1 + vy_2$ into (1), we get one equation for u(x) and v(x). To get another equation, $y'_p = u'y_1 + uy'_1 + v'y_2 + vy'_2 = \underbrace{u'y_1 + v'y_2}_{\equiv 0} + uy'_1 + vy'_2$ \implies the second equation is $u'y_1 + v'y_2 \equiv 0$ $\bullet y'_p = uy'_1 + vy'_2$ and $y''_p = u'y'_1 + uy''_1 + v'y'_2 + vy''_2$ Substitute $y_p = uy_1 + vy_2$ into (*): $\implies (u'y'_1 + uy''_1 + v'y'_2 + vy''_2) + p(uy'_1 + vy'_2) + q(uy_1 + vy_2) = r$ $\implies u(\underline{y''_1 + yy'_1 + qy_1}) + v(\underline{y''_2 + py'_2 + qy_2}) + u'y'_1 + v'y'_2 = r$

$$\implies \begin{cases} u'y_1' + v'y_2' = r & ---- & (1) \\ u'y_1 + v'y_2 \equiv 0 & ---- & (2) \end{cases} \leftarrow \text{equations for } u', v'$$

$$(2)y_2' - (1)y_2 \implies u'(y_1y_2' - y_2'y_2) = -y_2r$$

$$(1)y_1 - (2)y_1' \implies v' \underbrace{(y_1y_2' - y_1'y_2)}_{=W(y_1, y_2)} = y_1r$$

where $W(y_1, y_2)$ is the Wronskian, and $W \neq 0$ i.e. y_1 and y_2 form a basis.

$$\Rightarrow \begin{cases} u' = -\frac{y_2 r}{W} \\ v' = \frac{y_1 r}{W} \end{cases}$$
$$\Rightarrow \begin{cases} u = -\int \frac{y_2 r}{W} dx \\ v = \int \frac{y_1 r}{W} dx \end{cases}$$
$$\Rightarrow y_p = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx \qquad \Box$$

$$\underline{Ex}: \quad y'' + y = \sec x$$
(1) $\underline{y_h}:$

$$y''_h + y_h = 0$$

$$\lambda^2 + 1 = 0 \Longrightarrow \lambda = \pm i$$

$$\Longrightarrow y_h = c_1 \cos x + c_2 \sin x$$
(2) $\underline{y_p}:$

$$y_1 = \cos x \qquad y_2 = \sin x$$

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1$$

$$u(x) = \int \frac{\sin x \cdot \sec x}{1} dx = \ln |\cos x|$$

$$v(x) = -\int \frac{\cos x \cdot \sec x}{1} dx = x$$

$$\implies y_p = (\ln|\cos x|)\cos x + x\sin x$$

• •
$$y = y_h + y_p = (c_1 + \ln|\cos x|)\cos x + (c_2 + x)\sin x$$