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Applied Mathematics — Ordinary Differential Equations Wu-ting Tsai

1.1 Basic Concepts and Ideas

Ordinary differential equation (ode):

Equation which contains one or several derivatives of an unknown function

of one variable

Ex: Unknown y = y(x)

y′ = cos x

x2y′′′y′ + 2exy′′ = (x2 + 2)y2
✷

cf: partial differential equation (pde):

Equation which contains one or several partial derivatives of an unknown

function of multiple variables

physics modeling =⇒ mathematics =⇒ solutions

Ex:

m
d2y

dt2
+ ky = 0

l
d2θ

dt2
+ g sin θ = 0
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Order of an ode is the order of the highest derivative.

Ex:

F (x, y, y′) = 0 is a first order ode.

F (x, y, y′, y′′, . . . y(n)) = 0 is an n-th order ode. ✷

Solution of ode, y(x), can be

explicit: y = h(x)

or

implicit: H(x, y) = 0

Ex:
xy′ = 2y explicit solution : y = x2

yy′ = −x (−1 < x < 1) implicit solution : x2 + y2 − 1 = 0 (y > 0) ✷

General and particular solutions of an ode.

Ex:
dy

dx
= cosx

=⇒
∫ dy

dx
=

∫
cos xdx

=⇒ y(x) = − sinx + c ← general solution

y(x) = − sinx + 1 or π or 0.8 . . . ← particular solution ✷
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Ex:

y′2 = −1 has no solution.

|y′| + |y| = 0 has no general solution ••• y(x) ≡ 0 ✷

Initial value problems (IVP) (cf: Boundary value problems)

A differential equation with initial conditions.

Ex:

Physical system —

Experiments show that a radioactive substance decomposes at a rate propor-

tional to the amount present.

⇓
Mathematical model —

Let y(t) be the amount of substance at time t then

dy

dt
= ky, where k is a physical constant

⇓
General solution —

y(t) = cekt, where c is a constant

⇓
Particular solution —

If at t = 0, y = 2 (initial condition)

••• y(0) = c = 2

=⇒ y(t) = 2ekt (particular solution) ✷
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Ex:
y′ = f(x, y), y(x0) = y0

F (x, y, y′) = 0, y(x0) = y0 ✷

Ex:

Find the curve y(x) through (1, 1) in the x-y plane having at each of its

points the slope −y/x
Sol:

dy

dx
= −y

x

=⇒ y(x) =
c

x
c = arbitrary constant

i.e. xy = c = 1 (••
• x = 1, y = 1)

=⇒ The curve is xy = 1 ✷
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1.2 Separable Differential Equations

For first order ode with the form:

g(y)
dy

dx
= f(x)

=⇒
∫
g(y)

dy

dx
dx =

∫
f(x)dx + c

=⇒
∫
g(y)dy =

∫
f(x)dx + c

Ex:
9yy′ + 4x = 0

∫
9y

dy

dx
dx =

∫
(−4x)dx + c

=⇒ 9
∫
ydy = −2x2 + c

=⇒ 9

2
y2 = −2x2 + c

=⇒ x2

9
+

y2

4
= c∗ c∗ =

c

18

The solution is in implicit form. ✷
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Ex:
y′ = ky, k = constant, y(0) = 2

=⇒ 1

y

dy

dx
= k

=⇒
∫ 1

y

dy

dx
dx =

∫
kdx + c

=⇒
∫ dy

y
= kx + c

=⇒ ln |y| = kx + c

=⇒ |y| = ekx+c = ecekx

••• y = ±ecekx ≡ c∗ekx

Apply the initial condition.

y(0) = 2 =⇒ c∗ = 2

••• y(x) = 2ekx ✷
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1.3 Modeling
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1.4 Reduction to Separable Form

Certain first order ode’s, which are not separable, can be made separable by

changing of variables.

Ex:

y′ = g(
y

x
)

Let
y

x
≡ u

=⇒ y = ux and y′ = u + xu′

••• u + x
du

dx
= g(u)

=⇒ x
du

dx
= g(u)− u

=⇒ 1

g(u)− u

du

dx
=

1

x

=⇒ du

g(u)− u
=

dx

x
← this is separable ✷
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Ex:
2xyy′ − y2 + x2 = 0 ——— (∗)

(∗)÷ x2

=⇒ 2
(y
x

)
y′ −

(y
x

)2
+ 1 = 0 =⇒ y′ =

(y
x

)2 − 1

2
(y
x

) = g
(y
x

)

••• Let u ≡ y

x

=⇒ 2u(u + xu′)− u2 + 1 = 0 =⇒ 2u2 + 2ux
du

dx
− u2 + 1 = 0

=⇒ 2ux
du

dx
= −(u2 + 1) =⇒ 2u

(u2 + 1)

du

dx
=

1

x
——— (∗∗)

∫
(∗∗)dx

=⇒
∫ 2u

(u2 + 1)
du = − ln |x| + c∗

=⇒ ln(1 + u2) = − ln |x| + c∗ ≡ ln
1

|x| + ln c = ln
c

|x|

••• 1 + u2 =
c

x
(x > 0)

=⇒ 1 +
y2

x2
=

c

x
=⇒ x2 + y2 = cx ← general solution ✷
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1.5 Exact Differential Equation

Function u(x, y) has continuous partial derivatives

=⇒ its total or exact differential is

du =
∂u

∂x
dx +

∂u

∂y
dy

••• If u(x, y) = c =⇒ du = 0

Ex:
u = x + x2y2 = c

du =
∂u

∂x
dx +

∂u

∂y
dy = (1 + 2xy2)dx + (2x2y)dy = 0

=⇒ dy

dx
= −1 + 2xy2

2x2y

differential equation with solution x + x2y2 = c ✷
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A first order ode of the form:

M(x, y)dx +N(x, y)dy = 0 ——— (∗)

or M(x, y) +N(x, y)y′ = 0

is call exact, if M(x, y)dx +N(x, y)dy = du = 0

i.e. M(x, y) =
∂u

∂x
, N(x, y) =

∂u

∂y

=⇒ u(x, y) = c is the solution of (∗)

Since
∂u

∂x
= M,

∂u

∂y
= N

=⇒ ∂2u

∂x∂y
=

∂M

∂y
,

∂2u

∂y∂x
=

∂N

∂x

=⇒ ∂M

∂y
=

∂N

∂x
if (∗) is an exact ode

The solution is:

∂u

∂x
= M =⇒ u(x, y) =

∫
M(x, y)dx + k(y)

or

∂u

∂y
= N =⇒ u(x, y) =

∫
N(x, y)dy + l(x) ✷
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Ex: (x3 + 3xy2) + (3x2y + y3)y′ = 0. Solve for y(x).

=⇒ (x3 + 3xy2)dx + (3x2y + y3)dy = 0

Sol: Is the differential equation exact? i.e.

∂u

∂x
= x3 + 3xy2 ——— (1)

∂u

∂y
= 3x2y + y3 ——— (2)

=⇒ ∂(1)

∂y
=

∂

∂y


∂u
∂x


 = 6xy =

∂

∂x


∂u
∂y


 =

∂(2)

∂x
••• exact

(1) =⇒ u(x, y) =
∫
(x3 + 3xy2)dx =

1

4
x4 +

3

2
x2y2 + k(y)

(2) =⇒ ∂u

∂y
= 3x2y +

dk

dy
= 3x2y + y3

••• k(y) =
1

4
y4 + c′

••• The solution is u(x, y) =
1

4
x4 +

3

2
x2y2 +

1

4
y4 + c′ = constant

i.e. The implicit form for y(x) is:
1

4
x4 +

3

2
x2y2 +

1

4
y4 = c ——— (∗)

Check the solution:

d(∗)
dx

=⇒ x3 + 3xy2 + 3x2y
dy

dx
+ y3dy

dx
= 0

=⇒ (x3 + 3xy2) + (3x2y + y3)
dy

dx
= 0 ✷
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1.6 Integrating Factors

Consider a first order ode:

P (x, y)dx +Q(x, y)dy = 0,

which is not exact.

i.e. P �= ∂u

∂x
and Q �= ∂u

∂y

or
∂P

∂y
�= ∂Q

∂x

But a suitable function F (x, y) can make

F (x, y)P (x, y)dx+ F (x, y)Q(x, y)dy = 0

exact, i.e. F (x, y)P (x, u) =
∂u

∂x
, F (x, y)Q(x, y) =

∂u

∂y

=⇒ ∂(FP )

∂y
=

∂(FQ)

∂x

F (x, y) is then called the integrating factor. ✷
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How to find F (x, y) ?

i.e. we are looking for F (x, y) that satisfies,

∂(FP )

∂y
=

∂(FQ)

∂x

=⇒ ∂F

∂y
P + F

∂P

∂y
=

∂F

∂x
Q + F

∂Q

∂x
——— (∗)

This is a partial differential equation to solve for F (x, y) !!

Even more difficult !!!

••• Only under certain conditions, can the integrating factor be found

systematically.

Let say, if F = F (x) (function of x only)

(∗) =⇒ F
∂P

∂y
=

dF

dx
Q + F

∂Q

∂x
——— (∗∗)

1

FQ
× (∗∗) =⇒ 1

F

dF

dx
=

1

Q


∂P
∂y
−∂Q
∂x


 ≡ R

••
• 1

F

dF

dx
is a function of x only =⇒ F (x) exist only when R = R(x)

=⇒ 1

F
dF = Rdx (separable)

=⇒ F (x) = e
∫
R(x)dx
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If F = F (y) (function y only)

(∗) =⇒ dF

dy
P + F

∂P

∂y
= F

∂Q

∂x
——— (∗ ∗ ∗)

1

FP
× (∗ ∗ ∗) =⇒ 1

F

∂F

dy
=

1

P


∂Q
∂x
− ∂P

∂y


 ≡ R̃

•••
1

F

∂F

dy
is a function of y only =⇒ F (y) exist only when R̃ = R̃(y)

=⇒ 1

F
dF = R̃dy (separable)

=⇒ F (y) = e
∫
R̃(y)dy

If F = F (x, y) =⇒ F (x, y) can only be found by inspection !! ✷
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Ex: Consider an initial value problem:

2xydx + (4y + 3x2)dy = 0, y(0.2) = −1.5.

Solve for y(x).

∂

∂y
(2xy) = 2x �= ∂

∂x
(4y + 3x2) = 6x

••• the differential is not exact.

(A) Assume integrating factor F = F (x)

∂

∂y
(F (x)× (2xy)) =

∂

∂x

(
F (x)× (4y + 3x2)

)

=⇒ F × (2x) =
dF

dx
× (4y + 3x2) + F × 6x

=⇒ dF

dx
× (4y + 3x2) = −4x× F

1

F

dF

dx
=
−4x

4y + 3x2
is a function of x and y
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(B) Assume F = F (y)

∂

∂y
(F (y)× (2xy)) =

∂

∂x
(F (y)× (4y + 3x2))

=⇒ dF

dy
× (2xy) + F × (2x) = F × (6x)

=⇒ 1

F

dF

dy
=

4x

2xy
=

2

y

••• F (y) = y2

=⇒ y2[2xydx + (4y + 3x2)dy] = 0

=⇒ 2xy3dx + (4y3 + 3x2y2)dy = 0

=⇒ ∂(2xy3)

∂y
= 6xy2 =

∂(4y3 + 3x2y2)

∂x
= 6xy2

••• exact!!

i.e. the solution is u(x, y) = constant

∂u

∂x
= 2xy3 =⇒ u(x, y) = x2y3 + k(y)

∂u

∂y
= 4y3 + 3x2y2 = 3x2y2 +

dk

dy
=⇒ dk

dy
= 4y3 =⇒ k(y) = y4 + c′

••• u(x, y) = x2y3 + y4 = c is the general solution.

20



Applied Mathematics — Ordinary Differential Equations Wu-ting Tsai

Apply the initial condition y(0.2) = −1.5

=⇒ (0.2)2 × (−1.5)3 + (−1.5)4 = c

=⇒ c = 4.9275

••• u(x, y) = x2y3 + y4 = 4.9275 is the particular solution. ✷
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1.7 Linear Differential Equation

y′ + p(x)y = r(x) ← linear in y and y′

If r(x) = 0 =⇒ homogeneous differential equation

r(x) �= 0 =⇒ non-homogeneous

r(x) = 0 (homogeneous)

y′ + p(x)y = 0

=⇒ dy

y
= −p(x)dx (separable)

=⇒
∫ dy

y
= −

∫
p(x)dx

=⇒ ln |y| = −
∫
p(x)dx+ c∗

=⇒ |y| = e−
∫
p(x)dx+c∗

=⇒ y(x) = ce−
∫
p(x)dx

If c = 0, y(x) = 0 ← trivial solution.
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r(x) �= 0 (non-homogeneous)

dy

dx
+ p(x)y = r(x)

=⇒ [p(x)y − r(x)]dx + (1)dy = 0 ——— (∗)

To find integrating factor F (x):
∂

∂y
[F (x)(p(x)y − r(x)] =

∂

∂x
[F (x)]

=⇒ F (x) · p(x) = dF

dx

=⇒
∫ dF

F
=

∫
p(x)dx

=⇒ ln |F | =
∫
p(x)dx

=⇒ F (x) = e
∫
p(x)dx

••• F (x)× (∗)
=⇒ e

∫
p(x)dx[p(x)y − r(x)]dx + e

∫
p(x)dxdy = 0 is exact.

Check:

∂

∂y

{
e
∫
p(x)dx[p(x)y − r(r)]

}
= e

∫
p(x)dx · p(x) = ∂

∂x

(
e
∫
p(x)dx

)

••• the new equation is exact.
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••• the solution is u(x, y) = constant, where

∂u

∂x
= e

∫
p(x)dx[p(x) · y − r(x)] ——— (1)

∂u

∂y
= e

∫
p(x)dx ——— (2)

(2) =⇒ u(x, y) = ye
∫
p(x)dx + k(x)

(1) =⇒ ∂u

∂x
= yp(x)e

∫
p(x)dx +

dk

dx
= e

∫
p(x)dx[p(x)y − r(x)]

=⇒ ∂k

dx
= −r(x)e

∫
p(x)dx

••• k(x) = −
∫ (

r(x)e
∫
p(x)dx

)
dx + c∗

••• The solution is:

ye
∫
p(x)dx −

∫ (
r(x)e

∫
p(x)dx

)
dx + c∗ = 0

or

y(x) =

∫ (
r(x) · e

∫
p(x)dx

)
dx + c

e
∫
p(x)dx ✷
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Ex: y′ − y = e2x

Separable? No

Exact? No

First order linear ordinary differential equation? Yes!

y′ + p(x)y = r(x)

p(x) = −1, r(x) = e2x

••• y(x) =

∫ (
e2x · e

∫
(−1)dx

)
dx + c

e
∫
(−1)dx

=

∫ (
e2x · e−x

)
dx + c

e−x

= ex · (ex + c)

= cex + e2x
✷
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Ex: y′ + (tanx)y = sin 2x, y(0) = 1

First order linear ordinary differential equation

p(x) = tanx, r(x) = sin 2x

=⇒ y(x) =

∫ (
sin 2x · e

∫
tan xdx

)
dx + c

e
∫

tanxdx

=

∫ (
sin 2x · eln|sec x|) dx + c

eln|sec x|

=

∫
(sin 2x · secx) · dx + c

secx

=

∫
(2 sinx · cosx · secx)dx + c

secx
= cos x(c− 2 cosx)

Initial condition y(0) = 1:

=⇒ y(0) = cos 0(c− 2 cos 0) = 1(c− 2) = 1

=⇒ c = 3

••• y(x) = cos x(3− 2 cosx) ✷
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Second-Order Linear Differential Equation
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2.1 Homogeneous Linear 2nd-order ODE

y′′ + p(x)y′ + q(x)y = 0

where p(x) and q(x) are the coefficients.

Ex: y′′ − y = 0

y = ex, y = e−x, y = −3ex + 8e−x, y = c1e
x + c2e

−x . . . . . .
all are solutions of the equation. ✷

Theorem : Superposition or Linearity Principle

If y = y1(x) and y = y2(x) are solutions of y′′ + p(x)y′ + q(x)y = 0

=⇒ y = c1y1 + c2y2 is also solution.

Proof:

y′′ + py′ + qy

= (c1y1 + c2y2)
′′ + p(c1y1 + c2y2)

′ + q(c1y1 + c2y2)

= c1(y
′′
1 + py′1 + qy1) + c2(y

′′
2 + py′2 + qy2)

= 0 ✷

28



Applied Mathematics — Ordinary Differential Equations Wu-ting Tsai

Note:

(1) Only the linear and homogeneous differential equations have the super-

position property.

(2) Nonlinear differential equations and non-homogeneous differential equa-

tions do not have the superposition property.

Ex: Nonhomogeneous linear differential equation y′′ + y = 1.

Both y = 1 + cosx and y = 1 + sinx are solutions.

But y = 2(1 + cosx) or y = (1 + cos x) + (1 + sinx) are NOT.

Ex: Nonlinear differential equation y′′y − xy′ = 0. Both y = x2 and y = 1

are solutions.

But y = −x2 or y = x2 + 1 are NOT.
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Initial Value Problem, Boundary Value Problem

• For first-order ordinary differential equations:

General solution has one constant.

Initial condition is used to find the constant =⇒ particular solution.

• For second-order homogeneous linear ordinary differential equations:

y′′ + p(x)y′ + q(x)y = 0

General solution is y = c1y1 + c2y2, c1 and c2 are constants.

Need TWO conditions for the constants:

y(x0) = k0, y′(x0) = k1 ← initial condition

or y(x1) = k1, y(x2) = k2 ← boundary condition

=⇒ particular solution

Ex: y′′ − y = 0, y(0) = 5, y′(0) = 3.

Both ex and e−x are solutions.

••• general solution: y = c1e
x + c2e

−x

Apply initial conditions:

y(0) = c1 + c2 = 5
y′(0) = c1 − c2 = 3

••• c1 = 4, c2 = 1 =⇒ particular solution: y = 4ex + e−x

However, if we let the general solution: y = c1e
x + c2e

x

y(0) = c1 + c2 = 5
y′(0) = c1 + c2 = 3 oops!!? ✷
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Basis or Fundamental System

If y1 and y2 are solutions of y′′ + p(x)y′ + q(x)y = 0,

and y1 �= ky2 or y2 �= ly1, i.e. y1 and y2 are not proportional.

=⇒ y1 and y2 are called a basis or fundamental system of the equation.

=⇒ The general solution is y = c1y1 + c2y2.

y1 �= ky2 or y2 �= ly1

=⇒ k1y1 + k2y2 = 0 iff k1 = k2 = 0

=⇒ y1 and y2 are linearly independent

=⇒ If y1 and y2 are basis of solution, then y1 and y2 are linearly independent.
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2.2 Homogeneous Equations with Constant Coefficients

2.3 Homogeneous Equations with Constant Coefficients (con-

tinued)

y′′ + ay′ + by = 0 ——— (1)

where a and b are real constants.

Assume the form of the solution is y = eλx.

Substitute y(x) into (1):

=⇒ λ2eλx + aλeλx + beλx = 0

(λ2 + aλ + b)eλx = 0

Since eλx cannot be zero

=⇒ λ2 + aλ + b = 0 ← characteristic or auxiliary equation of (1)

Solutions of the characteristic equation:

λ1,2 =
1

2
(−a±

√
a2 − 4b)

••• the solutions of (1) is:

y1 = eλ1x, y2 = eλ2x
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If a2 − 4b > 0

i.e. λ1 and λ2 are two distinct real roots.

=⇒ y = c1e
λ1x + c2e

λ2x is the general solution of (1).

If a2 − 4b = 0

i.e. λ1 = λ2 = −a
2
,

=⇒ y1 = e−
a
2x

To find another basis, try y2 = u(x)y1

y′′2 + ay′2 + by2 = 0

=⇒ (u′y1 + uy′1)
′ + a(u′y1 + uy′1) + b(uy1) = 0

=⇒ (u′′y1 + 2u′y′1 + uy′′1) + a(u′y1 + uy′1) + b(uy1) = 0

=⇒ u′′y1 + u′ (2y′1 + ay1)︸ ︷︷ ︸
= 0

+u (y′′1 + ay′1 + by1)︸ ︷︷ ︸
= 0

= 0

(••
• y1 = e−

a
2x)

••• u′′y1 = 0 and y1 �= 0

=⇒ u′′ = 0 =⇒ u = d1x + d2

••• y2 = xy1 i.e., y = (c1 + c2x)e
−a

2x
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If a2 − 4b < 0

λ1,2 =
1

2
(−a± i

√
4b− a2)

= −a
2
± i

√√√√√b− a2

4
≡ −a

2
± iw

=⇒ y = c∗1e
(−a

2+iw)x + c∗2e
(−a

2−iw)x

= c∗1e
−a

2x · eiwx + c∗2e
−a

2x · e−iwx

Euler formula: eiwx = coswx + i sinwx

For real y(x), the bases are [e−
a
2x coswx] and [e−

a
2x sinwx].

••• y = c1e
−a

2x coswx + c2e
−a

2x sinwx ✷

Summary :

Case Roots Basis General solution

b2 − 4ac > 0
distinct real roots

λ1, λ2
eλ1x, eλ2x y = c1e

λ1x + c2e
λ2x

b2 − 4ac = 0
real double root

λ
eλx, xeλx y = (c1 + c2x)e

λx

b2 − 4ac < 0

complex conjugate

λ1 = λ + iw

λ2 = λ− iw

eλx coswx

eλx sinwx

y =

eλx(c1 coswx + c2 sinwx)

34



Applied Mathematics — Ordinary Differential Equations Wu-ting Tsai

Ex : y′′ + y′ − 2y = 0, y(0) = 4, y′(0) = −5
Sol :

Characteristic equation: λ2 + λ− 2 = 0

=⇒ λ1 =
1

2
(−1 +√9) = 1, λ2 =

1

2
(−1−√9) = −2

••• the general solution is y(x) = c1e
x + c2e

−2x

Apply the initial conditions:

y(0) = c1 + c2 = 4

y′(0) = c1 − 2c2 = −5

=⇒ c1 = 1, c2 = 3

••• the particular solution is y(x) = ex + 3e−2x
✷
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Ex : y′′ − 4y′ + 4y = 0, y(0) = 3, y′(0) = 1

Sol :

Characteristic equation: λ2 − 4λ + 4 = 0

=⇒ λ1 = λ2 = 2

••• the general solution is y(x) = (c1 + c2x)e
2x

Apply the initial conditions:

y(0) = c1 = 3

y′(0) = c2 + 2c1 = 1

=⇒ c1 = 3, c2 = −5

••• the particular solution is y(x) = (3− 5x)e2x
✷
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Ex : y′′ + y = 0, y(0) = 3, y′(2π) = −3
Sol :

Characteristic equation: λ2 + 1 = 0

=⇒ λ1 = i, λ2 = −i

••• the general solution is y(x) = c1 cos x + c2 sinx

Apply the boundary conditions:

y(0) = c1 = 3

y′(2π) = c2 = −3

••• the particular solution is y(x) = 3 cos x− 3 sinx ✷

37



Applied Mathematics — Ordinary Differential Equations Wu-ting Tsai

2.4 Differential Operators. Optional
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2.5 Free Oscillations of Mass-Spring system

Undamped System

my′′ + ky = 0

=⇒ characteristic equation:

mλ2 + k = 0 =⇒ λ =
0±√−4mk

2m
= ±i

√√√√√ k

m

=⇒ y(t) = A cosω0t +B sinω0t ω0 =

√√√√√ k

m
≡ c cos(ω0t− δ)

where c =
√
A2 +B2 δ = tan−1 B

A

period = 1
frequency = 2π

ω0
= 2π

√√√√m
k
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Damped System

my′′ + cy′ + ky = 0

where c is the damping constant,

assuming the viscous damping force ∝ y′(t) (velocity).

=⇒ characteristic equation:

λ2 +
c

m
λ +

k

m
= 0

λ1,2 = − c

2m
± 1

2m

√
c2 − 4mk

= −α± β
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(1) c2 > 4mk : λ1, λ2 are distinct real roots

y(t) = c1e
−(α−β)t + c2e

−(α+β)t

α =
c

2m
> 0

β =
1

2m

√
c2 − 4mk > 0



β2 =

c2 − 4mk

4m2
=

c2

4m2
− k

m
= α2 − k

m

=⇒ α > β

=⇒ y(t)→ 0 when t→ 0

=⇒ overdamping
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(2) c2 = 4mk: one real root λ = − c

2m
≡ −α

y(t) = (c1 + c2t)︸ ︷︷ ︸
=0 at t=−c1

c2

e−αt︸ ︷︷ ︸
�=0

=⇒ y(t) may have at most one zero at t = −c1

c2

=⇒ critical damping
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(3) c2 < 4mk: λ1,2 are complex conjugate roots.

λ1,2 = − c

2m
± i

2m

√
4mk − c2 ≡ −α± iω∗

ω∗ =
1

2m

√
4mk − c2 =

√√√√√ k

m
− c2

4m2

y(t) = e−αt(c1 cosω
∗t + c2 sinω

∗t)

≡ ce−αt cos(ω∗t− δ)

(c2 = c2
1 + c2

2, δ = tan−1 c2

c1
)

=⇒ underdamping
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2.6 Euler-Cauchy Equation

x2y′′ + axy′ + by = 0 a, b are constants.

We assume the form of the solution is y = xm

=⇒ x2m(m− 1)xm−2 + axmxm−1 + bxm = 0

=⇒ m(m− 1) + am + b = 0

=⇒ m2 + (a− 1)m + b = 0

(1) (a− 1)2 − 4b > 0 :

Two distinct real m1,2 =
−(a−1)±

√
a−1)2−4b

2

••• y(x) = c1x
m1 + c2x

m2

(2) (a− 1)2 − 4b = 0 :

One real root m = 1−a
2

=⇒ y1 = x
(1−a)

2

Assume the other solution y2 = u(x)y1, and find u(x).
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x2y′′ + axy′ + by = 0

=⇒ x2(u′′y1 + 2u′y′1 + uy′′1 ) + ax(u′y1 + uy′1) + buy1 = 0

=⇒ u′′x2y1 + u′x (2xy′1 + ay1)︸ ︷︷ ︸
≡ (∗)

+u (x2y′′1 + 1xy′1 + by1)︸ ︷︷ ︸
= 0

= 0

(∗) = 2x
(1− a)

2
x(1−a

2 −1) + ax
(1−a)

2 = (1− a)x(1−a
2 ) + ax(1−a

2 ) = x
(1−a)

2 = y1

=⇒ u′′x2y1 + u′xy1 = 0

or (u′′x2 + u′x)y1 = 0

Since y1 �= 0 =⇒ u′′x2 + u′x = 0

=⇒ (u′)′︸ ︷︷ ︸
≡ z′

x + (u′)︸ ︷︷ ︸≡ z
= 0

=⇒ dz

z
= −dx

x
(separable)

=⇒ ln |z| = ln |u′| = − lnx x > 0

=⇒ u′ =
1

x
=⇒ u = lnx x > 0

=⇒ y2 = lnx · x(1−a
2 )

••• y(x) = (c1 + c2 lnx)x
(1−a

2 )

45



Applied Mathematics — Ordinary Differential Equations Wu-ting Tsai

(3) (a− 1)2 − 4b < 0 :

Two complex roots m1,2 =
−(a− 1)± i

√
4b− (a− 1)2

2
≡ u± iν

Since



xiν = eiν ln x = cos(ν lnx) + i sin(ν lnx)

x−iν = e−iν ln x = cos(ν lnx)− i sin(ν lnx)

=⇒ y(x) = c1x
u cos(ν lnx) + c2x

u sin(ν lnx)

= xu(c1 cos(ν lnx) + c2 sin(ν lnx)) ✷
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2.7 Existence and Uniqueness Theory. Wronskian

y′′ + p(x)y′ + q(x)y = 0 ——— (1)

p(x), q(x) are continuous functions

=⇒ general solution of (1):

y(x) = c1y1(x) + c2y2(x) ——— (2)

y1(x) and y2(x) form a basis.

i.e. y1 and y2 are linear independent

i.e. k1y1(x) + k2y2(x) = 0 only when k1 = 0 and k2 = 0]

If y1 and y2 are linear dependent

=⇒ y1 = ay2 or y2 = by1, where a, b are constants

=⇒ Wronskian (Wronski determinant) W

W (y1, y2) =

∣∣∣∣∣∣∣
y1 y2

y′1 y′2

∣∣∣∣∣∣∣ = y1y
′
2 − y2y

′
1 = 0

••
• W = (ay2)y

′
2 − y2(ay

′
2) = 0

or W = y1(by
′
1)− (by1)y

′
1 = 0 ✷

47



Applied Mathematics — Ordinary Differential Equations Wu-ting Tsai

Theorem :

Second order homogeneous, linear ordinary differential equation (1) with con-

tinuous p(x), q(x) on some interval I .

=⇒ (1) has a general solution on I , and the solution has the from

y(x) = c1y1(x) + c2y2(x), where y1 and y2 are linear independent. ✷

Initial value problem :

(1) with initial conditions: y(x0) = k0, y′(x0) = k1 ——— (3)

=⇒ c1 and c2 of (2) are determined from (3) ✷

Theorem :

Second order homogeneous, linear ordinary differential equation (1) with con-

tinuous p(x), q(x) on some interval I , and initial condition (3) at some x0 on

I

=⇒ The initial value problem (1) and (3) has a unique solution on the interval

I . ✷
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Given y1(x), how to obtain y2(x) : method of reduction of order

y′′ + p(x)y′ + q(x)y = 0 ——— (1)

Given y1(x)

Assume y2(x) ≡ u(x)y1(x)

y′2 = u′y1 + uy′1
y′′2 = u′′y1 + 2u′y′1 + uy′′1

(1) =⇒ u′′y1 + u′(2y′1 + py1) + u(y′′1 + py′1 + qy1) = 0

=⇒ u′′y1 + u′(2y′1 + py1) = 0

u′ ≡ U

=⇒ U ′y1 + U(2y′1 + py1) = 0 ← separable

=⇒ dU

U
= −(2y

′
1 + py1

y1
)dx

=⇒ ln |U | = −
∫ 2y′1

y1
dx−

∫
pdx = −2 ln |y1| −

∫
pdx

=⇒ U = eln|y1|−2−∫ pdx =
1

y2
1

· e−
∫
pdx

=⇒ du

dx
=

e−
∫
pdx

y2
1

••• u(x) =
∫ e−

∫
pdx

y2
1

dx ✷
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Ex :

(x2 − 1)y′′ − 2xy′ + 2y = 0

y1 = x, find y2

=⇒ y′′ − 2x

x2 − 1︸ ︷︷ ︸
= p(x)

y′ +
2

x2 − 1︸ ︷︷ ︸
= q(x)

y = 0

y2 = u · y1

u(x) =
∫ e−

∫
pdx

y2
1

dx =
∫ e

∫ 2x
x2−1

dx

x2
dx

=
∫ eln|x2−1|

x2
dx =

∫ x2 − 1

x2
dx =

∫
(1− 1

x2
)dx

= x +
1

x

=⇒ y2(x) =


x +

1

x


x = x2 + 1

••• y(x) = c1x + c2(x
2 + 1) ✷
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2.8 Nonhomogeneous Equations

y′′ + p(x)y′ + q(x)y = r(x), r(x) �= 0 ——— (1)

cf: homogeneous equation:

y′′ + p(x)y′ + q(x)y = 0 ——— (2)

The general solution of (1) is y(x) = yh(x) + yp(x), where

yh(x) is the general solution of the homogeneous equation (2),

yp(x) is any particular solution of the nonhomogeneous equation (1).

What is the particular solution of (1)?

=⇒ y(x) = c1y1(x) + c2y2(x)︸ ︷︷ ︸
= yh(x)

+yp(x)

where c1 and c2 have specific values.
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Ex:

y′′ − 4y′ + 3y = 10e−2x, y(0) = 1, y′(0) = −3

(1) yh(x)

Characteristic equation:

λ2 − 4λ + 3 = 0 =⇒ λ = 1 or 3

=⇒ yh(x) = c1e
x + c2e

3x

(2) yp(x)

Since r(x) = 10e−2x

=⇒ yp(x) = ce−2x

=⇒ 4ce−2x + 8ce−2x + 3ce−2x = 10e−2x

=⇒ 15c = 10 ••• c =
2

3

••• y(x) = c1e
x + c2e

3x +
2

3
e−2x

✷
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2.9 Solution by Undetermined Coefficients

y′′ + ay′ + by = r(x) where a, b are constants

The general solution is: y(x) = yh(x) + yp(x)

Rules to find yp(x) :

(A) Given the following types of r(x), yp(x) has the form of:

r(x) yp(x)

kerx cerx

kxn (n = 0, 1, 2 . . .) knx
n + kn−1x

n−1 . . .+ k1x + k0

k coswx

k sinwx
k1 coswx + k2 sinwx

keαx coswx

keαx sinwx
eαx(k1 coswx + k2 sinwx)

The constants c or kn are determined by substituting yp(x) into the nonho-

mogeneous equation.

(B) If yp(x) in the above table is a solution of the homogeneous solution.

=⇒ Assume the new yp(x) = xyp(x)

(or new yp(x) = x2yp(x) if the homogeneous solution corresponds to a double

root of the characteristic equation)
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Ex : y′′ + 4y = 8x2

(1) yh(x) :

λ2 + 4 = 0 =⇒ λ = ±2i

••• yh(x) = A cos 2x +B sin 2x

(2) yp(x) :

yp(x) ≡ c2x
2 + c1x + c0

=⇒ (2c2) + 4(c2x
2 + c1x + c0) = 8x2

=⇒ c2 = 2, c1 = 0, c0 = −1

••• yp(x) = 2x2 − 1

••• y(x) = A cos 2x +B sin 2x + 2x2 − 1 ✷
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Ex : y′′ − 3y′ + 2y = ex

(1) yh(x) :

λ2 − 3λ + 2 = 0 =⇒ λ = 2, 1

=⇒ yh(x) = c1e
x + c2e

2x

(2) yp(x) :

yp(x) ≡ cxex

=⇒ c(2 + x)ex − 3c(1 + x)ex + 2cxex = ex

=⇒ c = −1

••• y(x) = c1e
x + c2e

2x − xex ✷
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Ex : y′′ − 2y′ + y = ex + x y(0) = 1, y′(0) = 0

(1) yh(x) :

λ− 2λ + 1 = 0 =⇒ λ = 1

=⇒ yh(x) = (c1 + c2x)e
x

(2) yp(x) :

yp(x) ≡ cx2ex + k1x + k0

y′p = c(2xex + x2ex) + k1 = cex(2x + x2) + k1

y′′p = cex(2x + x2) + cex(2 + 2x) = cex(x2 + 4x + 2)

=⇒ cex(x2 + 4x + 2)− 2cex(2x + x2)− 2k1 + cx2ex + k1x + k0 = ex + x

=⇒ 2cex + k1x− 2k1 + k0 = ex + x

=⇒ c =
1

2
k1 = 1 k0 = 2

••• the general solution is y(x) = (c1 + c2x)e
x + 1

2x
2ex + x + 2

Apply the initial conditions:

y(0) = 1 =⇒ c1 + 2 = 1 =⇒ c1 = −1
y′(0) = 0 =⇒ c2 + c1 + 1 = 0 =⇒ c2 = 0

••• the particular solution is y(x) = −ex + 1
2
x2ex + x + 2 ✷
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2.10 Solution by Variation of Parameters

y′′ + ay′ + by = r(x) where a, b are constants ——— (∗)
The general solution is: y(x) = yh(x) + yp(x)

We know that the homogeneous solution yh(x) has the from:

yh(x) = c1y1(x) + c2y2(x) where y1 and y2 from a basis.

Method of variation of “parameters” :

Replace the parameters c1 and c2 by u(x) and v(x)

=⇒ yp(x) = u(x)y′(x) + v(x)y2(x)

Substitute yp = uy1 + vy2 into (1), we get one equation for u(x) and v(x).

To get another equation,

y′p = u′y1 + uy′1 + v′y2 + vy′2 = u′y1 + v′y2︸ ︷︷ ︸
≡ 0

+uy′1 + vy′2

=⇒ the second equation is u′y1 + v′y2 ≡ 0

••• y′p = uy′1 + vy′2
and y′′p = u′y′1 + uy′′1 + v′y′2 + vy′′2

Substitute yp = uy1 + vy2 into (*) :

=⇒ (u′y′1 + uy′′1 + v′y′2 + vy′′2 ) + p(uy′1 + vy′2) + q(uy1 + vy2) = r

=⇒ u (y′′1 + py′1 + qy1)︸ ︷︷ ︸
= 0

+v (y′′2 + py′2 + qy2)︸ ︷︷ ︸
= 0

+u′y′1 + v′y′2 = r
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=⇒


u′y′1 + v′y′2 = r ——— (1)

u′y1 + v′y2 ≡ 0 ——— (2)
← equations for u′, v′

(2)y′2 − (1)y2 =⇒ u′(y1y
′
2 − y′2y2) = −y2r

(1)y1 − (2)y′1 =⇒ v′ (y1y
′
2 − y′1y2)︸ ︷︷ ︸

= W (y1, y2)

= y1r

where W (y1, y2) is the Wronskian, and W �= 0 i.e. y1 and y2 form a basis.

=⇒




u′ = −y2r

W

v′ =
y1r

W

=⇒




u = −
∫ y2r

W
dx

v =
∫ y1r

W
dx

=⇒ yp = −y1

∫ y2r

W
dx + y2

∫ y1r

W
dx ✷
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Ex : y′′ + y = secx

(1) yh :

y′′h + yh = 0

λ2 + 1 = 0 =⇒ λ = ±i

=⇒ yh = c1 cosx + c2 sinx

(2) yp :

y1 = cosx y2 = sinx

W (y1, y2) =

∣∣∣∣∣∣∣
y1 y2

y′1 y′2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
cos x sinx

− sinx cosx

∣∣∣∣∣∣∣ = 1

u(x) =
∫ sinx · secx

1
dx = ln |cosx|

v(x) = −
∫ cos x · secx

1
dx = x

=⇒ yp = (ln |cos x|) cos x + x sinx

••• y = yh + yp = (c1 + ln |cos x|) cos x + (c2 + x) sinx ✷
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