Cambridge Texts in Applied Mathematics

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit http://publishing.cambridge.org/stm/mathematics/ctam

> Viscous Flow H. Ockendon and J.R. Ockendon

A First Course in the Numerical Analysis of Differential Equations ARIEH ISERLES

> Mathematical Models in the Applied Sciences A.C. FOWLER

Thinking About Ordinary Differential Equations ROBERT E. O'MALLEY

A Modern Introduction to the Mathematical Theory of Water Waves R.S. JOHNSON

Rarefied Gas Dynamics CARLO CERCIGNANI

Symmetry Methods for Differential Equations PETER E. HYDON

> High Speed Flow C.J. CHAPMAN

Wave Motion J. BILLINGHAM AND A.C. KING

An Introduction to Magnetohydrodynamics P.A. DAVIDSON

> Linear Elastic Waves JOHN G. HARRIS

Vorticity and Incompressible Flow A.J. MAJDA AND A.L. BERTOZZI

Infinite-dimensional Dynamical Systems J.C. ROBINSON

Introduction to Symmetry Analysis Brian J. Cantwell

Bäcklund and Darboux Transformations C. ROGERS AND W.K. SCHIEF

Finite Volume Methods for Hyperbolic Problems R.J. LEVEQUE

> Introduction to Hydrodynamic Stability P.G. DRAZIN

> > Theory of Vortex Sound M.S. Howe

> > > Scaling G.I. BARENBLATT

Complex Variables: Introduction and Applications (Second edition) Mark J. Ablowitz and Athanassios S. Fokas

> A First Course in Combinatorial Optimization JON LEE

Practical Applied Mathematics

Modelling, Analysis, Approximation

SAM HOWISON

Mathematical Institute, Oxford University Director of The Oxford Centre for Industrial and Applied Mathematics

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK

www.cambridge.org Information on this title: www.cambridge.org/9780521842743

© Cambridge University Press 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

ISBN-13 978-0-521-84274-3 hardback ISBN-10 0-521-84274-3 hardback

ISBN-13 978-0-521-60369-2 paperback ISBN-10 0-521-60369-2 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Prej	Preface	
Par	t I Modelling techniques	
1	The basics of modelling	3
1.1	Introduction	3
1.2	What do we mean by a model?	4
1.3	Principles of modelling: physical laws and constitutive relations	6
1.4	Conservation laws	11
1.5	General remarks	12
1.6	Exercises	12
2	Units, dimensions and dimensional analysis	15
2.1	Introduction	15
2.2	Units and dimensions	16
2.3	Electric fields and electrostatics	18
2.4	Sources and further reading	20
2.5	Exercises	20
3	Nondimensionalisation	28
3.1	Nondimensionalisation and dimensional parameters	28
3.2	The Navier–Stokes equations and Reynolds numbers	36
3.3	Buckingham's Pi-theorem	40
3.4	Sources and further reading	42
3.5	Exercises	42
4	Case studies: hair modelling and cable laying	50
4.1	The Euler–Bernoulli model for a beam	50
4.2	Hair modelling	52
4.3	Undersea cable laying	53
4.4	Modelling and analysis	54
4.5	Sources and further reading	58
4.6	Exercises	58

v

Cambridge University Press 0521603692 - Practical Applied Mathematics: Modelling, Analysis, Approximation Sam Howison Frontmatter More information

vi Contents

5	Case study: the thermistor (1)	63
5.1	Heat and current flow in thermistors	63
5.2	Nondimensionalisation	66
5.3	A thermistor in a circuit	67
5.4	Sources and further reading	69
5.5	Exercises	69
6	Case study: electrostatic painting	72
6.1	Electrostatic painting	72
6.2	Field equations	73
6.3	Boundary conditions	75
6.4	Nondimensionalisation	76
6.5	Sources and further reading	77
6.6	Exercises	77
Par	t II Analytical techniques	
7	Partial differential equations	81
7.1	First-order quasilinear partial differential equations: theory	81
7.2	Example: Poisson processes	85
7.3	Shocks	87
7.4	Fully nonlinear equations: Charpitt's method	90
7.5	Second-order linear equations in two variables	94
7.6	Further reading	97
7.7	Exercises	97
8	Case study: traffic modelling	104
8.1	Simple models for traffic flow	104
8.2	Traffic jams and other discontinuous solutions	107
8.3	More sophisticated models	110
8.4	Sources and further reading	111
8.5	Exercises	111
9	The delta function and other distributions	114
9.1	Introduction	114
9.2	A point force on a stretched string; impulses	115
9.3	Informal definition of the delta and Heaviside functions	117
9.4	Examples	120
9.5	Balancing singularities	122
9.6	Green's functions	125
9.7	Sources and further reading	134
9.8	Exercises	134

Cambridge University Press 0521603692 - Practical Applied Mathematics: Modelling, Analysis, Approximation Sam Howison Frontmatter More information

Contents vii

10	Theory of distributions	140
10.1	Test functions	140
10.2	The action of a test function	141
10.3	Definition of a distribution	142
10.4	Further properties of distributions	143
10.5	The derivative of a distribution	143
10.6	Extensions of the theory of distributions	145
10.7	Sources and further reading	148
10.8	Exercises	148
11	Case study: the pantograph	157
11.1	What is a pantograph?	157
11.2	The model	158
11.3	Impulsive attachment for an undamped pantograph	160
11.4	Solution near a support	162
11.5	Solution for a whole span	164
11.6	Sources and further reading	167
11.7	Exercises	167
Part	III Asymptotic techniques	
12	Asymptotic expansions	173
12.1	Introduction	173
12.2	Order notation	175
12.3	Convergence and divergence	178
12.4	Sources and further reading	180
12.5	Exercises	180
13	Regular perturbation expansions	183
13.1	Introduction	183
13.2	Example: stability of a spacecraft in orbit	184
13.3	Linear stability	185
13.4	Example: the pendulum	188
13.5	Small perturbations of a boundary	190
13.6	Caveat expandator	194
13.7	Exercises	195
14	Case study: electrostatic painting (2)	200
14.1	Small parameters in the electropaint model	200
14.2	Exercises	202
15	Case study: piano tuning	205
15.1	The notes of a piano: the tonal system of Western music	205

viii Contents

15.2	Tuning an ideal piano	208
	A real piano	209
15.4	Sources and further reading	211
15.5	Exercises	211
16	Boundary layers	216
16.1	Introduction	216
16.2	Functions with boundary layers; matching	216
	Examples from ordinary differential equations	221
16.4	Case study: cable laying	224
	Examples for partial differential equations	225
16.6	Exercises	230
17	C_{α} is studied to the energiator (2)	225
17	Case study: the thermistor (2)	235
	Strongly temperature-dependent conductivity	235
17.2	Exercises	238
18	'Lubrication theory' analysis in long thin domains	240
18.1	'Lubrication theory' approximations: slender geometries	240
	Heat flow in a bar of variable cross-section	241
18.3	Heat flow in a long thin domain with cooling	244
	Advection–diffusion in a long thin domain	246
	Exercises	249
19	Case study: continuous casting of steel	255
	Continuous casting of steel	255
19.2		
	Exercises	260
20		
20 20.1	Lubrication theory for fluids	263
20.1		
20.1 20.2	Lubrication theory for fluids Thin fluid layers: classical lubrication theory	263 263
20.1 20.2 20.3	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres	263 263 265
20.1 20.2 20.3 20.4	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates	263 263 265 271
20.1 20.2 20.3 20.4 20.5	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises	263 263 265 271 275 275
 20.1 20.2 20.3 20.4 20.5 21 	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises Case study: turning of eggs during incubation	 263 263 265 271 275 275 285
20.1 20.2 20.3 20.4 20.5 21 21.1	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises Case study: turning of eggs during incubation Incubating eggs	 263 263 265 271 275 275 285
20.1 20.2 20.3 20.4 20.5 21 21.1 21.2	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises Case study: turning of eggs during incubation Incubating eggs Modelling	263 263 265 271 275 275 285 285 285 286
20.1 20.2 20.3 20.4 20.5 21 21.1 21.2	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises Case study: turning of eggs during incubation Incubating eggs	 263 263 265 271 275 275 285
20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 21.3	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises Case study: turning of eggs during incubation Incubating eggs Modelling Exercises	 263 263 265 271 275 275 285 286 290
20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 21.3 22	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises Case study: turning of eggs during incubation Incubating eggs Modelling Exercises Multiple scales and other methods for nonlinear oscillators	 263 263 265 271 275 275 285 286 290 292
20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 21.3 22 22.1	Lubrication theory for fluids Thin fluid layers: classical lubrication theory Thin viscous fluid sheets on solid substrates Thin fluid sheets and fibres Further reading Exercises Case study: turning of eggs during incubation Incubating eggs Modelling Exercises	 263 263 265 271 275 275 285 286 290

Contents ix

22.3	Relaxation oscillations	297
22.4	Exercises	299
23	Ray theory and the WKB method	303
23.1	Introduction	303
23.2	Classical WKB theory	304
23.3	Geometric optics and ray theory: why do we say light travels in straight lines?	306
23.4	Kelvin's ship waves	311
23.5	Exercises	314
References		318
Index		321

Preface

This book was born out of my fascination with applied mathematics as a place where the physical world meets the mathematical structures and techniques that are the cornerstones of most applied mathematics courses. I am interested largely in human-sized theatres of interaction, leaving cosmology and particle physics to others. Much of my research has been motivated by interactions with industry or by contact with scientists in other disciplines. One immediate lesson from these contacts is that it is a great asset to an interactive applied mathematician to be open to ideas from any direction at all. Almost any physical situation has some mathematical interest, but the kind of mathematics may vary from case to case. We need a strong generalist streak to go with our areas of technical expertise.

Another thing we need is some expertise in numerical methods. To be honest, this is not my strong point. That is one reason why the book does not contain much about these methods. (Another is that if it had then it would have been half as long again and would have taken five more years to write.) In the modern world, with its fast computers and plethora of easy-to-use packages, any applied mathematician has to be able to switch into numerical mode as required. At the very least, you should learn to use packages such as Maple and Matlab for their data display and plotting capabilities and for the built-in software routines for solving standard problems such as ordinary differential equations. With more confidence, you can write your own programs. In many cases, a quick and dirty first try can provide valuable information, even if this is not the finished product. Explicit finite differences (remember to use upwind differencing for first derivatives) and tiny time steps will get you a long way.

Who should read this book? Many people, I hope, but there are some prerequisites. I assume that readers have a good background in calculus up to vector calculus (grad, div, curl) and the elementary mechanics of particles. I also assume that they have done an introductory (inviscid) fluid mechanics course and a first course in partial differential equations, enough to know the basics of the heat, wave and Laplace equations

xii Preface

(where they come from, and how to solve them in simple geometries). Linear algebra, complex analysis and probability put in an occasional appearance. High-school physics is an advantage. But the most important prerequisite is an attitude: to go out and apply your mathematics, to see it in action in the world around you, and not to worry too much about the technical aspects, focusing instead on the big picture.

Another way to assess the technical level of the book is to position it relative to the competition. From that point of view it can be thought of as a precursor to the books by Tayler [55] and Fowler [18], while being more difficult than, say, Fowkes & Mahoney [17] or Fulford & Broadbridge [21]. The edited collections [9, 40] are at the same general level, but they are organised along different lines. The books [40, 56] cover similar material but with a less industrial slant.

Organisation. The book is organised, roughly, along mathematical lines. Chapters are devoted to mathematical techniques, starting in Part I with some ideas about modelling, moving on in Part II to differential equations and distributions, and concluding with asymptotic (systematic approximation) methods in Part III. Interspersed among the chapters are case studies, descriptions of problems that illustrate the techniques; they are necessarily rather open-ended and invite you to develop your own ideas. The case studies run as strands through the book. You can ignore any of them without much impact on the rest of the book, although the more you ignore the less you will benefit from the remainder. There are long sections of exercises at the ends of the chapters; they should be regarded as an integral part of the book and at least should be read through if not attempted.

Conventions. I use 'we', as in 'we can solve this by a Laplace transform', to signal the usual polite fiction that you, the reader, and I, the author, are engaged on a joint voyage of discovery; 'we' also signifies that I am presenting ideas within a whole tradition of thought. 'You' is mostly used to suggest that *you* should get your pen out and work though some of the 'we' stuff, a good idea in view of my fallible arithmetic, or do an exercise to fill in some details. 'I' is associated with authorial opinions and can mostly be ignored if you like.

I have tried to draw together a lot of threads in this book, and in writing it I have constantly wanted to point out connections with something else or make a peripheral remark. However, I don't want to lose track of the argument. As a compromise, I have used marginal notes and footnotes¹ with slightly different purposes in mind.

Marginal notes are usually directly relevant to the current discussion, often being used to fill in details or point out a feature of a calculation. This is a book to work through: feel free to use the empty margin spaces for calculations.

¹ Footnotes are more digressional and can be ignored by readers who just want to follow the main line of argument.

Cambridge University Press 0521603692 - Practical Applied Mathematics: Modelling, Analysis, Approximation Sam Howison Frontmatter More information

Preface xiii

Acknowledgements. I have taken examples from many sources. Some examples are very familiar and I do not apologise for this: the old ones are often the best. Much the same goes for the influence of books; if you teach a course using other people's books and then write your own, some impact is inevitable. Among the books that have been especially influential are those by Tayler [55], Fowler [18], Hinch [26] and Keener [32]. Even more influential has been the contribution of colleagues and students. Many a way of looking at a problem can be traced back to a coffeetime conversation or a Study Group meeting.² There are far too many of these collaborators for me to attempt the invidious task of thanking them individually. Their influence is pervasive. At a more local level, I am immensely grateful to the OCIAM students who got me out of computer trouble on various occasions and found a number of errors in drafts of the book. Any remaining errors are quite likely to have been caused by cosmic ray impact on the computer memory, or perhaps by cyber-terrorists. I will be happy to hear about them.

The book began when I was asked to give some lectures at a summer school in Siena and was continued through a similar event a year later in Pisa. I am most grateful for the hospitality extended to me during these visits. I would like to thank the editors and technical staff at Cambridge University Press for their assistance in the production of the book. In particular, I am extremely grateful to Susan Parkinson for her careful, constructive and thoughtful copy-editing of the manuscript. Lastly I would like to thank my family for their forbearance, love and support while I was locked away typing. This book is dedicated to them.

Colemanballs. At the end of each section of exercises is what would normally be a wasted space. Into each of these I have put two things. One is a depiction of a wave form and is explained on p. 212. The other is a statement made by a real live applied mathematician in full flow. In the spirit of scientific accuracy, they are wholly unedited. They are mostly there for their intrinsic qualities (and it would be a miserable publisher who would deny me that extra ink), but they make a point: interdisciplinary mathematics is a collaborative affair; it involves discussions and

² Study Groups are week-long intensive meetings at which academics and industrial researchers get together to work on open problems from industry, proposed by the industrial participants. Over the week, heated discussions take place involving anybody who is interested in the problem, and a short report is produced at the end. The first UK Study Group was held in Oxford in 1968, and they have been held every year since, in Oxford and other UK universities. The idea has now spread to more than 15 countries on all the habitable continents of the world. Details of forthcoming events, and reports of problems studied at past meetings, can be found on their dedicated website www.mathematics-in-industry.org.

xiv Preface

arguments, the less inhibited the better. We all have to go out on a limb, in the interests of pushing the science forwards. If we are wrong, we try again. And if the mind runs ahead of the voice, our colleagues won't take it too seriously (nor will they let us forget it). Here is one to be going on with, from the collection [28] of the same title:

'If I remember rightly, $\cos \pi/2 = 1$.'