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Abstract

The experimental method, proposed by Newman (1963) and Sharma (1963, 1966), for the
purpose of direct determination of steady ship wave-resistance from the measured longitudinal wave
pattern is presented. “This is known as the Newman-Sharma longitudinal wave pattern analysis
method, based on the Fourier transform of the wave height or slope along a longitudinal cut
parallel to path of the steadily moving ship. Correction for the trunction of the measured wave
profile due to finite width and length of the towing basin is also discussed. An on-line experimental
system based on such analysis method is established in the experimental towing tank of the Institute

of Naval Architecture, the National Taiwan University. The control. measurement and computation

of the experiment are all executed by a microcomputer. Two experimental results, one for a

parabolic null form and the other for a destroyer hull form, are presented.
, Pien and Moore (1963), Sharma (1963) and Shor (1963),
Introduction have presented different formulations concerned the

During the International Seminar on Theoretical
Wave Resistance held at the University of Michigan
in 1963, the problem dealing with the evaluation of
wave resistance from direct measurement of the ship
wave has attracted a great deal of attention. Among
the methods proposed, the formulations based on
measuring wave profile along a longitudinal cut parallel
to ship's track offer the most simple experimental
This method is known as the longitudinal

procedure.

wave-pattern analysis. Several authors, Newman (1963)

longitudinal wave-pattern analysis method in that
Seminar. The formulation introduced by Newman and
that by Sharma are similar. They employed the tech-

nique of the Fourier transform to analyze the measured

wave profile, and is usually known as the Newman-Sharma

longitudinal-cut method.

In this paper the formulation of the longitudinal-
wave-pattern analysis is derived first, which follows
A

the Newman's method but with a slight difterence.

correlation of the longitudinal wave profile and the



wave resistance of a ship is obtained. Correction of
the truncated wave profile due to the finite width and
length of the towing tank is also discussed.

The main difficulty arising in the experiment of
longitudinal wave-pattern analysis is the data
acquisition, transformation and analysis. Accordingly,
automation of the experiment is required to reduce the
time for data arrangement, and to improve the
accuracy of measurement and numerical computation.
In the present experiment, a microcomputer is employ-
ed to control the measuring procedure and to execute
the data arrangeement and analysis. The longitudinal
wave-pattern analysis system established here is thus
an on-line experimental system.

The experimental results for a parabolic hull
form and that for a destroyer hull form are presented.
The parabolic hull form, which is a simple wave-making
mechanism, is used to verify the experimental system.
For the destroyer hull form, a modified model with a
bulbous bow and a stern-end-bulb is also implemented.
Stern-end-bulb is a new idea which, like that of bulbous

bow, was also brought forward in the Inui Laboratory of

the Tokyo University (see Miyata et al. (1980, 1981, 1982

)), and has been applied to the actual ship. The experi-
mental results show an improved performance for such

modified hull form.

Potential Theory of the Steady Ship Wave Problem

A moving Cartesian coordinate system is adopted
as shown in Fig. 1, where oxyz moves steadily with the
ship at speed U in the negative ox direction, and oxy
coincides with the undisturbed waterplane. Under the
assumption of potential flow and linearized free-surface
boundary condition, the velocity potential @(x,y,z) of a
fluid domain V surrounding the ship can be written as

D (x,y,2) = Ux + 9(x,y,2) (1)
Here ¢ (x,y,z) is the perturbation potential which

perturbs the known basic flow potential Ux, and is the

solution ot the boundary value problem consisting of:

the Laplace equation,
2
V "¢ (xy,2) = 0, (2)
the linearized free surface condition,

a
¢+K a =0, Ko-=g/U? onz=-00)

the hull-surface condition,
ae —
Kk JERP 7
7n i, on S (4)

and the radiation condition,

lim ¢ {O(]/R) " 2 2

R— oo™ ' O(1/R) (5)

where S is the wetted ship hull surface,

—
and n is the normal vector of S directed torward the

Fig. 1 Coordinate System

fluid domain V. The boundary value problem given by
equations (2), (3), (4) and (5) is the well-known
Neumann-Kelvin problem. In this problem the free-
surface boundary condition is linearized whereas the
hull-surface boundary condition is satisfied exactly.
Introducing a Green's function G(x,y,z; §,7, &) known
as the Havelock source function, and applying the
Green's second identity, the perturbation potential

¥ (x,y,2z) satisfying equations (2), (3) and (5) can be
represented by the following integral form [see, e.8.,

Liao (1973)],

2 (x,y,z) = -JSJ ag (E‘z.z)'c(x;)ﬂz; E , 7]; C ) ds

|
WK, Gev (€75 Hoxy,z; €,7,0)

n(é, 7, 0-idy, (6)

where the Havelock source function has the form of

1
G(x,y,z, 5, 7, C) = —— [JX- = ()"7/)2* (Z- C)g
1
_’fx- 6)2 + (y- M2 4 (z+ C)Z_H(xy)'yz; 5 7, C)]y

(7)
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and

‘o = (x-&) cos @ +(y-7) sin 0.

Equation (6) defines the potential ¢ (x,y,z) as being
caused by an equivalent source distribution o (x,y,2)
over the hull surface S and the waterline C . Since
the potential (6) should also satisfy the hull-surface
boundary condition (4), then the boundary value pro-
blem defined by equations (2) to (5) may be replaced
by an integral equation for the unknown function

0 (Q) distributed over S and C Numerical solution
of such integral equation for the computation of ship
wave resistance has been accomplished by the authors,
Tsai, Lin and Liao (1983). In the present study, the
wave resistance is obtained by another approach in
which a correlation between the wave profile and the
wave resistance is used instead of the integral equation
mentioned above. From the integral form of the
potential ¢ (x,y,z), the linearized free-surface elevation
f(x,y) is given by
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The wave resistance Rw acting upon the ship can be
derived from the momentum consideration of fluid
domain V, and represented by the so called amplitude

functions P( @) and Q( 6),

L7
Rw = léanozjo 2P(0)* + QUO) Jsec36d 6,

10
where i
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In the following discussions a relationship between the

wave elevation and the ampljtude functions given by

equations (9) and (11) is sought.

Correlation between Longitudinal Wave Profile and

Wave Resistance

An expression for the amplitude functions P(6)
and Q( 0) in terms of the Fourier transform of the
wave profile along the longtudinal cut is to be
derived here. Taking the Fourier transform of
f(x,y) with respect to x, and assuming that the order
of the integration can be interchanged, one has
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The integrals J, and J, in equation (12) can be evalu-
ated by using the lemma described in Appendex A and
by some derivations. Upon substitution of these

results, equation (12) becomes
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where 2 must satisfies the condition 1= Kgsecd . The
principal value intégral with respect to @ in equation
(13)*can further be evaluated by a suitable complex
contour integration. By changing the integral variable 6
with t = tan @, and executing the contour integral along
where

to = 4/ (2/Kg)? - 1 is the pole, the following result can

be obtained (see Appendix B),

e 2 4
dfe cos@

0

the contour in complex t plane as shown in Fig. 2,

Acos [A(y-7) tan 0]
* (A-Kosec @) cos? @

7 ()" + exp [Ko £ ( 2/Ko)? ] -

sin [ 2(y-"7)/(2/Ko)2 - 1

,/(Z/Ko)z - i 4

(14)
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Substituting equation (14) into (13), one gets
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By comparing equation (15) with equation (11), the
amplitude function P(f), Q( #) can be consequently

expressed in the following form,

U
4

o0
j o exKoxsecﬁdx
__w *

P( 0)+iQ(8) = sin @« cos 0+ exp(iKqyy * sec § «tan 6)-

(16)

Similarly, by taking the Fourier transform of the
longitudinal wave slope f)gx,y) and the transverse wave
slope fy (x,y) along a longitudinal cut and following
the foregoing procedures, the following two alternative
expressions of the amplitude functions P(€) and Q(#)

can also be obtained,



U

=l sin@+ cos? @ « exp(iKyy + sec 4+

P(0)+iQ(8) - -

(o]

tan 0J
—o0

and

iKgxsec @ d

f, (x,y)e %; (17)

u . 3
- g | cos g

oo iK [/
j fy (x,y) e'OXS€CT gy, (i
—o00

From equations (16), (17) and (18), it is found

P(8)+iQ(6) = exp(ikysec @ -tang )+

8)

that if the wave elevation f, the longitudinal wave
slope f‘( or the transverse wave slope fy can be

measured along a longitudinal cut, i.e., along
y = yo = constant, then the wave resistance Rw
can be obtained by use of equation (10).

In the present experimental work, only the
equation (16) is used, that is only the longitudinal
wave profile are measured for the wave resistance
computations. For the convenience of numerical
calculation equation (16) can further be rewritten in

the following form,

U

P(8)
} o

Q(g)

sin@ « cos @ { ;?15 (Koyo tand - sec 6)

w .
j f(x,yo) cos(Kox sec ) dx

+ Sin(K tanf « sec 6) f (x,y0)
t cos'o¥o ’ 0
—o00

sin (Koxsec #) dx } (19)

I'runcation Correction

According to equation (19), the wave profile
should be recorded from -00 to oo to complete the
integration of this formula exactly. There are no
wave in front of the ship, so that truncation of the
wave record at some suitable position before the ship
does not arise any problems. But for the wave profile
behind the ship, due to the finite width of the towing
tank, the wave reflected by the side walls of the tank
will disturb the wave profile along the measurement
track. On account of such facts, only a finite range

of longitudinal wave profile is available for the actual

calculation of the integral formula.
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Fig. 3 is the illustration of the effect of reflec-
tive wave caused by the tank wall, where x = M is
the point of truncation. An asymptotic approximation
of the wave profile is taken to make up the truncated
wave record,.and to carry out the integration formula
(19) from -oco to co . It is known that the wave
profile far downstream has the following asymptotic

behavior,

fx,y) = 1,595 (Ko +8)

v KoX

Here fo and € are the constants which can be determined

(x > M) (20)

from the measured wave record by applying the least
square method to some region before the truncation
point. The detailed processes are described in

Appendix C.

TANK WALL

X=M
TRUNCATED POINT

Illustration of the Effect of wave Reflection
of the Side walls

Fig. 3

As the wave profile is given by a truncated measure-
ment supplemented with the downstream approximation
(20), equation (19) yields the amplitude functions in the
following form,

P(8)
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National Taiwan University. The towing tank 1s 150m
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in the above equation can further be expressed as

(see Appendix D)
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section. The microcomputer has several special fun-

N|—

ctions, such as discrete analog-signal input and output,
and averaging of the discrete input data, etc.. The

wave height probe is of the capacitance type, mounted

as shown in Fig. 5. A switch setted on the side of

wherej SINC T42)4t  is the so called Fresnel's
, Cos 2

the tank rail and an electric circuit connected with

integrals. Equations (19), (21) and (22) are the the microcomputer form a trigger. The trigger circuit

formulas for the numerical computations of ship will be cut down by the towing carriage when a chosen

_resist: ] i ve-height meas- . . i
wave-resistance from longitudinal wave & point of the carriage passes the wave probe. The

1 he wave resistance y : . .
ueemant. For canveniencs; 1 a point is chosen to be at a suitable distance from the

is expressed in the nondimensional form, front of the bow wave. The microcomputer begins to

2 . : 7 .
Cw :TBLVZ__ : 27§ A*(0)°d 6 input the wave height signal in voltage from the wave
2
7PU L ‘ probe in a discrete rate as soon as the trigger circuit
(/2 . S . .
_ 271'] [C*(8)? + S*(6)2)d8, (23) is cut down. The peripheral devices of the micro
2 computer include a X-Y recorder and a printer, used to
c*(8) 4Ko 3/2 P(6) : ;
where sx(8) }= UL sec” “@ {Q(O) are called plot the recorded wave profiles and print the computa-

tional results.
the weighted amplitude functions.

TANK WALL

On-Line Experimental System

To make the experiment and analysis automatic,

i WAVE PROSE
—_—

Fig. 5 Arrangement of the wWave Probe

a microcomputer is applied to control the measuring

procedure, and to execute the data management and

computation. Fig. 4 shows the total equipments of

the experimental system. The program of the microcomputer is written in
The experiment was carried out in the model the interactive BASIC language. Fig. 6 is the block
basin of the Institute of Naval Architecture, the diagram of the experimental procedure, which is also
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TRIGGER i
_____________ o
CIRCUIT T
WAVE COLLECT LONGITUDINAL
CHE——
PROBE WAVE HEIGHT DATA
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OR DISK

FOURIER ANALYSIS OF

WAVE HEIGHT DATA TO [~ — — — - porymeg

OBTAIN AMPLITUDE FUNCTION
AND WAVE RESISTANCE

Fig. 6 Block Diagram of the Procedure of Wave Analysis Experiment

the flow chart of the control and computation program
of the microcomputer. Operation of the entire experi-
ment is described as follows:

1) The zero point of the wave probe is determined
before the carriage running by recording the voltage
signal of the calm free-surface and taking the average
of the value. Then the carriage with the model starts
running.

2) The cut down of the trigger circuit, and the input
of the wave height records from the wave probe are
continuously and simultaneously done. The recording
rate is 100 signal/sec in the present experiment. The
recorded data is stored in the core memory of the
microcomputer temporarily.

3) The wave profile is plotted by the X-Y recorder.
The point where reflective wave begins to affect can
be approximately calculated from the geometry in Fig.
3. By these two kinds of information the point of
truncation can be determined.

4) The wave height data which is provided for the
computation of wave resistance is edited and stored in
the magnetic tape of the microcomputer.

5) Numerical analysis of the recorded data by the
foregoing formulas is carried out to compute the wave

resistance. The information output from the printer

includes the identifications of the experiment (such as
model name, Froude number, probe calibrating value,
etc.), the discrete wave height data, the tonstants fo
and ¢ for the truncation correction, the weighted
amplitude functions C*(), S*(#) and A*(§), and the
wave resistance coefficient Cw.

The procedures described above is executed per
running of the model, and the edition and analysis of
the data can be proceeded when the carriage is waiting

for the stillness of the free surface in the basin.

Experimental Results

A. Parabolic Hull Form

To verify the validity of the experimental system,
a simple hull form, the parabolic hull form is used for
the test first. Fig. 7 is the body plan of the hull
form, which is a simple wave-making mechanism. The

equation of the hull surface is

B 2x z
yxa2) = 201 - (BP0 - (B,

where B/L = 0.1 and D/L = 0.1. The length of the
model L is 3 m and its draft H is 0.225 m, that is
H/L = 0.075 and B/L = 0.09375, where B is the beam

at midship of the waterplane.

WL

Fig. 7 Body Plan of the Parabolic Hull Form
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The model is fixed to the carriage and not free
to squat and trim when it runs. Experiments were
run on the model at seven Froude numbers with two
Yo variations for each case, where y. is the distance
laterally away from the centerline to the position of
wave probe. The two positions of wave probe are
yo/L = 0.2 and yo/L = 0.1. Results of wave analysis
at two measured positions for the wave resistance of
the parabolic hull form are listed in .Table I and
illustrated in Fig. 8, and the weighted amplitude func-
tion A*( @) are shown in Fig. 9 to Fig. 15 for each
Froude number. It 1s found that the results of yo/L

= 0.2 are slightly larger than those of yo/L = 0.1.

The differences of results between these two measured

positions are quite little, except the case of Fn =0.302

(KoL = 11). One of the explanations for such
phenomenon is the misjudgement of the truncation
point. Fig. 16 to Fig. 22 are some portion cf the
wave profile recorded at two measured positions for

each Froude number.

2 Yo/L=0.1

19 0.267 1.0204 0.9766
13 0.278 1.2809 1.1190
12 0.288 1.5250 1.427
i1 0.302 1.9877 1.6762
100 Q7T 19T 1.8537
LR I B B 1.7870 1.7474
Ho 0.3 1.6076 1.5204

Table 1 Results of wave Analysis for the Parabolic

Hull Form

=i
2o
&l
2l
i
| | | | | | |

9 8

Fig. 8 Results of Wave Analysis for the Parabolic Hull Form
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B. Destroyer Hull Form
Fig. 23 is the body plan of the destroyer hull
form. Its model number is MSO17 and with the
principal particulars as follows,
Lpp = 232.76 cm,

B = 26.94 cm,

H = 8.20 cm.

Both resistance test and wave pattern analysis were
performed simultaneously, With the towing arrangements
being used, the model was permitted to seek its
equilibrium trim and sinkage. The position of the wave
probe is at yo = 46.6cm, i.e., Yo = 0.2 Lpp.

A bulbous bow and a stern-end-bulb, made from
wax, were attached to the parent model MS017 and namec
MS017D. Fig. 24 is the configuration of the bulbous bow
and stern-end-bulb. Resistance test and wave pattern
analysis were also implemented for the improved hull

form MS017D.

STERN-END-BULB

Fig. 24 Configurstion of the Bulbous Bow and the Sterm-End-Bulb



Table 2 shows the results of resistance test and O K0

wave analysis. The total resistance coefficients for both it
=l
— MS017

MS017 and MSO17D are shown in Fig. 25, and the wave R m\ WG TESE
£ 5017

resistance coefficients obtained from resistance test and TR M50170

} N-5 METHOD,

wave pattern analysis for both two models are illustrated
in Fig. 26. The amplitude functions and longitudinal wave
profiles obtained from wave pattern analysis are shown

in Fig. 27 to Fig. 31 and Fig. 32 to Fig. 36 respectively.
From above experimental results, it is seen that the

improved hull form MS017D achieves a reduction of

R i = |

05 06 -

total resistance and wave resistance.
Fn

Fig. 26 wWave-Resistance Coctficients of MSU17 and MSYL7D
from Resistance Test and Wave Analysis
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0.300 5.467 5.274  0.77) 0.401 0.496 0.386
0.325% 5.633 5. 34 1.006 0,580  0.594 0.4%96
C.3%50 5.776 5.169 1.21) Q.727 0.671 0:55)
0.375 6.098 5,892 1.586 1.203 0.995 0.7066
0.400 6.733 6.460 2.269 1.825 1.411 1.300 Fig. 27 Amplitude Functions of MSO17 and MSO17p at Fn=0.3
0.42% 7.234 7,03% 2.8)1 2.451 1.864 1.744
0.4%0 7.653 7,480 3.:279%  2.935 2.470 2.249
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0.500 7839 7.740  3.9357 3.266  2.373 2.261 ——M3017
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Table 2 Results of Towing Test and Wave Analysis

for MSO17 and MSO17D
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Conclusions and Recomendatons

Longitudinal wave-pattern analysis method was

accomplished for the direct determination of ship wave
resistance. The online experimental system was
established in the towing tank of the Institute of
Naval Architecture, the National Taiwan University.
The wave analysis experiments were carried out for a
parabolic hull form and for a destroyer hull form.
Based upon the preceding results of experiments, the
following conclusions are drawn and recomendations are
made:

1) The asymptotic wave-profile approximation (20)
is valid near the centerline, while the formulations of
longitudinal wave pattern analysis is derived under the
condition y—o0, so that a further study should be
made for such discrepancy and to find a reasonable
position of measurement in a towing tank of finite
width.

2) The wave analysis method proposed in the present
study is based upon the potential theory of steady
ship wave problem the free-surface boundary condition
is linearized. In the authors' opinions, the error due
to the nonlinearity of free-surface boundary conditions

or local-wave components are of less importance than
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the discrepancy described above provided that the
free surface is not breaking.

3) It is noticeable that the modified destroyer hull
form MS017D with a bulbous bow and a stern-end-
bulb achieves a considerable reduction of resistance
compared to its parent hull form MSO17. Further
arrangement of a systematic experiment or a
theoretical analysis should then be desirable for

studying the causes of such improvement.
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Appendix A Evaluation of m—oo J; 5 in Equation (12)

-

lim "
M—s00 J],Z can be evaluated if the following

Iemr‘na is used,
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2 dk = 0,

a
where kg is the root of the equation g(x) = 0, and
g'(ko) # 0.

Let consider MhmooJ| first, which is
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It can be easily shown that the root of gz( 0.) =0is

P4
not in the interval of integration, so that from the lemma
the integrands whose denominator is 2 + Kgsec # make no
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It is of course necessary to satisfy the condition
42 Ko >0 . Notice that 1 has been assumed to be
positive when the Fourier transform of f(x,y) is taken

with respect to x. Then from the lemma, the results
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Appendix B Evaluation of the Principal Value

Integral wit Respect to # in Equation (13)

Upon transformation of the integral variable #
with t = tan @, the integral term with respect to ¢

in equation (13) becomes
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The principal value integral can be evaluated by taking
the contour integral along the path as shown in Fig. 2,
where to = v ( A/Ko)? -1 is the pole. The contribu-
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Applying the Cauchy's integral theorem, then
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Appendix C Determinaton of the Constants fo and &

for the Truncation Correction

It is convenient to express the asymptotic wave

profile in equation (20) as

f C1 cosKpx + C2 sinKgX
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f X oX + R

3
where {5 = (C]2 - C22 ), and &= tan! (-C2/C)).
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i =1, ...n before the truncation point for extrapolation,
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Solving the above linear algebraic equation, one may

obtain Cy and Cjp, and finally the constants f, and € .

Appendix D Derivation of the Integrals of Asymptotic

Wave Term in Equation (21)

The integrals of asymptotic wave term in

equation (21) are
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