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A Spatial-Temporal Approach to Differentiate Epidemic Risk Patterns 

Abstract: The purpose of disease mapping is to find spatial clustering and 

identify risk areas and potential epidemic initiators. Rather than relying on 

plotting either the case number or incidence rate, this chapter proposes 

three temporal risk indices: the probability of case occurrence (how often 

did uneven cases occur), the duration of an epidemic (how long did cases 

persist), and the intensity of a transmission (were the case of chronological 

significance). By integrating the three indicators using the local indicator 

of spatial autocorrelation (LISA) statistic, this chapter intends to develop a 

novel approach for evaluating spatial-temporal relationships with different 

risk patterns in the 2002 dengue epidemic, the worst outbreak in the past 

sixty years. With this approach, not only are hypotheses generated through 

the mapping processes in furthering investigation, but also procedures pro-

vided to identify spatial health risk levels with temporal characteristics. 

Keywords: risk identification, spatial autocorrelation, spatial-temporal 

analysis, epidemic 

1  Introduction 

In 1854, John Snow curbed the spread of cholera by identifying through 

mapping the infected water pump located in the Golden Square of London 

(Snow 1936). Ever since, mapping of infected cases has become an impor-
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tant means to generating hypotheses, guiding intervening measures, and 

controlling infectious outbreak. Mapping can help epidemiologists to find 

the origins of an outbreak, but more importantly, to target high-risk areas 

and places of strategic importance in disease prevention (Ali et al. 2003). 

A Geographical Information Systems (GIS) is often constructed under 

these circumstances: a computer-based system is set up to integrate spatial 

statistics into maps, which can detect disease clustering and determine re-

lationships between disease rates and relevant geographic locations (Lai et 

al. 2004, Cockings et al. 2004, Dunn et al. 2001). Recent studies have 

united temporal factors with spatial analysis and found dynamic epidemic 

changes in certain time course and in specific locations (Tran et al. 2004, 

Harrington et al. 2005, Morrison et al. 1998, João et al. 2004, Getis et al. 

2003). Unlike the traditional approach, this chapter enhances spatial analy-

sis by using not only the incidence rate. We propose a spatial model that 

integrates temporally-defined epidemiological characteristics and verify it 

using data from the 2002 dengue epidemic in Taiwan. 

Dengue virus, a member of flaviviruses with four known antigenic dis-

tinct serotypes, is transmitted in Taiwan mainly by mosquitoes of species 

Aedes aegypti and Aedes albopictus. Few studies have focused on the in-

terplay between the spatial clustering of dengue cases and entomological 

factors (Ali et al. 2003, Tran et al. 2004, Morrison et al. 1998) or environ-

mental conditions (Alpana and Haja 2001) by using a GIS with spatial sta-

tistics. However, spatial analysis is the key to identifying the incidence of 

dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock 

syndrome (DSS). On the contrary, several studies have the treated tempo-

ral issues on dengue transmission (Tran et al. 2004, Harrington et al. 2005, 

Morrison et al. 1998, Derek et al. 2004). Innovative models of temporal-

spatial analysis in disease transmission have proffered, and tested by data 

of the 2002 dengue epidemic in Taiwan, which was the worst outbreak in 

both magnitude and severity in the past sixty years. Hopefully this novel 

approach of disease surveillance can be applied to detect other infectious 

diseases. 

2  Materials and Methods 

2.1  Data of Dengue Confirmed Cases 

Kaohsiung City and its satellite city of Fengshan, confronted in 2002 the 

biggest dengue epidemic in Taiwan since 1940s. A total of 4,790 cases 

were confirmed (representing 85% of total cases found in 2002), including 

4,574 dengue fever (DF) cases and 286 dengue hemorrhagic fever (DHF) 
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cases according to WHO’s definition (Chao et al. 2004). This study fo-

cuses on these 4,790 confirmed cases cohered with positive results in one 

of the three following laboratory tests: (1) molecular diagnosis (Lanciotti 

et al. 1992), or (2) serological diagnosis (Shu et al. 2001), or (3) virus iso-

lation (Kuno et al. 1985). Figure 1 illustrates the temporal progression of 

DF versus DHF cases. 

This chapter chooses Li - the smallest administrative unit in Taiwan - as 

the spatial mapping unit, and a 7-day week as the temporal indicator. Most 

Li in urban areas occupies 0.26-0.58 square kilometers and comprises 

2,100-5,300 residents or 850-1,600 households. 423 Li covered roughly 

94.4% of total confirmed dengue cases in 2002. These case data were pro-

vided by the Taiwan-CDC and without personal identifiers to protect the 

privacy of the patients. All cases (including DHF cases) collected in this 

chapter were summarized at the Li scale, instead of by exact addresses. 

Fig. 1. The epidemic curve of week-based total confirmed dengue (DEN) and 

dengue hemorrhagic fever (DHF) cases in Kaoshiung City and Fengshan City, 

2002 

2.2  Temporally-defined Indices as Epidemiological Measures 

A risk model developed by Wen et al. (2006) depicts the dynamic process 

of a dengue epidemic by emphasizing temporal characteristics on map dis-

plays. To evaluate a dengue epidemic in both magnitude and severity, this 

chapter modifies and further introduces indices with temporally-defined 

epidemiological characteristics (also referred to as temporal indices), in-

cluding (1) probability of occurrence  or how often do cases occur in cer-

tain week(s) of a calendar year (e.g. 2002 in this study), (2) duration of 
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epidemic  or how long does an epidemic persist, and (3) intensity of 

transmission  or how significant do cases among people at risk happen 

and cumulate in consecutive weeks during an epidemic wave. A higher 

value of , ,  will indicate that a case studied is more likely to occur 

within a specific time interval with a longer duration and more intense 

transmission. 

2.2.1  Probability of Occurrence Index ( )

, the probability of a disease occurrence in certain week(s), is the propor-

tion of one or more laboratory confirmed dengue cases occurred in an epi-

demic period (i.e.. numerator, EW) to the total number of weeks in that 

year (i.e.. denominator, TW = 52). The mathematical definition of  of a 

specific disease is expressed in Equation 1 below: 

TW

EW Eqn. 1 

2.2.2  Duration of Epidemic Index ( )

To monitor the persistence of disease cases in a geographical area of inter-

est, the duration of an epidemic ( ) is described as the average number of 

weeks per epidemic wave as in Equation 2: 

EV

CW
EV

i

i

1

Eqn. 2 

where CWi represents the summation of persistent numbers of weeks for 

the ith epidemic wave, and EV is the total number of epidemic waves in the 

studying period. The duration index, reflecting the effectiveness of preven-

tive and control strategies used during the early period of an epidemic, is 

very valuable for public health practitioners and administrators. A larger 

value means fewer disease cases are eliminated. 

2.2.3  Intensity of Transmission Index ( )

To measure population-adjusted mean magnitude of dengue cases per 

wave, intensity of transmission equals to the mean number of case(s) oc-

curred in successive weeks divided by number of people at risk in an epi-

demic wave. Therefore, the intensity of transmission index ( ) is formu-

lated as in Equation.3: 
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 = (CaseNum/POP)/EV Eqn. 3 

where CaseNum and POP represent respectively the cumulative total of 

confirmed dengue cases and population-at-risk, and EV as described 

above. The  index is comparable to a measure of the intensity of cases in 

different areas considering both the duration and size of the population. A 

higher  index implies that the occurrence of cases is temporally concen-

trated; whereas a lower value equates to a smaller epidemic wave, indicat-

ing that most cases are sporadic and temporally dispersed throughout the 

epidemic. The use of different temporal indices offers clues to key ele-

ments of an epidemic that are worth investigating. 

2.3 Spatial risk index: Local Indicator of Spatial Autocorrelation 

Other than temporally-defined epidemiological characteristics, the degree 

of spatial clustering among cases (i.e. spatial risk) (Odland 1988) is also 

needed to measure the degree of association between an interested tempo-

ral index and its specified location. Spatial autocorrelation, including 

global and local autocorrelation indices, are then introduced. A Positive

spatial autocorrelation and negative spatial autocorrelation in the Global

indices (Griffith 1987) respectively represent “clustering” of points based 

on tested variables (Anselin 1995) and inverse correlation, shown as “spa-

tial outliers”, between neighboring areas. A zero spatial autocorrelation is 

considered a random distribution rather than clustering or dispersal. Local 

autocorrelation indices, however, evaluate trends of clustering by compar-

ing similarities and dissimilarities among neighboring locations. Therefore, 

further information about clustered loci is gained. In brief, the Local Indi-

cator of Spatial Autocorrelation (LISA) can be regarded a spatial risk in-

dex to identify both significant spatial clusters and outliers (Anselin 1995). 

The definition of LISA index is given below: 

n

j
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Eqn. 4 

where I(i) = the LISA index for region i; Wij = the proximity of region i to 

region j; Xi = the value of the tested temporal index of region i; Xj = the 

value of the tested temporal index of region j; X = the average value of 

the tested temporal index;  = the standard deviation of Xi; and n = the to-

tal number of regions to be evaluated. 
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The term Wij describes the proximity between region i and j, where a 

value of 1 means that region i is next to region j. The term 

)()( XXXX ji
describes the degree of similarity in a tested index within 

a designated area and its neighbors; from which each of temporal indices 

for the 2002 dengue epidemic in Kaohsiung and Fengshan was evaluated. 

A positive I(i) value of the tested LISA means that a certain region and its 

neighboring areas exhibit a clustering of homogenous areas and have a 

higher tendency of local spatial dependency. In contrast, a negative I(i)

value, which shows the opposite trend between Xi and Xj (i.e. Xi = high, 

Xj = low or vice versa), implying a negative spatial dependency (i.e. the 

region is a spatial outlier in relation to its neighborhoods). The Monte 

Carlo significance test can be used to evaluate the statistical significance of 

spatial clusters and outliers (Anselin 1995). Risk areas can be classified by 

LISA index values into five distinct levels of epidemiological significance 

(Table 1). 

Fig. 2. Definitions of five spatial risk levels. Areas with a high value of the tested 

index are shown in grey and areas with a low index value are shaded in white. 

Among the five spatial risk distributions, (a) shows a spatial cluster of high values 

of the tested temporal index; (b) and (c) represent the spatial outliers; (d) shows 

random spatial distribution of the tested temporal index; and (e) displays a spatial 

cluster of low values of the tested temporal index.

Risk Levels: (a) Extreme (b) High (c) Moderate (d) Mild (e) Lowest 

Cell with high index value is shaded in grey 
Cell with low index value is shaded in white 
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Table 1. Five spatial risk levels with epidemiological significance

Spatial 

Risk Level 
Epidemiological Significance 

Level 1 

(Extremely 

high) 

Areas surrounded by neighboring areas having a statistically 

significant positive LISA index and a high tested temporal index 

value, shown in Figure 2(a), represent a spatial clustering of 

such an designated temporal index. This implies the presence of 

a severe epidemic spreading in that locality with extreme risk. 

Level 2 

(High) 

Areas surrounded by neighboring areas with statistically signifi-

cant negative LISA index, where the central area has lower 

tested temporal index value (as a spatial outlier) compared with 

it’s neighbors, shown in Figure 2(b). This implies that a disease 

outbreak would soon occur in these high-risk areas, if effective 

control measures are not taken. 

Level 3 

(Moderate)

Areas surrounded by neighboring areas with statistically signifi-

cant negative LISA index, where the central area has higher 

tested temporal index value (as a spatial outlier), opposite to 

Level 2, compared with it’s neighbors, shown in Figure 2(c), 

and implies that the focused area with moderate risk could be a 

potential source of infection if cases begin appearing in the sur-

rounding areas. 

Level 4 

(Mild) 

Areas surrounded by neighbors having neither a significantly 

positive nor negative LISA index, shown in Figure 2(d). This re-

fers to cases occurred sporadically in those areas but there is no 

significant spatial cluster or outlier. 

Level 5 

(Lowest) 

Areas surrounded by neighbors having a statistically significant 

positive LISA index, but low for the tested all the three temporal 

index values, shown in Figure 2(e); this situation implies no 

outbreak occurs in those areas. 

3  Results 

3.1  Correlation among three temporally-defined 
epidemiological Indices 

All three temporal indices (including probability of case occurrence , du-

ration of epidemic , and intensity of transmission ) show significant 

positive correlation with the “incidence rate” (p < 0.001) (Table 2). Among 

the temporally-defined characteristics, intensity is strongly correlated with 

duration (  and : 0.841), indicating that dengue cases in areas with a 

higher intensity are most likely to persist (i.e. last a longer duration). Yet, 
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the correlation coefficient between  and  at 0.425 is not significant 

enough, denoting that a higher occurrence of dengue cases does not always 

imply a higher intensity of transmission, which suggests difficulty in curb-

ing the spread of the disease.  

Table 2. Correlation matrix among incidence rate and the three temporally-

defined characteristics in the 2002 Dengue Epidemic in Kaoshiung and Fengshan 

Cities in Southern Taiwan 

Probability of 

occurrence ( )

Duration of 

Epidemic ( )

Intensity of 

Transmission ( )

Incidence Rate 

(IR)

Probability of 

occurrence ( )
1 0.625** 0.425 * 0.681** 

Duration of Epi-

demic ( )
0.625** 1 0.841 * 0.636** 

Intensity of 

Transmission ( )
0.425 * 0.841 * 1 0.801** 

Incidence Rate 

(IR)
0.681** 0.636** 0.801** 1 

(*)  means the value is high with a 95% statistical significance. 

(**) means the value is high with a 99% statistical significance. 

Nevertheless, sporadic cases likely to initiate an epidemic in certain 

geographic areas should be identified. Table 2 shows the importance of 

specifying spatial risk areas with different temporally-defined characteris-

tics. Such information is valuable for public health officials to determine 

where dengue cases with a longer duration or a higher transmissible inten-

sity but a lower incidence rate are located. 

3.2  Spatial patterns analysis with temporally-defined 
epidemiological indices 

This chapter illustrates a means to search for possible risk areas and point 

out likely areas with a longer duration of epidemic or more severe intensity 

of transmission. The procedures to examine each temporal index include 

the following: spatial mapping, spotting spatial risk areas, comparing their 

risk patterns, and finally, evaluating and filtering factors having the great-

est influence on DHF epidemics in areas of different risk types. 
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3.2.1  Identifying epidemic risk areas 

Fig. 3. Mapping the values of incidence and other three temporal indices (prob-

ability of occurrence, duration of epidemic and transmission of intensive) with ob-

served clusters. The darker areas reflect a higher value of that indicated index. The 

locations of dengue clusters are shown as circled areas. 
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Figure 3 shows plots of the three temporal indices along with that of the 

incidence rate (IR). The spatial patterns on these plots are compared to 

identify possible risk areas (Mermel 2005). In these cases, darker areas in 

the figure reflect a higher value of the index. Risk areas with higher values 

in all three temporal indices (labeled as (a2)-(b2), (a3)-(b3), and (a4)-(b4) 

respectively in Figures 3B, 3C, 3D) are also recognized by IR (labeled as 

(a1)-(b1) in Figure 3A). However, areas with higher IR values (Figure 3A) 

are not detectable as areas with a longer duration of epidemic (e.g. c3 in 

Figure 3C) or those of a higher intensity of transmission (e.g. c4 and d4 in 

Figure 3D). 

3.2.2  Identifying spatially significant clusters and outliers 

“Spatial outlier” is another important spatial pattern for risk identification 

besides “spatial clusters,” particularly at the beginning of an epidemic. To 

evaluate spatial association (including spatial clusters and outliers) with 

the three Li-based temporal indices, this study transforms LISA statistics 

into five different spatial risk levels with a 95% statistical significance 

(Table 1 and Figure 2) and displays their spatial distributions in Figure 4. 

The LISA map for IR shows two statistically significant clusters (i.e. 

circles (a) and (b) in Figure 4A). Comparing this map of IR with that of the 

probability of occurrence ( ), we can observe similarity in the clustering 

of cases in two locations (marked by circles (a) and (b) in Figure 4B). 

Similar clusters can also be found on LISA maps of the duration of epi-

demic ( ) (i.e. circles (a) and (b) in Figure 4C) and the intensity of trans-

mission ( ) (i.e. circles (a) and (b) in Figure 4D). Further comparison 

among the temporal characteristics in all areas marked (a) and (b) in Fig-

ures 4B, 4C, 4D suggests that areas with a higher  are larger in size and 

cover more Li than those with a higher  or  (e.g. : 14.35 km2 vs. : 8.74 

km2 and : 4.24 km2 at circle (a); : 4.25 km2 vs. : 0.47 km2 and : 0.26 

km2 at circle (b)). Fewer Li with a higher  or  are found in circle (b) 

(Figures 4C and 4D), which implies somewhat effective control strategies. 

These areas in circle (b) characterized by having a shorter duration (0.7-1.5 

weeks/wave) and a lower intensity of transmission (0.2-1.2 dengue 

cases/10,000 population-at-risk/wave) have had mosquito breeding sites 

reduced throughout.  

Areas with 159 dengue cases can be identified using the IR map (9 Li 

covering about 1.05 square meters) although their values on duration and 

intensity are not particularly high (  = 1.92~2.01 weeks,  = 1.18~1.26). 

Moreover, areas with moderate risks marked by circles (c) in Figures 4C 

and 4D have higher temporal index values than their surroundings (Central 
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Fig. 4. Dengue significant risk maps of incidence and other three temporal indices 

to show spatial clusters and outliers. The Local Indicator of Spatial Autocorrela-

tion (LISA) was adopted as the spatial risk index to identify both significant spa-

tial clusters and outliers of the tested temporal in-dices. Monte Carlo significance 

test with p<0.05 was used to evaluate the statistical significance of spatial clusters 

and outliers. 
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vs. Surroundings: =1.5~3.1 vs. 0.03~0.6 weeks, =1.04~2.01 vs. 

0.01~0.57). These areas might experience further outbreaks if mosquito 

breeding sites were not eradicated. We can see that IR map alone (Figure 

4A) without LISA map supplements (Figures 4B-4D) is not sufficient for 

distinguishing spatial risk patterns among epidemiologically significant ar-

eas.

4  Discussion 

This chapter proposes a minimum data requirement and more straightfor-

ward statistical methods to capture major temporal characteristics along 

the dynamic epidemic process, and to suggest a workable procedure to in-

tervene in endemic or hyper-endemic developing countries of dengue (Ali 

et al. 2003, Harrington et al. 2005, Morrison et al. 1998, Getis et al. 2003, 

Derek et al. 2004). The integrated spatial-temporal characteristics, unlike 

incidence rate alone, are useful in both nailing down risky areas and indi-

cating places that might have virus transmissible to facilitate and cause an-

other epidemic. 

Temporal Epidemic patterns are complex. Although this chapter pro-

poses three temporally-defined epidemiological characteristics (probability 

of occurrence, duration of epidemic, and intensity of transmission) to strat-

ify the severity of an epidemic, it is difficult to compare these indices with 

each other in order of strength or severity measures. For example, which 

one of temporal risk patterns exhibited by, for example, a high intensity of 

transmission or a high duration of epidemic is more indicative? It is also 

apparent from the discussions above that none of the indices is able to 

stand alone. Clearly, further studies should focus on integrating three tem-

porally-defined epidemiological indices into ONE single risk index. Fur-

thermore, the effectiveness of this approach in identifying spatial-temporal 

epidemic risk patterns should be evaluated in depth by considering multi-

year epidemic constructions, other diseases, and different locations. 

In conclusion, the model proposed in this chapter can both quantita-

tively measure epidemiologically related temporal characteristics and 

qualitatively evaluate the effectiveness of control measures based on 

chronologically dynamic maps. Rather than relying on mapping cases or 

incidence rate solo at different periods, this study enables public health ex-

perts additional options: (1) to comprehensively identify risk areas and ex-

amine their dynamic spatial-temporal changes throughout an epidemic, (2) 

to provide broader perspectives with temporal risk characteristics other 

than epidemic curves, and (3) to measure risk levels along with the sever-
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ity of epidemics after integrating spatial-temporal characteristics. Further-

more, monitoring spatial risk patterns over time described in this chapter 

can as well be applied to other infectious diseases, such as the West Nile 

encephalitis or Ebola hemorrhagic fever. Last but not least, the approach is 

potentially useful for controlling the fast spreading and highly pathogenic 

avian influenza virus (HPAI) by shortening the duration of the virus activ-

ity, and by minimizing its intensive transmission in epidemic sites; thus 

avoiding a possible pandemic (Mermel 2005). 
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