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This paper aims to provide deeper insight into the suddenly contracted channel flow. The channels
under investigation have a width of 8 whereD represents the channel height upstream of the
step plane, and two contraction rati@s=2 and 4. In the present three-dimensional finite volume
analysis, the advective fluxes are discretized using an upwind scheme that provides a third-order
accurate solution in uniform grid cases. For efficient calculation of field variables, working
equations are solved separately based on the semi-implicit velocity-pressure coupling procedures.
We exploit a theoretically appealing topological theory to determine lines of separation and
reattachment, from which the pitchfork bifurcation flow can be identified in the contraction channel.
To further elucidate the vortical details of the channel flow, we trace massless particles seeded in the
flow, showing the spanwise spiraling flow motion. Emphasis is placed on flow phenomena in the
upstream salient corner eddy and downstream tip corner eddy20@ American Institute of
Physics. [DOI: 10.1063/1.1459719

I. INTRODUCTION respectively, and, becomes larger as Re increases. The
reattachment length.; varies linearly with the Reynolds

There are many cases in which flow phenomenon downnumber Re according th;=a*Re—b, where (a, b) are
stream of a suddenly contracted channel is important, witlestimated to be (0.336410 °,0.1088) and (0.4011
the non-Newtonian flow case being of particular interest. Thex 10~ 3,0.0565) for C=2 (500<Re<4000) and 4 (300
practical importance in the polymer processing industriess Re<2000), respectively.

(Crochetet all) has prompted extensive investigations. The  Considering the rapidly increasing use of computational

flow geometry we consider in this simulation is that of anfluid dynamics code to model flow behavior, we performed

idealized suddenly contracted channel. The step plane is coin this study a three-dimensional simulation to investigate

sidered to be normal to the direction of the channel wallsthe effects of the Reynolds numbers and the contraction ra-
This flow has been investigated experimentadige, for ex- tios on the contraction channel flow. As a first attempt to

ample, Durset al?). Numerical investigations into the prob- study this problem, we considered a channel used in an ex-
lem of present interest have been quite plentiful. Howeverperimental work so as to reproduce experimental

they were mostly conducted on a two-dimensional basisneasurementsand, thus, validate the analysis code. Another

(Dennis and Smitf, Hunt} Hawken et al,”> Huang and aim was to provide further details about the nature of the

Seymouf and Chiang and Shéu flow that was difficult to obtain in the experiment.

Separation in a contraction channel can be characterized When considering the flow downstream of a planar and
by the recirculation eddies at the upstream salient corner anglymmetric channel expansion, a larger re-circulating region,
downstream tip corner as shown in Fig. 1. The separatiomwhich appeared preferentially at one wall of the channel, was
length L, and the reattachment length, of the upstream experimentally observed by Cherdrari al® and Sobey.
salient corner eddy were reported to decrease in their magibove the critical Reynolds numbeRe,, the flow pattern
nitudes as the Reynolds number Re is increased frorhecomes substantially different from that observed below
zero>™’ These values become increasing whe>100 this value. Under these circumstances, the suddenly ex-
(Ref. 6. As Re>1000, L, follows the asymptotic formula panded flow can no longer be symmetric about the centerline
L;=(0.1289 In(R€2)—0.5365)/2 for the channel with of the channel, and a process known as pitchfork bifurcation
contraction ratioC=2 (Ref. 3. Hawken et al® revealed can occur. This causes momentum transfer to proceed be-
that the downstream tip corner eddy becomes visible in théween the fluid shear layers and can, in turn, cause a pressure
range of 3086cRe<500 and 206cRe<300 forC=2, and 4, of nonuniform type to form across the channel. This estab-

lished pressure gradient leads to an asymmetric flow, which
dAuthor to whom correspondence should be addressed. Telephone: 886-%‘5e r.efer to QS the Coanda effe(GMIIg and Femo'_io)' In-
23625470 ext. 246, fax: 886-2-23661703; electronic mail: VeStigations into the flow asymmetry in a geometrically sym-
sheu@sccs.na.ntu.edu.tw metric channel have mostly focused on flow through planar
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motion in the channel. This is followed by a brief introduc-
tion to the finite volume discretization method and the seg-
regated solution algorithm. Section IV is devoted to describ-
ing first the investigated problem and, then, the validation
study of the employed analysis code. In Sec. V, we present
numerical results obtained at two contraction ratios and five
Reynolds numbers. To broaden our understanding of the flow
separation—reattachment in the channel, we adopt a theoreti-
cally rigorous topological theory. We show that three-
dimensional pitchfork bifurcation is physically relevant and
can be suppressed as the channel aspect ratio is reduced. We
also study in detail the spanwise spiraling flow structure in-
side the salient and tip eddies. Finally, we provide in Sec. VI
concluding remarks.

)
)

(90

Il. MATHEMATICAL MODEL

FIG. 1. Schematic of the three-dimensional channel, with a suddenly con- In the present investigation the numerical technique was
tracted plane at=0. Both separated—reattached lengths and boundary con-

ditions are provided. used to simulate the three-dimensional steady incompressible
and viscous flow of a non-conducting fluid through a con-
traction channel schematically shown in Fig. 1. The Newton-
symmetric channel expansions. One can refer to the works @&n fluid under investigation has a constant dynamic viscos-
Fearnet al,'* Drikakis!? Battagliaet al,** Alleborn et al,**  ity. The governing equations that can describe the
Rusak and Haw& Mizushima and Shiotarlf, and Hawa contraction channel flow motion are expressed in vector
and Rusak/'® which provided clear insight into the flow form as
dynamics near the critical Reynolds number and demon- 1
strated the existence of a bifurcation phenomenon. u-Vu=-Vp+—V?
Previous numerical studie® have conducted the two- S
dimensional contraction flow analyses only in the half-
channel. The present authors presented the critical Reynolds
numbers as 3075 and 1355 in their two-dimensional full-In the above primitive-variable equations,v, andw are the
channel calculations foE=2 and 4, respectivelyTo the  Vvelocity components in the, y, and z directions, respec-
best of authors’ knowledge, no investigation has been corfively, andp is the static fluid pressure. All the variables have
ducted to study the bifurcation flow in the three-dimensionaPeen normalized by dividing the velocity components by the
sudden contraction channel. The present three-dimension&hosen characteristic velocityn,,, Which takes on a value
study takes the channel span into consideration. One of o/3 times that of the inlet maximum velocityy,a(=3/2),
main aims is to determine whether pitchfork bifurcation re-and by the pressure yUZ,,, wherep is the fluid density.
mains a main signature of the three-dimensional flow in thefll the independent variables are nondimensionalized by the
contraction channel. upstream channel heighd(=1), leading to a Reynolds
The remaining sections of this paper are organized asumber of Re=(3Upea) (D)/x, Where u denotes the dy-
follows. In Sec. Il, we present equations that govern the flonnamic viscosity of the fluid.

@

V-u=0. (2)

TABLE I. Separation and reattachment lengths for the case-e2 and grid details used in the grid indepen-
dent test42D, half-domain computation

Ly L2 Ls

Length

Reynolds numbeRe 1000 2000 1000 2000 1000 2000

Dennis and SmitliRef. 3 0.1375 0.1819 0.0808 0.0926

Hunt (Ref. 4 0.1540 0.1970 0.0820 0.0940 0.2070 0.4805

Hawkenet al. (Ref. 5 0.1425 0.0770 0.2388

Huang and SeymouiRef. 6 0.1375 0.0805 0.2220

Present h=1/20 0.0847 0.1448 0.0561 0.0667 none none
1/40 0.1619 0.2015 0.0812 0.0927 0.1816 0.3445
1/80 0.1521 0.1977 0.0835 0.0943 0.2538 0.6385
1/160 0.1459 0.1912 0.0834 0.0945 0.2687 0.6058
1/320 0.1419 0.1862 0.0825 0.0941 0.2347 0.5677
1/640 0.1397 0.1831 0.0819 0.0936 0.2222 0.5431
1/1280 0.1386 0.1815 0.0816 0.0934 0.2199 0.5350

a(min,max)=(—1.0,1.0).
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TABLE II. Grid details of the nonuniform Grid-AA=18).

C x(min,max) N(dx,dy,dz) dx(min,max) dy(min,max) dz(min,max)
2 (=25, 5.0 (110, 100, 13D (0.001, 0.2% (0.01, 0.48 (0.0005, 0.02
4 (=2.5,5.0 (110, 100, 18D (0.001, 0.2% (0.01, 0.48 (0.0005, 0.01

We favor the primitive-variable formulation owing to its Ill. NUMERICAL MODEL
accommodation of closure  boundary  conditions
(Ladyzhenskay9). In all the cases investigated, the same
parabolic velocity profiléFig. 1) was specified at each chan-
nel inlet. As with many other inflow—outflow simulations,
the flow at the channel exit was assumed to have a zer
gradient in the axial direction. The rate of change of both
velocity components remains unchanged with the distanc
along the channel. The no-slip and no-penetration condition
are used along the channel walls. The presently employeﬁi]
primitive-variable formulation can avoid dealing with the
sharp corner singularitginfinite vortivity at the downstream
tip corney, which will be a difficult problem to deal with
when using the stream function-vorticity formulatidf®

In solving the primitive-variable equatior(d¢) and (2),
together with the above-mentioned boundary conditions, we
employ a finite volume discretization method. A serious

roblem worthy of consideration is that solutions to incom-
gressible Navier—Stokes equations are prone to checkerboard

ressure oscillations. To circumvent this difficulty, field vari-

bles are stored on staggered, interconnected grids. Follow-
g the standard finite volume method, working equations are
tegrated in their respective control volumes, each of which
is associated with its representative primitive variable and is
placed on the centroid of the control volume.

Numerical simulation of incompressible Navier—Stokes
equations leads to the convective instability problem. Physi-
cally erroneous oscillatory velocities occur when dominating
advective terms are discretized using centered schemes. This
----- uniform, h=1,/1280 can result in numerical instability, which is particularly se-
—— non—uniform, Grid-A vere in multidimensional flow simulations. To fix this prob-
lem, we have modified the QUICK schenhird-order ac-
curacy of Leonard® and implemented it on nonuniform
grids. This modification not only resolves the convective in-
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FIG. 3. (a) Comparison of the computed two- and three-dimensional stream-
FIG. 2. Comparison of computed results under uniform and nonuniformwise velocity profiles at the plane of symmetyys 0, with the experimental
grids in a two-dimensional channel with=2 andRe=2000.(a) Stream-  data of Durstet al. (Ref. 2 for the case withC=4 and Re=1150; (b)
wise velocity profiles(b) pressure distribution along the downstream chan- comparison of the streamwise velocity profiles computed under the uniform

nel roof—floor; (c) vorticity distribution along the downstream channel and nonuniform grids in a two-dimensional channel w@k-4 and Re
roof—floor. =1150.
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FIG. 4. Comparison of the computed vorticity with that
using the stream function-vorticity formulation in a
two-dimensional channel wite=2 andRe=1000.(a)
Vorticity contours near the tip cornetb) vorticity dis-
tribution along the downstream channel roof—floor.

stability problem, but also improves the prediction accuracyform flux discretization, see for example Chiaegal %

Discretization of other spatial derivatives is performed using

the

centered-schemesecond-order accuracyor physical

When solving the finite volume discretized equations for
(1) and (2), we abandon the mixed formulation due to the

reasons. For a more detailed representation of the nonuniteed for a much more disk storage space compared to the
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FIG. 5. Pressure for the case wi@=4, A=18, and
Re=1150.(a) Pressure contours on the plane of sym-
metry y=0; (b) the distribution of p(x,0,0) and
p(x,0,+0.125).
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n ' . . . . .
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e x=—0.3 : é and the mass continuity equatiof2). In the staggered
> —_0.2 : R meshes, there are no storage points for the pressure at the
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FIG. 6. Velocity profiles for the case witi=4, A=18, andRe=1150.(a) * spline fitting curve
u(z) downstream of the contracted plane at the plane of symmet; (b)

u(y) upstream of the contracted plane at the plane of symnzetg.
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-

Symmetric Solution (2-D, half-domain)

® computed data y
regression line X
L3=0.4011(Re/1000)—-0.0565 o

1 Bifurcated Solution (2-D, full-domain)
x computed data
~~~~~~~~~~ spline fitting curve

contraction induced flow
in the spanwise direction
-— | ——-

0.8

0.4
L

(Re),~1350

reattachment length L3

0

T T T
500 1000 1500 2000
Reynolds number Re

o

FIG. 9. Numerical bifurcation diagram obtained from the simulated reat-
FIG. 7. A contour plot ofv at the planex=—0.5 for the case witlC=4, tachment lengths of the downstream tip corner eddyC=2; (b) C=4
A=18, andRe= 1150 to illustrate the spanwise flow motion. [from Chiang and She(Ref. 7)].
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TABLE llI. Separation and reattachment lengti@&id-A, full-domain com-
putation).

2', or 3+ Ll L2 L3

C Re dimension (roof, floon (roof, floon (roof, floor)
426 2 (0.098, 0.098 (0.067, 0.06Y (none, nong

3 (0.100, 0.100 (0.068, 0.068 (none, nong
2500 2 (0.196, 0.197 (0.093, 0.098 (0.731, 0.738
3 (0.207, 0.20y (0.098, 0.098 (0.715, 0.722
3150 2 (0.210, 0.212 (0.097, 0.099 (0.783, 1.11Y
3 (0.223, 0.225 (0.102, 0.102 (0.835, 1.03Y
4 1150 2 (0.212, 0.212 (0.115, 0.115 (0.401, 0.406
3 (0.229, 0.229 (0.124, 0.12% (0.391, 0.39%
1500 2 (0.230, 0.232 (0.120, 0.122 (0.358, 0.71%
3 (0.250, 0.252 (0.132, 0.133 (0.365, 0.68%

@Aspect ratioA= 18, on the symmetry-plang=0.

0.25

z axis

-0.25

0.25

Chiang, Sheu, and Hwang

— (b) u(z) profile; (c) p(z) profile

label scaled by 10, 1?(0,0,0)=0

boundary conditions is not needed. The scheme adopted hel
has been validated against the analytic scalar transport equi
tion and Navier—Stokes equations to ensure its spatial accu
racy. The interested reader can refer to Chiang and $Heu.

all the cases investigated, the solution was considered t
have converged when the globaj-norms of pressure and

velocity residuals all dropped by at least ten orders of mag-
nitude. Besides imposing this stringent convergence require
ment, it is also demanded that the relative difference of the

= re = PP
%y (b) 8% 38 8%
£o S& £o s2
& [ & [
) | s | =
° & N e
£ = g =
= =
-] o
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7} ] g <
e = . e
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[} : o s
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7 [ N 1 N

0 15 3
velocity u

0.5

3-D symmetry—plane

z axis

FIG. 10. Streamwise velocity distributions and pseudo streamlines on th
plane of symmetry =0 for showing the presence of a pitchfork bifurcation
solution. (a) C=2, A=18, and Re=3150; (b) C=4, A=18, andRe

FIG. 11. The three-dimensional computed solutions for the case @iith
=2, A=18, andRe=3150.(a) Pressure contour on the plane of symmetry
y=0; (b) velocity profileu(0.25,0z); (c) pressure profilep(0.25,07).

mass flux between the inlet and other arbitrarily chosen sec-
tions be less than 16°,

IV. PROBLEM DESCRIPTION AND CODE VALIDATION

The Cartesian coordinate system, with the origin located
at the contraction plane, used for the three-dimensional study
is depicted in Fig. 1. The direction is defined as being the
direction of the bulk of the fluid flow. Thg and z coordi-
nates represent the spanwise and step-height directions, re-
spectively. The upstream channel height and the step height
areD(=1) and3D—d), respectively. The channel height
downstream of the contraction i@ leading to a contraction
ratio of C(=D/d). Upstream of the step plane, the flow
enters the channel at=—2.5D, at which point a fully de-
veloped velocity profilgWhite?®) having a maximum value
of 3/2 is prescribed. In this study, we consider that the chan-
nel exit is truncated far downstream of the step to allow the
flow to have a negligibly small velocity gradient: Given this
assumption, we prescribe a zero gradient velocity vector in
the axial direction ax=5D to close the problem. In the
present investigation, computer code was run to simulate the
fluid flow through channels with a width of I8 (Ref. 2,
each of which contained a planar symmetric contraction at
x=0. The channel geometry was characterized by the con-
fraction ratio. The Reynolds numbers investigated were 426,
2500, and 3150 for the case ©f 2, and 1150 and 1500 for
the case oC=4.
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p(0,0,0)=0

Z axis

FIG. 12. The computed contours on
the plane of symmetry=0 near the
contraction step for the case 6f=4,
A=18, andRe=1500.(a) u-contours;
(b) w-contours;(c) p contours.
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As is normally the case when conducting a numericalFig. 1) and two reattachment lengtlis, and L3 schemati-
flow simulation, we performed grid-independent tests. Tocally shown in Fig. 1 all differed by less than 1.5% for the
conduct these tests, Cartesian grids were overlaid uniformlywo finest test gridsh=1/640 and 1/1280.

in the two-dimensional channel with=2 atRe=1000 and

Prior to demonstrating the integrity of the code, it is

2000. As Table | shows, the results computed at seven invegmportant to justify the rationale behind using nonuniform
tigated grids provided grid-independent solutions in thegrids in the subsequent three-dimensional calculations. From

sense that one separation lenfith schematically shown in

(enlarged by 10 times in x direction)

S O OO

0 o o wn
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FIG. 13. The spanwise distributions of reattachment lehgtlfor the case
with (C,A,Re)=(4,18,1150),(4,18,1500, (2,18,2500, and(2,18,3150.

the physical point of view, grids should be packed in regions
where the boundary layer effect prevails. The nonuniform
grid Grid-A (dXy,j;,=1/1000 anddz;,=1/2000Q detailed in
Table Il was, thus, chosen to carry out the two-dimensional
calculations aC=2 andRe=2000. The results were com-
pared with those computed at a much refined uniform grid
with h=1/1280. In Fig. 2a), no difference is seen between
two velocity profiles. As Figs. @) and Zc), which plot the
local flow field along the downstream channel wall, show,
Grid-A solution compares fairly well with those computed at
h=1/640 andh=1/1280 in both pressure and vorticity ex-
cept in the vicinity of the downstream tip corner. This justi-
fies the grid convergence and the use of Grid-A; Grid-A will

2-D reference

—e— » - - floor/roof for 3-D, C=2, Re=3150
—=— + - % - floor/roof for 3-D, C=4, Re=1500

o . ) .
-
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s
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K e — X - e *

reattachment lengths Lg

0.2

T T T T

0 6 12 18 24 30 36
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FIG. 14. Reattachment lengthy on the symmetry-plang=0 of the chan-
nel with C=2 andC=4 for different aspect ratio8.



1608 Phys. Fluids, Vol. 14, No. 5, May 2002 Chiang, Sheu, and Hwang

0.5
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-0.125 0 0.125

.é -0.5

z axis
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-0.125 0 0.125

FIG. 15. Plots of lines of separation—reattachment on the channel roof, limiting streamlines on the left sidewall, and, pseudo streamlinesnogtitte sym
planey=0. () C=2, A=18, andRe=426; (bh) C=2, A=18,Re=3150; (c) C=4, A=18,Re=1150; (d) C=4, A=18, Re=1500.

be employed in the subsequent three-dimensional study sinamulated results have a good agreement with the numerical
99.5% of the grid points can be saved even in the twosolution of Durstet al? To check whether this discrepancy
dimensional calculation. arises from the nonuniformity of grid, we compare in Fig.
The chosen upstream—downstream lengths are 2.5 and () the results obtained at the nonuniform Gridé@x.;,

which have been used by Hawkenal® These lengths are 2 —1/1000 anddz,;,=1/2000 with that obtained at the uni-

to 3 times those of Dursit al* and Huang and Seymobifo  form grid with h=1/1280. It is found that the agreement is
study the effect of the upstream—downstream lengths on thgycelient. For providing evidence of insuring the correctness
flow development, we increased lengths by a factor of 2 angl¢ 1,0 present computation, we present in Fig. 4 the compari-

ran the two-dimensional code aC(R€)=(2,4000) and4, ., of the vorticity distribution of our result with those of the
2000 on Grid-A. The velocity profiles computed at different . function-vorticity formulatiof®6 used together with

channel upstream—downstream lengths agree very well T'}?\e Moffatt solution(Moffatt?®) as an approximation near the

computed differences fdr,, L, andL3 are all less than 1%. . . : .
For validation purposi:-s v2ve congidered o channels angownstream tip comer. Figure 4 shows that Grid-A solution

two flow conditions, C=2Re=426) and C=4Re compares fairly well with t.hat computed ht=1/1280 and
=1150), which were previously studied by Durttal? in has a good_ agreement with the o_ther re_ferenced data. For
their experiments. Due to space limitation, we only proVidefurther making sure that our code is applicable to solve for
the result for the case ofd=4,Re=1150) here. The inter- the channel flow problem, we have tested the three-
ested reader can refer to Shetual ?® to obtain the result for dimensional(3D) expansion channel flow problef€hiang

the case with C=2,Re=426). As Fig. 3a) shows, there is et al*?3. Good agreement with the experimental data of
good overall agreement between the computed and expefrearnet al* makes us to have additional confidence of us-
mental data. While a larger discrepancy is observed only iing the presently computed solution in the subsequent dis-
the region immediately upstream of the contraction step, oucussion of results.
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V. NUMERICAL RESULTS expected, turns out to be a nearly vertical straight line

Having verified the applicability of the proposed finite- (9p/9z~0). Across the contraction planéeé the pressure
volume code to simulate Navier—Stokes flows in the sudCUrves are seen to behave as the Moffatt résutigure b)

denly contracted channel, we will discuss three-dimensionat'OWs that the pressure continues to decrease to its minimum
results computed at two sets 6f(=2 and 4 and five Rey- Valueé aix=0.17 and has a sudden dropxat 0 along lines
nolds numbersRe(=426, 1150, 1500, 2500, and 3)50is- z=0 and z==*=0.125, respectively. This is followed by a

cussion of the results will be divided into four subsections. 9radual increase to the local maximum value xat0.7.
Downstream ofx=1, the pressure profile seems to be a

A. Effects of the channel contraction nearly straight line {p/dx=~constant). Due to the decrease
in the channel cross-section area, the velocity increases by an

In the approach to planar contraction, fluid flow acceler- . . S
. ._approximate factor of the contraction ratio if the channel
ates due to the suddenly decreased channel height. This i . -
width is sufficiently large.

followed by a further flow acceleration due to eddies formed The flow in th tracted ch | section is featured b
immediately downstream of the channel tip. At the stream- € flow in the contracted channel section 1S featured by

wise location where the tip eddy forms, the flow experience< faifly uniform core flow and an overshooting boundary
an expansion and, thus, decelerates. The flow finally devel@Y€l- Downstream of the contraction step, it is interesting to
ops into an accelerating mode as it approaches to the chanri¥te th_at the peak streamwise velocity does not occur at the
outlet, with the magnitude of this accelerating velocity beingCeNterline of the channel. Take the caseCof4 as an ex-
considerably decreased. This accelerating—decelerating ph@MPle; an overshooting velocity profilg(z) at the planey
nomenon is best depicted by the pressure contours plotted a0 can be observed foRe=1150, as seen in Fig.(8,

the plane of symmetry=0. For the case o€=4 andRe  owing to flow separation from the channel roof and floor. In
=1150, the pressure contour, as shown in Fig),5n re- light of the conservation of mass principle, the flow velocity
gions upstream of the contraction step bends towards th@ust be increased in regions near the flow separation. This
upstream side. Immediately downstream of the planar conevershooting velocity diminishes as the flow gradually de-
traction step, the pressure contour bends towards the downelops into the fully developed profile. Whilg(y) at z=0
stream end. This is followed by the emergence of a gradudboks like a uniform core flow, the above mentioned over-
uniform pressure pattern. Finally, the pressure contour, ashooting phenomenon is not seen in Fi¢h)6
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We will next consider the end-wall induced spanwise sidewall topology of the salient eddy: a pair of
flow motion in channels having a planar contraction. Figure ,, (saddle, spiral-focal) critical points

6(b) shows thabu/ 9x near the sidewall boundary layer has a \ // {J

value larger than that in the core region. This accompanies a (\

negative pressure gradient and, thus, the flow moves toward:

the two vertical sidewalls. To confirm this, we plot contours ( \
of v at a streamwise plane=—0.5. As Fig. 7 shows, the \

spanwise flow motion is revealed by the movement of fluid \ | U \\\\\\
particles to the vertical sidewall. g | | \

T
0.25 -0.2 ~0.1 0

B. Eddy size and pitchfork bifurcation i
/— salient corner

X saddle point
* repelling spiral-focal point
+ attracting spiral-focal point

The suddenly contracted channel flow manifests itself by § ==
the presence of re-circulating eddies. An effective means of [
determining these eddy sizes is, therefore, needed. In this
study, we adopted the topological theaftyegendré® and
Lighthill).>° Among the available vector fields, we chose lim-
iting streamlines in the present three-dimensional topological
study. Limiting streamlines are, by definition, streamlines e-
immediately above the solid wafl. Take the case with

(C,R€)=(2,2500) as an example; we can theoretically de- -os / 0 X axis 05 |

z axis

termine lines of separation and reattachment on the channe warp spirally the vortical coreline and
roof from the limiting streamlines plotted in Fig. 8. This, in g , proceed toward the y=0 symmetry—plane
turn, enables us to determlng thrge typical lendths L, s @\%
andLj, schematically shown in Fig. 1. ——

Whether or not flow bifurcation of the pitchfork type
occurs depends on the channel contraction ratio as well as or
the Reynolds number. Based on our previous two- =
dimensional resulfsshown in Fig. 9, the critical Reynolds o - —_——
numbers beyond which flow started to exhibit bifurcation o 02 03 o4
solutions were determined as 3080 and 1350Cfer2 and 4,  FIG. 17. Topological critical points on the left sidewalk= 9 for the case of
respectively. With reference to these critical values, we conC=4, A=18, andRe=1500.
sidered Reynolds numbers, tabulated in Table Ill, in the
present three-dimensional studies. It was found that solutions

reveal unequal roof—floor eddy sizes as the Reynolds numbegfimensional pitchfork bifurcation flow in the presently inves-
exceeded its critical value. The evidence is given in Fig. 10tigated planar symmetric sudden-contracted channel.

which plotsu-w pseudo streamlines and thevelocity pro- The flow atRe= 3150 can no longer be configured sym-
file at the plane of symmetry =0, for cases characterized metrically with respect t@=0 in the channel withC=2.

by (C,Re)=(2,3150) and(4,1500. Figure 10 also shows ynder these circumstances, the pressure plotted in Fig) 11
that the reattachment lengths|oof and L g|goor @re substan-  exhibits noz-symmetry contours in response to the asymmet-
tially different. It is the symmetric flow state in the channel ric velocity profile shown in Fig. 1@). To gain deeper in-
that may lose its stability and transit to a stable asymmetrigight into the pitchfork bifurcation flow, we plot the velocity
state. The circulating eddies formed immediately down-and pressure profiles at=0.25 in Figs. 11b) and 11c). Of
stream of the contraction plane no longer can be symmetrithe two downstream tip eddies, the roof eddy has a shorter
with respect to the symmetry plaze=0. Unlike the down-  |engthL; and a larger velocity than those of the floor eddy.
stream reattachment length, the upstream separation lengtih the other hand, a larger pressure value is observed in the
L, and reattachment length, on the channel roof remain floor eddy. Also, a larger pressure gradient is found in the
the same as those at the channel floor. This observation igof eddy. The differences in pressure and velocity are
true over all the investigated test conditions detailed in Tablgyradually reduced in the approachze 0.

[ll, which tabulates.;, L,, andL; obtained at the plane of Table Il indicates an indication of which flow exhibits
symmetry, y=0. The maximum differences folki|,,o; pitchfork bifurcation for two channels withA,C)=(18,2)
—L1lfioor @nd L] 1001~ Lolfi0or @re found to be less than 1%. and(18,4. It has been known for quite some time that the
To show that such a pitchfork bifurcating flow is physically experimentally observed bifurcation is triggered by even a
relevant and is not numerically produced, we perturbed themall asymmetry in the channel geometry and inlet flow con-
solutions by an amount of 10 to 20 percentage for the caseditions. In contrast, we attribute the predicted asymmetric
studied at C,Re)=(2,3150) and(4,150Q. Both solutions solutions in a geometrically symmetric channel flow, subject
obtained under the stringent convergence criteria mentionetd a perfect symmetric inlet flow condition, to bifurcation
earlier are seen to produce their original bifurcation soluriggered, possibly, by the asymmetric discretization errors
tions, implying that it is possible to have the three-and/or asymmetry in the direction-biased numerical algo-
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y=8.425

——

FIG. 18. Spanwise spiral flow of the
upstream salient eddy for the case with
C=4, A=18, andRe=1500.

rithm employed in the present flow calculation. Anotherand its value is much larger than zero. The bifurcated solu-
source leading to flow asymmetry is the machine round-oftion is particularly pronounced and is spatially dependent in
error. On any computer platform, the difference in gap  the core regionly|<6. Also clearly revealed by this figure is
spacing between two consecutive floating-point numbersthat the degree of asymmetry decreases as the sidewall is
varies in size. Even a negligibly small machine error mayapproached.
result in flow asymmetry, and this error can be amplified by It has been shown that a decrease in channel aspect ratio
a locally high shear strain, as seen in Fig. 12, in the vicinityhas a stabilizing effe&The smaller the channel span width
of the step corner. is, the easier the asymmetric flow can be suppressed. This
Figure 13, which has been enlarged 10 times inxhe phenomenon has been observed experimentally by Cherdron
direction for illustrative purposes, plots the spanwise distri-et al® and simulated numerically by Chianet al,?” and
bution of L for all the investigatedReandC. It is apparent  Schreck and Schier’! in their analyses of planar symmetric
that L5 is proportional toRe but has little relevance to the sudden expansion flows. In the present study, it is found from
contraction ratio. It is also found that;(y) is symmetric  Fig. 14 that flow bifurcation can be significantly suppressed
abouty=0, indicating that no spanwise mode of the pitch-as the aspect ratio is reduced to 12 in the channel ®ith
fork bifurcatiorf® exists. This is not the case along the step-=2 (Re=3150) and 6 in the channel witlc=4 (Re
height direction. In the cases o€(Re)=(2,3150) and(4, =1150), respectively. As a result, the sidewall can be con-
1500, the difference inLg| 00— L3lsioor iS @ function ofy,  sidered as an aiding factor in suppressing flow bifurcation.
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C. Flow topology (a)

When performing a three-dimensional flow simulation, —a— (=2, Re=426

0.5

we are often faced with the tedious task of managing a large’,. 5] — b — C=2, Re=2500 g
amount of data. Care must be appropriately taken in order tog ] — ¢ — C=2, Re=3150

extract meaningful flow physics and then obtain a profound ¢ ] —d — C=4, Re=1150

understanding of the flow structure. In the literature, it is ®¥«] — € — C=4, Re=1500

found that we can conduct a theoretically rigorous topologi- 5 -

cal study on limiting streamlinéor skin-friction lines® to A1 e 3 —c " [
achieve this goal. In this study, the method that exploits lim- ° \
iting streamlines was chosen to gain physical insight into the = - T T I " : A T : .
pertinent fluid flow. Limiting streamlines are, by definition, y axis

streamlines passing very close to the wall surface. As the (b)
topological theory states, limiting streamlines, as shown in & ' : ' ‘ : : ' :
Fig. 8, tend to diverge from lines of attachment. The opposite
of lines of attachment are lines of separation. To lines of
separation, neighboring limiting streamlines tend to con-
verge. We make use of the kinematic nature of limiting
streamlines to classify singular points, such as nodes, foci,
and saddles, which enable us to depict the flow structure
inferred from the three-dimensional data.

The first step in presenting a global picture of the chan-
nel flow was to plot limiting streamlines and lines of 0 1 2 3 4 5 6 M 8 9
separation/reattachment at the channel roof, floor and verti- y axis
cal sidewalls and pseudo streamlines at the plane of Symmeig, 19. (@ The distribution of the velocity, which is tangential to the
try y=0 for the investigated flow conditions. Except the caseyortical coreline of the upstream salient corner edy;plot of the entrain-
with Re=426 andC= 2, salient and tip eddies can be clearly ment heights of the upstream salient corner eddy against the spanwise co-
seen in the region ofy|<8. These eddies became increas-°'dinates.
ingly less apparent in the rest of the spanwise range, as seen

in Fig. 15. The flow near the sidewall is featured by adimin-step' the flow inside the upstream salient eddy shows an
ishing spiral flow motion. The spiraling salient eddy passesapparent spanwise motion, as compared to that in the down-
over the contraction step and, finally, terminates at the spiraktream tip eddy. This implies that the upstream eddy exhibits
focal point. As for the downstream tip eddy, its motion to- 5 three-dimensional spiraling flow feature.
wards the sidewall is still featured by a less apparent spiral- \we then explored the contraction channel flow by
ing motion. It is also worth noting that the sidewall sketching the sidewall limiting streamlines. Take the left
streamlines differ considerably from streamlines at the plangjdewall as an example; we plot in Fig. 17 limiting stream-
of symmetryy=0. Figure 15 reveals limiting streamlines of |ines on the plane which is immediately adjacent to the plane
the convergence—divergence—convergence type at the ver{j=9 for the case wittC=4 andRe=1500. One noteworthy
cal sidewall. This flow complexity is the result of a suddenfeature of the sidewall limiting streamlines is the formation
change in the channel cross section and the increasinglyf two pairs of singular points. These topologically singular
dominant viscous effect near the no-slip sidewall. points can be classified as saddles and nodal points. Saddle
Having depicted the flow topology, we plotted the limit- points are defined as having two real eigenvalues of different
ing streamlines on the channel roof and floor. Take the caseigns. The limiting streamlines approach the saddle point
with C=4 andRe= 1500 as an illustrative example. Lines of along the negative eigendirection while they recede along the
reattachment and separation, which are used to characterigesitive eigendirection. Nodal pointgor regular nodal
the spanwise sizds;(y), L,(y) andL;(y) of the salient as pointg are defined as having the real eigenvalues of the same
well as the tip eddies, are plotted in Fig. 16. Upstream of thesign. These singular points can be further divided into at-
planar step ak=0, limiting streamlines bend towards the tracting and repelling types. Attracting nodes are associated
vertical sidewall such that lines of separation are seen at thgith the negative real eigenvalue, and repelling nodes do the
channel floor and roof. It is apparent that the spanwise moreverse. Focior spiral-focal points are also referred to as
tion prevails inside the upstream salient eddy. The reason f&ingular points, whose eigenvalues are, on the other hand,
the movement of the fluid particles towards the vertical sideconjugate complex. Depending on the sign of the real part of
wall is a sudden decrease in the channel cross-section arghe eigenvalue, adjacent limiting streamlines spiral either in
Near the sidewall, sayy|=8, particles inside the down- or out of the singular point.
stream tip eddy are seen to repel from the sidewall. In the Following the above topological classification, it is
spanwise range df/| <8, clearly seen is a tip eddy, which is found that each pair of singular points contains a saddle
reattached to the channel floor or roof. In the core region, th@oint and a spiral-focal point. One pair of critical points is
spanwise velocity is so small that the flow is essentially two-seen in the upstream salient eddy, and the other is observed
dimensional. Of two eddies which form near the contractionat the downstream tip eddy. Owing to the sign of the span-
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FIG. 20. (Color Particle tracers for
the case withC=4, A=18, andRe
=1500.

wise flow velocity upstream and downstream of the contracD. Spiraling flow structure inside the salient and tip
tion planar step, the upstream spiral-focal point is of theeddies

repelling type since particles spiral towards the vertical side-  The three-dimensional suddenly contracted channel flow
wall. All the particles Spiral towards the sidewall and, fina”y, is manifested by a Spanwise motion. This Spanwise motion1
reach this singular point, from which particles repel. In thesubject to the primary-z plane motion, makes the flow
downstream tip eddy, a saddle point forms along with anthree-dimensional and spiraling, especially in the upstream
attracting spiral-focal pointSheuet al®). Fluid particles ad-  salient eddy and in the downstream tip eddy. We reveal the
jacent to the focal point spiral towards it and then proceedlow in the upstream salient eddy by showing the spiraling
towards the plane of symmetgy=0, as seen in Fig. 16. motion in Fig. 18 for the case witk=4 and Re=1500.
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FIG. 21. (Colon Particle tracers for
the case withC=2, A=18, andRe
=3150.

Clearly revealed by this figure is a vortical coreline insideyond y=38.5, this tangential velocity magnitude sharply de-
the salient corner eddy. Particles spiral towards the verticatreases to zero. It is interesting to note that the location
sidewall along the vortical coreline. The salient corner eddywhere the velocities tangential to the vortical coreline
is of the open type. The upstream fluid particles can be enreaches its peak value is where the corner eddy diminishes.
trained into the salient corner eddy. This is followed by aReferring to Fig. 18, a weak pair of unequally sized counter-
spanwise spiral motion proceeding towards the two siderotating vortices occurs at the=8.3 plane. In the approach
walls. Figure 19a) reveals that the velocity tangential to the to the two sidewalls, the vortex pair has an increasingly
vortical coreline increases its magnitude monotonically fromequal vortex size and the vortices can cancel each other out.
that at the plane of symmetry. The peak value is found at th&his leads to a diminishing eddy in the salient corner at the
spanwise location, which is fairly close to the sidewall. Be-planesy>8.5. As alluded to earlier, the salient corner eddy is
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Vs> 0 : spiralling toward the left sidewall VI. CONCLUDING REMARKS
(due to the global channel contraction effect) ) ) o )

V;<0 : spiralling toward the symmetry—plane y=0 Computational investigations into the flow development
2 (due to the local sidewall attracting effect) in two channels with contraction ratios of 2 and 4 have been
e performed. This paper has reported results of simulations

V>0 performed at five Reynolds numbers, 426, 1150, 1500, 2500,

and 3150, in order to partly reproduce the existing experi-
mental data and to demonstrate the presence of pitchfork
. : bifurcation solutions. In this study, a line of separation on the
1 =4 dRi= 1r (l)i(f) 7 Tioor Ye~5.3 ! upstream channel roof-floor and lines of reattachment on the
C=4, Re=1500 N N step plane and on the downstream channel roof—floor have
— e— r00f ; ---e--- floor been theoretically determined. Results reveal that the fluid
C=2, Re=2500 - particle inside the upstream salient corner eddy has a ten-
~hii= EROE / floor dency to move towards the vertical sidewall. In the upstream
salient corner, very few particles in regions fairly close to the

0
'

Ye~3.8

spiralling velocity Vs
-0.05

-0.1
L

C=2, Re=3150

=) — ¢ — roof ; ---c--- floor : - ) . .
To 1 2 3 Z z p z % 5 sidewall are entrained into the downstream spiral-focal point.
y axis Particles inside the tip eddy then spiral towards the plane of
FIG. 22. The distribution of the velocity, which is tangential to the vortical Symr,netryy_: 0. Dependmg on the values of the channel C.OI’I-
coreline of the downstream tip corner eddy. traction ratio and the Reynolds number, some of the particles

inside the downstream tip eddy spiral towards the plane of
symmetryy =0, and some of them move towards the vertical
sidewalls. Along the upstream and downstream vortical core-

lines, the location at which the velocity reaches its maximum

not of the close type, so the upstream flow can be entrainegh e is approximately where the location where the vortex
into the corner eddy. The height of such an open-type eddyjiminishes. The sidewall topologies downstream and up-

zs, schematically shown in Fig. 1), was plotted against gyeam of the planar step have one feature in common: each
the spanwise coordinatg Surprisingly, Fig. 18) Shows 4t them has a pair ofsaddle, spiral-focakritical points. The
that zs increases monotonically in the direction towards thejiterence is that on the upstream side, the spiral-focal point
vertical sidewall. It is found that at the spanwise location;g of the repelling type while on the downstream side it is of
wherezg reaches its peak value, the velocity in the directiony, o attracting type.

tangential to the vortical coreline also reaches its maximum
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