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Abstract

In this paper, we develop a two-dimensional finite-difference scheme for solving the time-dependent convection–

diffusion equation. The numerical method exploits Cole–Hopf equation to transform the nonlinear scalar transport

equation into the linear heat conduction equation. Within the semi-discretization context, the time derivative term in

the transformed parabolic equation is approximated by a second-order accurate time-stepping scheme, resulting in an

inhomogeneous Helmholtz equation. We apply the alternating direction implicit scheme of Polezhaev to solve the

Helmholtz equation. As the key to success in the present simulation, we develop a Helmholtz scheme with sixth-order

spatial accuracy. As is standard practice, we validated the code against test problems which were amenable to exact

solutions. Results show excellent agreement for the one-dimensional test problems and good agreement with the an-

alytical solution for the two-dimensional problem. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we develop a numerical method for solving the practically important time-dependent
nonlinear convection–diffusion scalar transport equation. Besides its broad range of application in areas of
fluid dynamics and heat transfer, this equation is also academically important since it is regarded as the
simplest prototype equation for modeling most of the transport phenomena. Its practical significance and
theoretical importance make numerical prediction of this model equation worthwhile and motivate the
present study. We restrict our attention to the two-dimensional case in the x–y plane.

A reliable transport scheme must have the ability to suppress convective instabilities, which are
particularly severe when convective terms dominate diffusive terms in multidimensions [1]. One way
of circumventing this difficulty is to apply the Cole–Hopf transformation [2,3] to map the nonlinear
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convection–diffusion equation to a transient heat conduction equation. The need to discretize convective
terms is, thus, avoided. In this context, how to construct a scheme for the resulting much simple linear
parabolic equation becomes the main theme of the present study.

When solving the reduced wave (or Helmholtz) equation by the standard Galerkin finite-element or the
second-order centered finite-difference method, the phase accuracy deteriorates rapidly with the increasing
wave number [4]. This resolution problem arises from the use of piecewise polynomial shape functions to
approximate the highly oscillatory character of the propagating solutions. To obtain an acceptable level of
accuracy, more than 10 elements (or stencil points) per wavelength are required [5]. Refining the mesh is
considered a natural choice to satisfy this requirement. However, the analysis may become prohibitively
expensive and is computationally infeasible for solving the reduced wave equation with large wave num-
bers. Other methodologies are needed to counteract the pathologies exhibited by the conventional methods.
Toward this direction, several approaches designed to improve the numerical phase accuracy have been
emerged in the past two decades. Goldstein [6] approximated the Helmholtz solution within each element
by the sum of exponentials. The success of extending this approach to the two-dimensional problem has
been limited. Park and Jensen [7] conducted discrete Fourier analysis to derive wave number dependent
modifications to the Galerkin matrix equations. The dispersion error over a specified frequency-wave
number window is minimized. Harari and Hughes [8] appended residuals of the Euler–Lagrange equations
in the least-squares form to the standard Galerkin formulation. By virtue of the dispersion analysis, the
derived local mesh parameter enables us to obtain an accurate solution with relatively coarse meshes. More
recently, Thompson and Pinsky [9] employed the Fourier analysis and successfully derived the optimal
Galerkin least-squares parameter for the two-dimensional Helmholtz equation. Based on the pioneer work
of Hughes [10], Oberai and Pinsky [11] proposed a multiscale finite element method for the Helmholtz
equation to resolve the resolution problem.

In the finite-difference context, there are few high-order schemes for the Helmholtz equation [12]. Besides
the well-known five-point finite-difference scheme [13], the nine-point fourth-order scheme of Rosser [14],
optimal scheme of Yu [12], and finite analytic scheme of Yu [15] are often referred to. Since compact
schemes have been widely applied to solve other differential equations, we will develop in this paper a
compact high-resolution Helmholtz scheme. Our goal of solving the transformed model equation is to
obtain solutions with higher accuracy at less computational cost.

The rest of this paper is organized as follows. Section 2 presents the working equation and the employed
alternating direction implicit (ADI) two-step solution algorithm. In Section 3, we transform the convec-
tion–diffusion nonlinear equation into the Helmholtz equation. This is followed by presentation of the
Helmholtz scheme in two dimensions using the ADI scheme of Polezhaev [16]. Our emphasis is on the
development of a highly accurate Helmholtz scheme on the most compact stencil points. Section 4 is de-
voted to modified equation analysis of the proposed flux discretization scheme. Section 5 presents nu-
merical results to show the validity of the method. In Section 6, we give concluding remarks.

2. Working equation and solution algorithm

We consider in this paper the following nonlinear equation for u in the two-dimensional domain X:

ou
ot

þ u
ou
ox

þ v
ou
oy

� k
o2u
ox2

�
þ o2u

oy2

�
¼ 0: ð2:1Þ

In the above equation, u and v represent velocity components along the x and y directions, respectively, and
k denotes the diffusion coefficient. For purposes of illustration, we assume that all physical properties are
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uniform throughout the domain of flow. The above parabolic equation will be solved subject to the initial
condition as well as the boundary condition.

For purposes of computational efficiency, we calculate u via the following ADI scheme of Polezhaev [16]:

ou
ot

�
þ u

ou
ox

� k
o2u
ox2

�mþ1

¼
�
� v

ou
oy

þ k
o2u
oy2

�m
; ð2:2Þ

ou
ot

�
þ v

ou
oy

� k
o2u
oy2

�mþ2

¼
�
� u

ou
ox

þ k
o2u
ox2

�mþ1

: ð2:3Þ

In the above, the superscripts m and mþ 1 denote two consecutive iteration counters. Within each time
step, the calculation proceeds alternatively using the most updated u in the calculation of derivative terms
shown in the right-hand side of Eqs. (2.2) and (2.3). The above iterative procedures continue until the user’s
specified tolerance is reached. As Eqs. (2.2) and (2.3) reveal, the task of integrating forward in time the two-
dimensional convection–diffusion equation (2.1) involves deriving transport schemes for solving nonlinear
equation and linear one-dimensional convection–diffusion equations (2.2) and (2.3), respectively.

Amongst the possible ways to rectify numerical instabilities stemming from convective terms in Eq. (2.2),
we choose to get rid of the nonlinear term by employing the Cole–Hopf transformation given below [2,3]:

u ¼ �2k
oðln /Þ
ox

; ð2:4Þ

or

u ¼ �2k
/

o/
ox

: ð2:5Þ

In this context, Eq. (2.2) is rewritten in terms of the newly introduced scalar / by applying Eq. (2.5) to
derive ut, ux and uxx. This is followed by substituting them into Eq. (2.2) to derive an inhomogeneous heat
conduction equation for / as follows:

o/
ot

¼ k
o2/
ox2

þ
Z x

0

F ðnÞ
�2k

dn

� �
/; ð2:6Þ

where

F �
�
� v

ou
oy

þ k
o2u
oy2

�m
: ð2:7Þ

The derivation of Eqs. (2.6) and (2.7) is detailed in Appendix A.
Besides transforming the working equation, both boundary and initial conditions need to be trans-

formed. Given the boundary conditions of u as uðx1; tÞ and uðx2; tÞ one can easily derive the boundary
conditions of the Robin type for / by means of the Cole–Hopf transformation given in Eq. (2.5):

uðx1; tÞ/ þ 2k
o/
ox

¼ 0; ð2:8Þ

uðx2; tÞ/ þ 2k
o/
ox

¼ 0: ð2:9Þ

The initial condition /ðx; t ¼ 0Þ can be similarly derived by integrating Eq. (2.5) with respect to x to yield

/ðx; 0Þ ¼ /0ðxÞ ¼ C0 exp

�
� 1

2k

Z x

0

u0ðnÞdn

�
: ð2:10Þ
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If we substitute /ðx; tÞ into Eq. (2.5), C0 will be cancelled out and, thus, can be arbitrarily chosen. In the
present study, we set C0 ¼ 1.

Discretization of Eq. (2.6) begins with approximating o/=ot using the following second-order time-
stepping scheme:

o/nþ1

ot
¼ 3/nþ1 � 4/n þ /n�1

2Dt
; ð2:11Þ

Application of ðo/=otÞ ¼ kðo2/=ox2Þ þ ½
R x

0
ðF ðnÞ=�2kÞdn�/ enables us to obtain the following inhomoge-

neous Helmholtz equation from Eq. (2.6):

o2/nþ1

ox2
þ 1

k

Z x

0

F ðnÞ
�2k

dn

�
� 3

2Dt

�
/nþ1 ¼ f ; ð2:12Þ

where

f ¼ �4/n þ /n�1

2kDt
: ð2:13Þ

When calculating the first derivative terms in the source term, more modal points at the upwind side are
considered. As an illustrative example, we consider that �aa > 0 in the approximation of �aaðou=oxÞ. The value
hðou=oxÞ ð� HÞ, where h denotes the grid size, at j is computed implicitly from

a0Hjþ1 þ b0Hj þ c0Hj�1 ¼ bðujþ1 � ujÞ þ cðuj � uj�1Þ þ dðuj�1 � uj�2Þ: ð2:14Þ
Here, a0, b0, c0, b, c and d are determined as 21, 36, 3, 50, 8 and 2 according to modified equation analysis.

Throughout this paper, the second derivative terms can be similarly approximated. Take o2/=ox2 at a
node j as an example; Gj � h2ðo2/=ox2Þjj is implicitly calculated from the following equation:

�aa0Gjþ1 þ �bb0Gj þ �cc0Gj�1 ¼ �aa
/jþ2 þ �bb
/jþ1 þ �cc
/j þ �dd
/j�1 þ �ee
/j�2: ð2:15Þ

By expanding Gj�1 with respect to Gj and /j�1, /j�2 with respect to /j in Taylor series and then substituting
them into the expression for Gj, we are led to have ð�aa0; �bb0; �cc0; �aa


; �bb
;�cc
; �dd
;�ee
Þ ¼ ð1; 11
2
; 1; 3

8
; 6;� 51

4
; 6; 3

8
Þ from

the resulting algebraic equation.

3. Numerical model

As alluded to earlier, the key to success in solving Eq. (2.1) lies in the scheme developed for solving the
one-dimensional model equations (2.2) and (2.3). Due to space limitation, we will not detail the linear
convection–diffusion scheme for solving Eq. (2.3) (see [17] for details). In this study, we confine ourselves to
the derivation of finite-difference scheme for the following Helmholtz equation:

o2�uu
ox2

þ �kk2�uu ¼ F : ð3:1Þ

In the above, the wave number �kk may vary with x. By differentiating Eq. (3.1) twice with respect to x, one
obtains

o4�uu
ox4

¼ ��kk2 o
2�uu
ox2

� 4�kk
o�kk
ox

 !
o�uu
ox

� 2
o�kk
ox

 !2
2
4 þ 2�kk

o2�kk
ox2

3
5�uuþ o2F

ox2
: ð3:2Þ

In this study, we wish to obtain a highly accurate solution using a scheme which involves as few stencil
points as possible. To achieve this goal, we introduce two auxiliary variables, s and q, given below to
represent the second and fourth derivatives of �uu:
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o2�uu
ox2

¼ s; ð3:3Þ

o4�uu
ox4

¼ q: ð3:4Þ

The main innovation of the proposed scheme is that we relate nodal values of s, q and �uu implicitly by

h4ðc1qjþ1 þ c0qj þ c�1qj�1Þ þ h2ðb1sjþ1 þ b0sj þ b�1sj�1Þ ¼ a1�uujþ1 þ a0�uuj þ a�1�uuj�1: ð3:5Þ
By expanding qj�1, sj�1 and �uuj�1 with respect to qj, sj and �uuj, respectively, and then substituting them into
Eq. (3.5), we are led to derive the following equation:

h4ðc1 þ c0 þ c�1Þqj þ h5ðc1 � c�1Þ
oq
ox

þ h6

2
ðc1 þ c�1Þ

o2q
ox2

þ � � � þ h2ðb1 þ b0 þ b�1Þsj

þ h3ðb1 � b�1Þ
os
ox

þ h4

2
ðb1 þ b�1Þ

o2s
ox2

þ h5

6
ðb1 � b�1Þ

o3s
ox3

þ h6

24
ðb1 þ b�1Þ

o4s
ox4

þ � � �

¼ ða1 þ a0 þ a�1Þ�uuj þ hða1 � a�1Þ
o�uu
ox

þ h2

2
ða1 þ a�1Þ

o2�uu
ox2

þ h3

6
ða1 � a�1Þ

o3�uu
ox3

þ h4

24
ða1 þ a�1Þ

o4�uu
ox4

þ h5

120
ða1 � a�1Þ

o5�uu
ox5

þ h6

720
ða1 � a�1Þ

o6�uu
ox6

þ h7

7!
ða1 þ a�1Þ

o7�uu
ox7

þ h8

8!
ða1 � a�1Þ

o8�uu
ox8

þ � � � ð3:6Þ

Based on the definitions of sj and qj given in Eqs. (3.3) and (3.4), the following equations result:

a1 þ a0 þ a�1 ¼ 0;

a1 � a�1 ¼ 0;

a1 þ a�1

2
¼ b1 þ b0 þ b�1;

a1 � a�1

6
¼ b1 � b�1;

a1 þ a�1

24
¼ b1 þ b�1

2
þ c1 þ c0 þ c�1;

a1 � a�1

120
¼ b1 � b�1

6
þ c1 � c�1;

a1 þ a�1

720
¼ b1 þ b�1

24
þ c1 þ c�1

2
:

ð3:7Þ

Setting c1 ¼ c�1 ¼ 41, We obtain a1 ¼ a�1 ¼ �5040, a0 ¼ 10; 080, b1 ¼ b�1 ¼ �660, b0 ¼ �3720 and c0 ¼
158.

The derivation is followed by substituting

s ¼ ��kk2�uuþ F ; ð3:8Þ

q ¼ ��kk2s� 4�kk
o�kk
ox

 !
o�uu
ox

� 2
o�kk
ox

 !2
2
4 þ 2�kk

o2�kk
ox2

3
5�uuþ o2F

ox2

¼ � 4�kk
o�kk
ox

 !
o�uu
ox

� 2
o�kk
ox

 !2
2
4 þ 2�kk

o2�kk
ox2

� �kk4

3
5�uu� �kk2F þ o2F

ox2
; ð3:9Þ
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into Eq. (3.5) to derive the following three-point stencil equation for Eq. (3.1)

�aai�uui�1 � �bbi�uui þ �cci�uuiþ1 ¼ �ff : ð3:10Þ

For brevity, we shall in what follows express coefficients shown above for the constant coefficients case:

�aai ¼ �cci ¼ �5040 � 660h2�kk2 � 41h4�kk4; ð3:11aÞ

�bbi ¼ �10; 080 þ 3720h2�kk2 þ 158h4�kk4; ð3:11bÞ

�ff ¼ ð�660h2 � 41h4�kk2ÞðF iþ1 þ F i�1Þ þ ð�3720h2 � 158h4�kk2ÞF i þ 41h4 o2F
ox2

iþ1

�
þ o2F
ox2

i�1

�
þ 158h4 o

2F
ox2

i
:

ð3:11cÞ

Expanding �uuj�1 in a Taylor series with respect to �uuj yields the following modified equation [18] for the
proposed discretization equation after some algebra:

�kk2�uuþ o2�uu
ox2

¼ �1

ð�5040h2 � 240h4�kk2Þ

"
� ð420h4 þ 41h6�kk2Þ �kk2 o

2�uu
ox2

 
þ o4�uu

ox4

!

� 14h6

�
þ 41

12
h8�kk2

�
�kk2 o

4�uu
ox4

 
þ o6�uu

ox6

!
þ o6�uu

ox6

19

12
h8�kk2

�
� 41

360
h10�kk4

�#
þ HOT: ð3:12Þ

By virtue of �kk2ðo2�uu=ox2Þ þ o4�uu=ox4 ¼ o2F =ox2 and �kk2ðo4�uu=ox4Þ þ o6�uu=ox6 ¼ o4F =ox4, the above modified
equation can be further simplified as follows provided that �kk is a constant.

�kk2�uuþ o2�uu
ox2

� F ¼ h6 A
�

þ Bh2 þ � � �
� o6�uu
ox6

þ HOT; ð3:13Þ

where

A ¼ 19�kk2

60; 480
; ð3:14aÞ

B ¼ �477�kk4

12; 700; 800
: ð3:14bÞ

Note that the order of accuracy remains as six for the variable wave number case using the three-point
stencil scheme. Therefore, we can apply the computationally most effective tri-diagonal Thomas direct
solution solver to obtain the solution [19].

4. Fundamental study on the proposed transient heat conduction scheme

Having presented the scheme for the Helmholtz equation, we can now proceed to derive the discretized
equation for Eq. (2.12). This can be done by simply substituting �uu ¼ /, �kk2 ¼ ð1=kÞ½

R x
0
F ðnÞ=ð�2kÞdn�

3=ð2DtÞ� and F ¼ f , defined in Eq. (2.13), into Eq. (3.1). After some algebra, the modified equation for this
discretized equation will result as

o2/
ox2

þ K2/ � f ¼ Oðh6Þ: ð4:1Þ

2984 T.W.H. Sheu et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2979–2995



In the above, we introduced a variable K2 ¼ ð1=kÞ½
R x

0
F ðnÞ=ð�2kÞdn � 3=ð2DtÞ� for simplicity. Since any

implicit scheme is unconditionally stable, a convergent solution is expected to obtain thanks to the Lax’s
equivalence theorem [20].

As Eq. (3.11a) shows, the coefficients for �uuj�1 are unconditionally negative in magnitude. This is not the
case for the coefficient �bbi shown in Eq. (3.11b). Depending on the chosen grid size h, the coefficient for �uuj
can be negative or positive. Given a value of �kk, we can determine h so that 10; 080 � 3720h2�kk2–158h4�kk4 > 0.
If this is the case, coefficients in Eq. (3.10) satisfy the following two properties: (i) �bbi > 0, �cci < 0 and �aai < 0;
(ii) j�bbij > j�aaij þ j�ccij. Under these circumstances, the matrix equation for �aai�uui�1 � �bbi�uui þ �cci�uuiþ1 ¼ �ff is an M-
matrix [21,22]. The proposed scheme is, therefore, expected to be able to resolve any sharp profile in the
flow.

5. Validation study

We will first consider test problems which are amenable to analytical solutions to validate the Helmholtz
and the heat conduction schemes. This is followed by solving the nonlinear convection–diffusion equation.
Both one- and two-dimensional problems will be investigated.

5.1. Validation of the Helmholtz equation

The test problem given below is defined in 06 x6 3p=2:

o2/
ox2

þ / ¼ 0: ð5:1Þ

Subject to the boundary conditions /ð0Þ ¼ 0 and /ð3p=2Þ ¼ 1, Eq. (5.1) is amenable to analytical solution
given by

/ ¼ sin x: ð5:2Þ
For the case with the grid size h ¼ p=10, it is found from Fig. 1 that the exact solution is reproduced. We
also performed computations on continuously refined grids, namely, h ¼ p=10, p=20, p=40, p=60, and p=80,
and cast the prediction errors in their L2-norms. This was followed by plotting logðerr1=err2Þ against
logðh1=h2Þ for the errors err1 and err2 computed on two continuously refined grids h1 and h2. As Fig. 2
shows, the rate of convergence is obtained as 6.1 using the proposed scheme.

5.2. Validation of the transient heat conduction equation

We then consider the following time-dependent heat conduction equation which is also amenable to
exact solution for purposes of validation:

ou
ot

¼ l
o2u
ox2

: ð5:3Þ

Given the initial and boundary conditions, respectively, as

uðx; 0Þ ¼ 1 þ sinh x; ð5:4aÞ

uð0; tÞ ¼ 1 þ elt sinhð0Þ; ð5:4bÞ

uð2p; tÞ ¼ 1 þ elt sinhð2pÞ; ð5:4cÞ
the exact solution is derived as [21]

uðx; tÞ ¼ 1 þ elt sinhðxÞ: ð5:5Þ
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For the case with l ¼ 1:16, Dt ¼ 0:05 and h ¼ p=10, the results shown in Fig. 3 are found to reproduce the
analytical solution given in Eq. (5.5). The integrity of the semi-discretization scheme is, thus, confirmed. As
in the analysis of the Helmholtz equation, temporal and spatial rates of convergence were also computed.
Computations at Dt ¼ 1

500
were carried out on four continuously refined grids ðh ¼ 0:755; 0:73; 0:707; 0:686Þ.

Fig. 1. The comparison of exact and present solutions computed under Dx ¼ p=10 for the test problem given in Section 5.1.

Fig. 2. The computed rate of convergence for the Helmholtz equation given in Section 5.1 using the proposed sixth-order finite-

difference scheme.
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The computed errors, cast in their L2-error norms, are plotted in Fig. 4, from which it is clearly seen that the
spatial rate of convergence is obtained as 5.978. Similarly, results obtained at h ¼ p=500 and four con-
tinuously refined time steps ðDt ¼ 1

100
; 1

200
; 1

400
; 1

800
Þ reveal that the L2-error norms decrease with the decreasing

time increments. As Fig. 5 shows, the temporal rate of convergence is 1.995.

Fig. 3. The finite-difference solutions, computed under Dx ¼ p=10 and Dt ¼ 0:05, are plotted in x–t coordinates for the transient heat

conduction equation given in Section 5.2.

Fig. 4. The computed spatial rate of convergence for the transient heat conduction equation given in Section 5.2 using the proposed

semi-discretization finite-difference scheme.
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5.3. Validation of the convection–diffusion equation

Having validated the scheme for solving the Helmholtz equation and justified the use of the semi-dis-
cretization model to solve the time-dependent heat conduction equation, we are to verify the Cole–Hopf
mapping used in the analysis of nonlinear convection–diffusion equation. For this purpose, we will consider
the following equation:

ou
ot

þ u
ou
ox

¼ o2u
ox2

: ð5:6Þ

The problem under investigation is subject to the following initial and boundary conditions:

uðx; 0Þ ¼ 2p sin pxþ 8p sin 2px
4 þ cos pxþ 2 cos 2px

; ð5:7aÞ

uð0; tÞ ¼ uð1; tÞ ¼ 0: ð5:7bÞ
For the problem defined in Eqs. (5.6), (5.7a) and (5.7b), its analytical solution can be derived as [2]

uðx; tÞ ¼ 2p expð�p2tÞ sin pxþ 4 expð�4p2tÞ sin 2px½ �
4 þ expð�p2tÞ cos pxþ 2 expð�4p2tÞ cos 2px

: ð5:8Þ

The calculations were performed at h ¼ 0:05 and Dt ¼ 0:005. As Fig. 6 shows, solutions plotted at
t ¼ 0:025, 0:05, 0:1 and 1 agree well with the exact solution given in Eq. (5.8). This confirms that the so-
lutions to nonlinear viscous Burgers equation can be obtained from the proposed methodology.

As alluded to earlier, the proposed scheme is monotonic if the grid size h lies in the range of validity,
namely, 10; 080 � 3720h2�kk2 � 158h4�kk4 > 0. To confirm this, we employ Eq. (5.6), subject to the initial and
boundary conditions given below [23]:

Fig. 5. The computed temporal rate of convergence for the transient heat conduction equation given in Section 5.2 using the proposed

semi-discretization finite-difference scheme.
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uðx; 0Þ ¼ �2sgnðxÞ; ð5:9Þ

and

uð�1; tÞ ¼ 2; ð5:10aÞ

uð1; tÞ ¼ �2: ð5:10bÞ

The analytical solution is obtained as

uðx; tÞ ¼ 2
Gðx; tÞ � Gð�x; tÞ
Gðx; tÞ þ Gð�x; tÞ ; ð5:11Þ

where

Gðx; tÞ � 1
2
et�x erfc

x� 2t
2
ffiffi
t

p
� �

: ð5:12Þ

In the above, erfcðzÞ denotes the complementary error function and is defined as erfcðzÞ ¼ 1 � erfðzÞ. This
problem is suitable for checking whether the proposed scheme is indeed monotonic. As Fig. 7 shows, sharp
profiles were accurately predicted without showing oscillatory solutions in the vicinity of the high-gradient
region. The proposed sixth-order scheme is, therefore, classified as a high-resolution capturing scheme.

5.4. Validation of the two-dimensional Burgers’ equation

Our attention is now drawn to the ADI solution algorithm used to solve the two-dimensional con-
vection–diffusion equation. As previously noted, we need to provide evidence of validity. To this end, we
choose to solve the following equation in the rectangle �106 x6 10, 06 y6 p=3:

Fig. 6. The comparison of the present and exact solutions at t ¼ 2:5 � 10�2, 5 � 10�2, 0.1 and 1 for the test problem given in Eqs. (5.6),

(5.7a) and (5.7b).
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ou
ot

þ u
ou
ox

þ v
ou
oy

¼ 1

Re
o2u
ox2

�
þ o2u

oy2

�
: ð5:13Þ

As an example, Re is set to be 5, and v is assumed to be

v ¼ ½e0:5ðx�1Þ þ e�0:5ðx�1Þ� sinð0:5yÞ
0:005eð1 þ xÞ þ 5½e0:5ðx�1Þ þ e�0:5ðx�1Þ� cosð0:5yÞ : ð5:14Þ

Subject to the Dirichlet-type boundary condition schematically shown in Fig. 8, the exact steady-state
solution to the above nonlinear viscous Burgers equation (5.13) is given by [24]

u ¼ �0:002e � ½e0:5ðx�1Þ � e�0:5ðx�1Þ� cosð0:5yÞ
0:005eð1 þ xÞ þ 5½e0:5ðx�1Þ þ e�0:5ðx�1Þ� cosð0:5yÞ : ð5:15Þ

Following the methodology just described, we first solved the time-dependent heat conduction equation.
This was followed by obtaining u from the employed Cole–Hopf transformation equation. In this case, all
computed errors were cast in their L2-error norms. We then plotted values of logðerr1=err2Þ against
logðh1=h2Þ based on errors err1 and err2 computed at two consecutively refined meshes h ¼ h1 and h ¼ h2

With these error norms, the rate of convergence using the proposed scheme was plotted in Fig. 9. Good
agreement among the results shown in Fig. 10 and fast convergence to the analytical solution are dem-
onstrated.

Another two-dimensional problem, which is also amenable to exact solution in the square 06 x, y6 1, is
under investigation:

ou
ot

þ u
ou
ox

þ u
ou
oy

¼ m
2

o2u
ox2

�
þ o2u

oy2

�
: ð5:16Þ

Subject to the initial and boundary conditions, the exact transient solution is derived as

uðx; y; tÞ ¼ 1
�

þ eB
��1

; ð5:17Þ

where

Fig. 7. The computed nonoscillatory solutions for the problem given in Eqs. (5.6), (5.9), (5.10a) and (5.10b).
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B � xþ y � t
m

: ð5:18Þ

Fig. 8. Schematic of the boundary conditions for the problem given in Eqs. (5.13) and (5.14).

Fig. 9. The computed spatial rate of convergence for the two-dimensional problem given in Eqs. (5.13)–(5.15). This calculation was

carried out for grid spacings ðDx;DyÞ ¼ ð20=3; p=9Þ; ð20=4;p=12Þ; ð20=5;p=15Þ; . . . ; ð20=13; p=39Þ.
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Our calculation starts from t ¼ 0:25 and terminates at t ¼ 1:25 for the case with m ¼ 10�2.
This problem is chosen to show that the proposed scheme can provide nonoscillatory solutions even in

the vicinity of high-gradient region. As is expected, the solution shown in Fig. 11 is nonoscillatory over the
entire domain since all chosen grids fall within the monotonic range. For completeness, we also conducted
rate of convergence tests from solutions computed at four arbitrarily chosen times t ¼ 0:997, 0:998, 0:999
and 1.000. In this rate of convergence test, solutions were obtained at Dt ¼ 10�3 and Dx ¼ Dy ¼ 1

130
, 1

135
, 1

140
,

Fig. 10. The solution profile of u computed under Dx ¼ 0:5 and Dy ¼ p=15.

Fig. 11. The nonoscillatory solution profile uðx; y; 1Þ computed at Dx ¼ Dy ¼ 4 � 10�3 and Dt ¼ 10�3.
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1
145

, 1
150

, 1
155

. The spatial rates of convergence shown in Fig. 12 justify the proposed sixth-order accurate finite-
difference scheme.

6. Concluding remarks

The aim of this numerical study was to circumvent the convective instability problem arising in the
nonlinear two-dimensional convection–diffusion transport equation. Our underlying strategy is to exploit
the Cole–Hopf mapping to transform the equation under investigation to a Helmholtz equation. The con-
vective instability problem is, thus, completely resolved. In this context, the key to success in predicting the
nonlinear convection–diffusion equation lies in the scheme used to solve the Helmholtz equation. For ef-
ficiency, we have employed the ADI scheme of Polezhaev. Our main contribution of this study is to develop
an unconditionally monotonic sixth-order one-dimensional Helmholtz scheme in a stencil involving only
three points. Use of this scheme enables us to effectively obtain the convection–diffusion solution at much
less computational cost. Full assessment of the proposed scheme required rigorous testing of the numerical
method. For this reason, we considered problems amenable to exact solutions. The computed L2-error
norms and their resulting rates of convergence validate the appropriateness of the two-step finite-difference
advection–diffusion scheme. For the sake of completeness, computations have been performed to resolve
the high-gradient profile. Good ability to capture the sharply varying profile has been demonstrated.
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Fig. 12. The computed rates of spatial convergence at four different times.
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Appendix A

Consider here the one-dimensional viscous Burgers equation

ou
ot

þ u
ou
ox

� k
o2u
ox2

¼ F : ðA:1Þ

For simplicity of presentation, constant diffusivity k is assumed. By employing the Cole–Hopf transfor-
mation given below

u ¼ �2k
o ln u
ox

¼ �2k
1

u
ou
ox

; ðA:2Þ

one can easily derive

ou
ot

¼ �2k
o

1

u
ou
ot

� �
ox

: ðA:3Þ

ou
ox

¼ � 2k
u2

"
� ou

ox

� �2

þ u
o2u
ox2

#
; ðA:4Þ

o2u
ox2

¼ � 2k
u2

�
� ou

ox
o2u
ox2

þ u
o3u
ox3

�
þ 4k

u3

ou
ox

"
� ou

ox
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þ u
o2u
ox2

#
: ðA:5Þ

Substitution of Eqs. (A.3)–(A.5) into Eq. (A.1) yields

�2k
o

1

u
ou
ot

� �
ox

þ 2k2

o
1

u
o2u
ox2

� �
ox

¼ F : ðA:6Þ

Upon integration of the above equation with respect to x, we can have

ou
ot

¼ k
o2u
ox2

þ u
Z x

0

F ðnÞ
�2k

dn

�
þ Cð0; tÞ

�
: ðA:7Þ

For eliminating the undetermined Cð0; tÞ, we introduce a new variable / ¼ u expð�
R
CdtÞ to obtain the

following heat conduction equation:

o/
ot

¼ k
o2/
ox2

þ /
Z x

0

F ðnÞ
�2k

dn

� �
: ðA:8Þ

References

[1] T.J.R. Hughes, A.N. Brooks, A multi-dimensional upwind scheme with no crosswind diffusion, in: T.J.R. Hughes (Ed.), Finite

Element Methods for Convection Dominated Flows, AMD, vol. 34, ASME, New York, 1979, pp. 19–35.

[2] J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951) 225–236.

[3] E. Hopf, The partial differential equation ut þ uux ¼ luxx, Comm. Pure Appl. Math. 3 (1950) 201–230.

[4] F. Ihlenburg, I. Babu�sska, Finite element solution to the Helmholtz equation with high wave number. Part I: the h-version of the

FEM, Comput. Math. Appl. 30 (9) (1995) 9–37.

[5] P. Monk, D.Q. Wang, A least-squares method for the Helmholtz equation, Comput. Meth. Appl. Mech. Engrg. 175 (1999) 121–

136.

2994 T.W.H. Sheu et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2979–2995



[6] C.I. Goldstein, The weak element method applied to Helmholtz type equations, Appl. Numer. Math. 2 (1986) 409–426.

[7] K.C. Park, J. Jensen, A systematic determination of lumped and improved consistent map matrices for vibration analysis, AIAA

paper No. 89–1335, 1989.

[8] I. Harari, T.J.R. Hughes, Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting

boundary conditions in unbounded domains, Comput. Meth. Appl. Mech. Engrg. 98 (1992) 411–454.

[9] L.L. Thompson, P.M. Pinsky, A Galerkin least-squares finite element method for the two-dimensional Helmholtz equation,

Int. J. Numer. Meth. Engrg. 38 (1995) 371–397.

[10] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles

and the origins of stabilized methods, Comput. Meth. Appl. Mech. Engrg. 127 (1995) 387–401.

[11] A.A. Oberai, P.M. Pinsky, A multiscale finite element method for the Helmholtz equation, Comput. Meth. Appl. Mech. Engrg.

154 (1998) 281–297.

[12] X. Yu, Finite difference methods for the reduced water wave equation, Comput. Meth. Appl. Engrg. 154 (1998) 265–280.

[13] L. Lapidus, G.F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley, New York,

1982.

[14] J.B. Rosser, Nine point difference solutions for Poisson equation, Comput. Math. Appl. 1 (1975) 351–360.

[15] X. Yu, Finite analytic method for the mild slope wave equation, J. Engrg. Mech., ASCE 122 (1995) 109–115.

[16] V.I. Polezhaev, Numerical solution of the system of two-dimensional unsteady Navier-Stokes equations for a compressible gas in a

closed region, Fluid Dynam. 2 (1967) 70–74.

[17] T.W.H. Sheu, S.K. Wang, R.K. Lin, An implicit scheme for solving the convection–diffusion-reaction equation in two dimensions,

J. Comput. Phys. 164 (2000) 123–142.

[18] R.F. Warming, B.J. Hyette, The modified equation approach to the stability and accuracy analysis of finite-difference methods,

J. Comput. Phys. 14 (1974) 159–179.

[19] L.H. Thomas, Elliptic problems in linear difference equations over a network, Watson Sci. Comput. Lab. Rept., Columbia

University, New York, 1949.

[20] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial-Value Problems, Interscience, New York, 1967.

[21] T. Meis, U. Marcowitz, Numerical Solution of Partial Differential Equations, Applied Mathematical Science Series, vol. 32,

Springer, Berlin, 1981.

[22] T. Ikeda, Maximal Principle in Finite Element Models for Convection–Diffusion Phenomena, Numerical and Applied Analysis,

vol. 4, North-Holland Kinokuniya, Amsterdam, Tokyo, 1983.

[23] E.R. Benton, G.W. Platyman, A table of solutions of the one-dimensional Burgers equation, Quart. Appl. Math. (1972) 195–212.

[24] C.A.J. Fletcher, Generating exact solutions of the two-dimensional Burger’s equations, Int. J. Numer. Meth. Fluids 3 (1983)

213–216.

T.W.H. Sheu et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2979–2995 2995


