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In this paper we consider a passive scalar transported in two-dimensional flow. The
governing equation is that of the convection–diffusion–reaction equation. For pur-
poses of computational efficiency, we apply an alternating-direction implicit scheme
akin to that proposed by Polezhaev. Use of this implicit operator-splitting scheme
allows the application of a tridiagonal Thomas solver to obtain the solution. Within
each solution step, a semidiscretization scheme is applied to discretize the differ-
ential equation in one dimension. We approximate the time derivative term using a
forward time-stepping scheme. The resulting inhomogeneous differential equation
has only the spatial derivative terms and is solved using a newly proposed nodally ex-
act steady-state convection–diffusion–reaction scheme. Details on the development
of the flux discretization scheme are provided. Modified equation analysis, Fourier
stability analysis, and a study on scheme monotonicity are also performed to shed
further light on the proposed transient scheme. To validate the proposed scheme, we
first consider test problems which are amenable to analytic solutions. Good agree-
ment is obtained with both one- and two-dimensional steady/unsteady problems, thus
demonstrating the validity of the method.c© 2000 Academic Press

Key Words:two-dimensional convection–diffusion–reaction equation; nodally ex-
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1. INTRODUCTION

In this paper, we investigate numerical methods for solving a convection–diffusion–
reaction (CDR) scalar transport equation. This equation is practically important because
the working equations of many cases fall into this category. Typical examples are the
Helmholtz equation for modeling exterior acoustics [1], constitutive equations for model-
ing the turbulent quantitiesk andε [2], and viscoelastic constitutive equations for mod-
eling the extra stresses in non-Newtonian fluid flows [3]. Furthermore, calculation of the
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magnetic fieldB using the magnetic equation∂B
∂t = ∇ × (u× B), coupled with the in-

compressible Navier–Stokes equations, involves a convection–diffusion–reaction model
equation [4]. It is this wide application scope that makes numerical prediction of this model
equation worthwhile. Considerable effort has been invested in developing convection–
diffusion schemes. However, comparatively few studies have been devoted to the more
general convection–diffusion–reaction equation [5–11]. Some of the previous studies were
focused on developing a discontinuity-capturing CDR scheme [12–14].

A reliable numerical model must have the ability to simulate transport phenomenon
accurately while being able to suppress numerical instability arising in the course of dis-
cretization. The problem with numerical instability is particularly important since both
advective and reactive terms may cause the solutions to diverge. It is, then, a question of
constructing upwind schemes which can stabilize the finite-difference equation, and this
motivated the present study. In this paper, we are also concerned with prediction accuracy
since we do not regard a scheme as useful if it cannot provide accuracy to a certain high
level. In addition, the lack of alignment of coordinate lines with the flow direction can result
in unacceptable accuracy in the computation of two-dimensional problems. The aim of the
present paper is to find a way to solve this problem.

The rest of this paper is organized as follows. Section 2 presents the working equation.
In Section 3, an alternating-direction implicit scheme, similar to that of Polezhaev [15],
is presented. This is followed by presentation of the semidiscretization finite-difference
scheme used to solve the steady/transient CDR equation in one dimension. Our emphasis
is on the derivation of a nodally exact scheme for the investigated differential equation.
Section 4 is devoted to fundamental studies of the proposed flux discretization scheme, with
emphasis on modified equation analysis and Fourier (or von Neumann) stability analysis.
Section 5 presents numerical results that demonstrate the validity of the method. In Section 6,
we give concluding remarks.

2. WORKING EQUATIONS AND SOLUTION ALGORITHM

We consider in this paper the finite-difference solution of the scalar convection–diffusion–
reaction equation

φt + uφx + vφy − k(φxx + φyy)+ cφ = 0, (1)

whereu andv represent the velocity components along thex andy directions, respectively.
Other coefficients involvek andc, which denote the diffusion coefficient and the reaction
coefficient, respectively. For illustrative purposes, all these values are assumed to be con-
stant throughout. For simplicity, the investigated equation is subject to the Dirichlet-type
boundary condition

φ = g. on ∂Ä, t ∈ (0, T). (2)

Equations (1) and (2) constitute a closure problem provided that the initial data ofφ(x, y, 0)
are prescribed.

The strategy we will consider for solving (1) is similar to the ADI (alternating-direction
implicit) scheme of Polezhaev [15]. By virtue of operator splitting, calculation of the
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approximated solution of Eq. (1) is accomplished in two steps, thepredictor step,

φ∗ + 1t

2
(uφ∗x − kφ∗xx)+

1t

2
cφ∗ = φn − 1t

2

(
vφn

y − kφn
yy

)
, (3)

and thecorrector step,

φn+1+ 1t

2

(
vφn+1

y − kφn+1
yy

)+ 1t

2
cφn+1 = φ∗ − 1t

2
(uφ∗x − kφ∗xx). (4)

Define

(ū′, v̄′) =
(
1t

2
u,
1t

2
v

)
, (5)

k̄′ = 1t

2
k, (6)

c̄′ = 1+ 1t

2
c. (7)

The above two-step ADI scheme for solving Eq. (1) can be rewritten as

ū′φ∗x − k̄′φ∗xx + c̄′φ∗ = f1, (8)

v̄′φn+1
y − k̄′φn+1

yy + c̄′φn+1 = f2. (9)

In the above, the source termsf1 and f2 are

f1 = φn − v̄′φn
y + k̄′φn

yy, (10)

f2 = φ∗ − ū′φ∗x + k̄′φ∗xx. (11)

For the unsteady case, the scalr convection–diffusion–reaction equation in one dimension
is of the form

φt + uφx − kφxx + cφ = 0. (12)

We apply the semidiscretization scheme to approximate Eq. (12). In the time-stepping
scheme, we considerφt = (φn+1− φn)/1t , which yields first-order accuracy. The resulting
equation containing only the spatial derivatives is

ūφn+1
x − k̄φn+1

xx + c̄φn+1 = φn. (13)

The definitions of̄u, k̄, andc̄ areū = u1t, k̄ = k1t , andc̄ = 1+ c1t .

3. FLUX DISCRETIZATION SCHEME

Equations (8), (9), and (12) are known as the steady-state convection–diffusion–reaction
equations. At this point, we realize that the key to success in solving Eq. (1) lies in the
analysis of the following model equation:

uφx − kφxx + cφ = f. (14)

As is the case when a partial differential equation is simulated, we aim to obtain higher
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prediction accuracy. To this end, we employ the general solution for Eq. (14),

φ = aeλ1x + beλ2x + f

c
, (15)

wherea andb are constants. Substituting Eq. (15) into Eq. (14), we have two equations for
λ1 andλ2, respectively:

kλ2
1− uλ1− c = 0, (16a)

kλ2
2− uλ2− c = 0. (16b)

The above two equations enable us to determineλ1 andλ2 as follows:

λ1 = u+√u2+ 4ck

2k
, (17a)

λ2 = u−√u2+ 4ck

2k
. (17b)

For the CDR model equation (14), we can write the discrete equation at an interior
nodei . The idea is to approximate all the derivative terms using the center-like scheme

u

2h
(φi+1− φi−1)− m

h2
(φi+1− 2φi + φi−1)+ c

6
(φi−1+ 4φi + φi+1) = f, (18a)

or (
− u

2h
− m

h2
+ c

6

)
φi−1+ 2

(
m

h2
+ c

3

)
φi +

(
u

2h
− m

h2
+ c

6

)
φi+1 = f, (18b)

whereh is the uniform grid size. Given the above discrete representation of (14), the
prediction quality depends solely onm in Eq. (18). As previously noted, we seek higher
accuracy through use of the exact solutions evaluated at nodal pointsxi andxi±1. By virtue of
Eq. (15), we can substituteφi = aeλ1xi + beλ2xi + f

c , φi+1 = aeλ1heλ1xi + beλ2heλ2xi + f
c ,

andφi−1 = ae−λ1heλ1xi + be−λ2heλ2xi + f
c into Eq. (18b) to derive

m= −(2/3)ch2− (ch2/6)[cosh(λ1h)+ cosh(λ2h)] − (uh/2)[sinh(λ1h)+ sinh(λ2h)]

2− cosh(λ1h)− cosh(λ2h)
.

(19)

Under some extreme conditions, the values ofλ1 andλ2 may lead to a zero denominator
in Eq. (19). As a result, solutions cannot be obtained from Eq. (18). To avoid this situation,
we can approximate Eq. (14) using another center-like scheme,

n

2h
(φi+1− φi−1)− k

h2
(φi+1− 2φi + φi−1)+ c

6
(φi−1+ 4φi + φi+1) = f, (20a)

or (
− n

2h
− k

h2
+ c

6

)
φi−1+ 2

(
k

h2
+ c

3

)
φi +

(
n

2h
− k

h2
+ c

6

)
φi+1 = f. (20b)

Substituting the general solutions forφi±1 andφi into Eq. (20b), we can deriven as

n = −(4/3)ch− 2k/h+ (2k/h− ch/3)[cosh(λ1h)+ cosh(λ2h)]

sinh(λ1h)+ sinh(λ2h)
. (21)



CONVECTION–DIFFUSION–REACTION EQUATION 127

TABLE I

A Comparison of Algebraic Expressions of Coefficients Shown in the Currently Developed

Three-Point Finite-Difference Equationâiφi−1 + b̂iφi + ĉiφi+1 = f with Those in the Exponential

Fitting Scheme

âi b̂i ĉi

[10] − u
h

1
exp(−uh/k)− 1

− u
h

[
1

exp(uh/k)− 1
+ 1

exp(−uh/k)− 1

]
− c u

h
1

exp(uh/k)− 1

Eq. (18b) −2c− (u/h)(eλ1h + eλ2h − 2)

eλ1h + e−λ1h + eλ2h + e−λ2h − 4

16c/3− (c/3)(eλ1h + e−λ1h + eλ2h + e−λ2h)

4− (eλ1h + e−λ1h + eλ2h + e−λ2h)

−2c+ (u/h)(eλ1h + eλ2h − 2)

eλ1h + e−λ1h + eλ2h + e−λ2h − 4

− (u/2h)(eλ1h − e−λ1h + eλ2h − e−λ2h)

4− (eλ1h + e−λ1h + eλ2h + e−λ2h)

Eq. (20b) − (2k/h2)(e−λ1h + e−λ2h − 2)

eλ1h − e−λ1h + eλ2h + e−λ2h
2k
h2 + 2c

3
(2k/h2)(e−λ1h + e−λ2h − 2)

eλ1h − e−λ1h + eλ2h − e−λ2h

−(c/3)(eλ1h + eλ2h − 4)

eλ1h − e−λ1h + eλ2h − e−λ2h
−(c/3)(eλ1h + eλ2h − 4)

eλ1h − e−λ1h + eλ2h − e−λ2h

As Eqs. (19) and (20) show, the coefficients shown in the proposed three-point finite-
difference Eqs. (18) and (20) are functions of exponential terms. This fact provides impetus
to compare with the exponential fitting scheme [10, 11], which was originally developed
to solve the singularly perturbed ordinary differential equation (ODE) (14) in the case of
k¿ 1. The novelty of this model development is that the second-order ODE has been exactly
split into two first-order ordinary differential equations. One of them is approximated using
the symmetric discretization and the other equation is approximated using the exponential
fitting scheme to render a three-point schemeâiφi−1+ b̂iφi + ĉiφi+1 = f . The reader can
refer to [10] for additional details. For comparative purposes, we tabulateâi , b̂i , andĉi in
Table I for the currently proposed scheme and the exponential fitting scheme [10]. While the
algebraic expressions ofâi , b̂i , andĉi are quite different, their values, tabulated in Table II,
are identical for the case withu = 1, k = −1, c = −2, andh (= 1

20 and 1
100).

TABLE II

A Comparison of Values of Coefficients Shown in the Currently Developed Three-Point

Finite-Difference Equation âiφi−1 + b̂iφi + ĉiφi+1 = f with Those in the Exponential Fitting

Scheme

âi b̂i ĉi

h = 1
20

h = 1
100

h = 1
20

h = 1
100

h = 1
20

h = 1
100

(a)u = 1, k = −1, c = −2
Ref. [10] 390.0833 9950.0833 802.1666 20002.1666 410.0833 10050.0833
Eq. (18b) 389.9500 9949.9500 801.9001 20001.9000 409.9500 10049.9500
Eq. (20b) 389.7020 9949.6737 801.3333 20001.3333 409.6313 10049.6595

(b) u = 1, k = 1, c = 1
Ref. [10] −410.0833 −10050.0833 801.1666 20001.1666 −390.0833 −9950.0833
Eq. (18b) −410.0277 −10050.0277 801.0555 20001.0555 −390.0277 −9950.0277
Eq. (20b) −409.8187 −10049.8304 800.6666 20000.6666 −389.8479 −9949.8362

(c) u = 1, k = x, c = −1
Ref. [10] −70.5545 −1550.5555 120.1090 3000.1111 −50.5545 −1450.5555
Eq. (18b) −70.5191 −1550.5198 120.0382 3000.0397 −50.5191 −1450.5198
Eq. (20b) −70.1257 −1550.1584 119.3333 2999.3334 −50.2076 −1450.1749
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After developing the discretization scheme for the CDR model equation, we proceed
with the calculation ofφn+1 from Eqs. (8) and (9) as follows. First we compute the source
term f1 using the previous solutions computed att = n1t . This is followed by computing
the solutionφ∗ using the nodally exact CDR scheme (18) or (20). Upon obtaining the value
of φ∗, we can computef2 and then the solutionφn+1 using the same nodally exact CDR
scheme used in the predictor step.

4. FUNDAMENTAL STUDY OF THE DISCRETIZATION SCHEME

To shed light on the nature of the proposed convection–diffusion–reaction scheme, we
will conduct a modified equation analysis [16]. The scheme given in (18) is considered for
illustration. Using the scheme derived in Section 3, we can write the discretization equation
for Eq. (13) as

ū

2h

(
φn+1

i+1 −φn+1
i−1

)− m̄

h2

(
φn+1

i+1 − 2φn+1
i + φn+1

i−1

)+ c̄

6

(
φn+1

i−1 + 4φn+1
i +φn+1

i+1

)=φn
i . (22)

The expression for̄m is similar tom, defined in (19),

m̄= −(2/3)c̄h2− (c̄h2/6)[cosh(λ̄1h)+ cosh(λ̄2h)] − (ūh/2)[sinh(λ̄1h)+ sinh(λ̄2h)]

2− cosh(λ̄1h)− cosh(λ̄2h)
,

(23)

where

λ̄1 = ū+√ū2+ 4c̄k̄

2k̄
, (24)

λ̄2 = ū−√ū2+ 4c̄k̄

2k̄
. (25)

Substituting Taylor-series expansions into Eq. (22) forφn+1
i+1 , φ

n+1
i−1 , φ

n+1
i , andφn

i , we
obtain

φt + uφx − kφxx + cφ = −u

[
(1t)φxx + (1t)2

2
φt t x + h2

6
φxxx

]
− kφxx

+ m̄

1t

[
φxx + h2

6(1t)
φt xx + (1t)2

6
φt t xx

]
−
[
1t

2
φt t + h2

6(1t)
φxx + (1t)2

6
φt t t + h2

6
φt xx

]
− c

[
(1t)φt + (1t)2

2
φt t + h2

6
φxx

]
+ O[(1t)3, h3]. (26)

Note that the left-hand side of Eq. (26) is the investigated model equation while the
right-hand side represents the discretization error that may be produced. The significance
of the terms on the right-hand side is easily seen if the time derivatives are replaced
with spatial derivative terms. As a result, the modified equation for Eq. (12) is derived
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as

φt + uφx − kφxx + cφ =
{

c2

2
1t − c3

3
(1t)2+ O[(1t)3]

}
φ

+{cu1t − c2u(1t)2+ O[(1t)3]}φx

+
{
−k+ m̄′

1t
− cm̄′ + cm̄′

2
1t + u2

2
1t

+
(

1

2
c2k− cu2

)
(1t)2+ O[(1t)3, h3]

}
φxx + · · · (27)

where

m̄′ = m̄− c̄

6
h2 = c̄h2+ (ūh/2)[sinh(λ̄1h)+ sinh(λ̄2h)]

[cosh(λ̄1h)+ cosh(λ̄2h)] − 2
. (28)

For a finite value of1t , the following limiting condition holds:

lim
h→0

m̄′ = k1t. (29)

From Eq. (27), it is clear that the consistency property necessary to obtain a convergent
solution is satisfied as1t andh both approach zero.

As a fundamental study of the proposed scheme, we will also consider Fourier (or von
Neumann) stability analysis. First, we can derive the amplification factor for this scheme by
conducting standard stability analysis. Letβ = 2πm

2L h (m= 0, 1, 2, 3, . . . ,M), let h be the
grid size, and let 2L be the period of the fundamental frequency (m= 1); the amplification
factor|G| (≡|(φn+1

j /φn
j )|) is derived as

G = A− i B

A2+ B2
, (30a)

|G| = 1√
A2+ B2

, (30b)

where

A = c̄+ (1− cosβ){c̄+ (ū/k) sinh(ū/2k̄) cosh(
√

ū2+ 4c̄k̄/2k̄)}
cosh(ū/2k̄) cosh(

√
ū2+ 4c̄k̄/2k̄)− 1

, (31a)

B = ū

k̄
sinβ. (31b)

Referring to Appendix 1, we see that|G| ≤ 1. Therefore, the scheme proposed here is
unconditionally stable.

The amplification factor shown in (30a) can be rewritten in its exponential formG =
|G|ei θ , whereθ is the phase angle,

θ = tan−1

∣∣∣∣ Im(G)Re(G)

∣∣∣∣ = tan−1

(−B

A

)
. (32)

To study how this phase varies with the dimensionless numbers

R1 = ch2

2k
, (33a)

R2 = ch

u
, (33b)
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R3 = R1

R2
= uh

2k
, (33c)

ν = u1t

h
, (33d)

we must derive the exact phase angleθe. The detailed derivation is given in Appendix 2.
Upon deriving the exact phase angle, we can obtain the relative phase shift error over an
arbitrary time step as

θ

θe
= tan−1(−B/A)

−νβ . (34)

We plot θ
θe

againstβ, R1, R2, andν in Fig. 1. When the relative phase error exceeds 1 for
the specified values ofR1 andR2, the numerical solution has a wave speed greater than the
exact wave speed, and this is called the phase-leading error. The converse error is called a
phase-lagging error. As the figure shows, the proposed scheme has a phase-lagging error
irrespective ofR1, R2, andν. Therefore, the implicit scheme proposed in this paper is called
a phase-lagging finite-difference scheme.

Observations revealed by Fig. 1 are summarized below. As Figs. 1a and 1b, which plot
θ
θe

againstR1 at the fixed values ofν = 1 andR2 = 0.001, show, the value ofθ
θe

increases
with increasedR1. This gives an indication that the higherR3 is, the less accurate is the
phase predicted under the circumstances. At the fixed values ofν = 1 and R1 = 0.001,
Fig. 1b plotsθ

θe
againstR1. As Fig. 1b shows, when the reaction term becomes increasingly

dominant over the convection term, the numerical phase continuously departs from the exact
phase. For the purpose of comparison, we also plotθ

θe
againstR1 at ν = 0.2, R2 = 0.001

in Fig. 1c and againstR2 at ν = 0.2, R1 = 0.001 in Fig. 1d. As Figs. 1a–d show, even

FIG. 1. Plots of θ
θe

againstR1, R2, andν. (a) R2 = 0.001, ν = 1; (b) R1 = 0.001, ν = 1; (c) R2 = 0.001, ν =
0.2; (d) R1 = 0.001, ν = 0.2.
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the proposed scheme is unconditionally stable; the increase of the chosen time step, which
corresponds to increasingν, will deteriorate the phase prediction.

Inspection of the banded tridiagonal matrix Eqs. (18b) and (20b) shows that it is possible
to haveai j ≤ 0 with i 6= j and|aii | ≥

∑ |ai j | (i ≤ j ). If this is the case, the matrix equation
is, by definition, considered to be irreducible diagonally dominant. A matrix of this type
is called anM-matrix, and A

¯̄
−1 > 0 holds. Under this condition, the solutions computed

from the M-matrix equation are unconditionally monotonic. By virtue of theM-matrix
theory [17], there is a potential advantage in using the proposed scheme to resolve any
possible sharp gradient in the flow. We will address this issue through examples considered
in Section 5.2.2.

5. NUMERICAL RESULTS

5.1. One-Dimensional Problems

As is the case when a new scheme for solving any differential equation is presented, we
have to validate the proposed scheme. For this purpose, we will employ test problems which
are amenable to analytic solutions.

5.1.1. Homogeneous CDR equation.For Eq. (14), we consider first the homogeneous
case wheref = 0. To keep matters simple, coefficientsu, k, andc are all assumed to be
constant in the region 0≤ x ≤ 1. Under the assumption thatk = −1, u = 1, andc = −2,
the exact solution for (14) takes the form

φexact= ex + e−2x. (35)

This solution is obtained under uniform grid size(h = 1
20) and the boundary conditions

φ(x = 0) = 2 andφ(x = 1) = (1+ e3)/e2. The computed result, shown in Fig. 2, is found
to reproduce the analytic solution of the test equation. This test verifies that the proposed
finite-difference scheme can provide a nodally exact steady-state solution.

FIG. 2. A comparison of exact and numerical solutions for the one-dimensional steady homogeneous CDR
equation considered in Section 5.1.1.
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FIG. 3. A comparison of exact and numerical solutions for the one-dimensional steady inhomogeneous CDR
equation considered in Section 5.1.2.

5.1.2. Inhomogenous CDR equation.Having validated the code against the above one-
dimensional test problem, we now draw our attention to the inhomogeneous case wheref =
cosx − 3 sinx. To allow comparison with the analytic solution, we consider a second test
problem which involves constant coefficients:k = −1, u = 1, c = −2. Subject to Dirichlet-
type boundary condition, the exact solution to the inhomogeneous convection–diffusion–
reaction equation is derived as

φexact= sinx. (36)

Uniform grids are overlaid on the region 0≤ x ≤ 1. The results plotted in Fig. 3 show good
agreement with the exact solutions, thus demonstrating the applicability of the proposed
scheme to solving the inhomogeneous CDR equation.

To further verify that the scheme is applicable to problems containing discontinuous
source terms, we will consider the case where

f =
{

0, x < 1
2

8× 103, x ≥ 1
2.

(37)

Subject to the boundary conditionsφ(x = 0) = 0 andφ(x = 1) = 1, the exact solution
takes the form

φ =
{ 1

2
sinh(λx)
sinh(λ/2) , x ≤ 1

2

1− 1
2

sinh(λ(1−x))
sinh(λ/2) , x ≥ 1

2,
(38)

whereλ = (c/k)1/2. In this case we will considerk = 1, u = 0, c = 8× 103, andh = 1
20.

Figure 4 shows the exact solution (solid line) and the numerical solution (square symbols).
Good agreement between the two sets of solutions is obtained.



CONVECTION–DIFFUSION–REACTION EQUATION 133

FIG. 4. A comparison of exact and numerical solutions for the one-dimensional CDR equation with a dis-
continuous source term considered in Section 5.1.3.

5.1.3. Unsteady inhomogeneous CDR equation.Having verified the proposed steady-
state scheme, we now turn our attention to the transient convection–diffusion–reaction
equation in a unit domain of 0≤ x ≤ 1,

φt + uφx − kφxx + cφ = f, (39)

where f = 2(x − 1)e−t . We start the calculation with the initial dataφ(x, t = 0) = x2. The
exact solution for the case withu = 1, c = 1, andk = 1 takes the form

φexact(x, t) = x2e−t . (40)

Under the time step1t = 5× 10−2, the computed solution agrees well with the exact
solution plotted in Fig. 5. We also carried out computatations on continuously refined grids,

FIG. 5. A comparison of numerical and exact solutions for the one-dimensional time-dependent inhomoge-
neous CDR equation considered in Section 5.1.4.
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FIG. 6. The rate of convergence plot for the inhomogeneous time-dependent CDR equation considered in
Section 5.1.4.

namelyh = 1
10,

1
20,

1
40,

1
80, and 1

100, and cast prediction errors in theirL2-norms. This was
followed by plotting log(err1/err2) against log(h1/h2) for the errors err1 and err2 computed
at two continuously refined gridsh1 andh2. As Fig. 6 shows, the rate of convergence is
obtained as 2.237 using the proposed scheme.

5.2. Two-Dimensional Problems

5.2.1. Analytical validation. Simulations were also performed in the two-dimensional
domain. In this paper, we will first present a simple test case to justify the use of the
proposed ADI scheme to simulate Eq. (1) in the square 0≤ x, y ≤ π . This test problem
was considered by Yu [18]:

φxx + φyy+ φ = 0. (41)

Provided that the Dirichlet-type boundary condition forφ is analytically specified, this
equation is amenable to the exact solution

φ = cosy−
√

2

2
sin

(
π

4
+ y

)[
C

(√
2(ρ − y)

π

)
+ S

(√
2(ρ + y)

π

)]

−
√

2

2
sin

(
π

4
− y

)[
C

(√
2(ρ + y)

π

)
+ S

(√
2(ρ − y)

π

)]
, (42)

whereρ = (x2+ y2)1/2. In Eq. (42),C(p) andS(q) denote the sine Eresnel integral and
cosine Fresnel integral, respectively; i.e.,

C(p) ≡
√

2

π

∫ p

0
cosu2 du≈

√
2

π

(
p− p5

5 · 2!
+ p9

9 · 4!
− p13

13 · 6!
+ · · ·

)
, (43a)

S(q) ≡
√

2

π

∫ q

0
sinu2 du≈

√
2

π

(
q3

3
− q7

7 · 3!
+ q11

11 · 5!
− q15

15 · 7!
+ · · ·

)
. (43b)
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FIG. 7. The contour plots ofφ for Eq. (41) considered in Section 5.2.1. (a) Exact contours computed from
Eq. (42). (b) Computed contours ofφ and theL2-error norm for the case with1x = 1y = 1

60
.

We computed solutions on two-dimensional grids with a uniform resolution of1x = 1y =
1
60 and plottedφ in their contour-valued format. As Fig. 7 shows, good agreement with the
analytic solution is obtained. The computedL2-error norm is also shown in Fig. 7.

5.2.2. Test problem proposed by Codina.Having verified the applicability of the pro-
posed scheme in solving the two-dimensional smooth problem, we now consider a more
stringent test case. In all the test cases, the source term was taken asf = 1, and the diffu-
sion coefficient was set tok = 10−4. For simplicity, the velocity vectoru was assumed to
be constant and was taken as(u = |ū| cos(π3 ), v = |ū| sin(π3 )). Three cases considered by
Codina [14] are investigated here:

|ū| = 1, c = 10−4; (44a)

|ū| = 10−4, c = 1; (44b)

|ū| = 0.5, c = 1. (44c)

All three test cases, detailed in Tables III and IV, were subject to the homogeneous
Dirichlet-type boundary conditionφ(x̄ ∈ ∂Ä). Simulations were performed on uniform

TABLE III

Details of the Problem Considered in Section 5.2.2

Problems Eq. (44a) Eq. (44b) Eq. (44c)

k 10−4 10−4 10−4

u 1 10−4 0.5
c 10−4 1 1
f 1 1 1
λ1 104 102 0.502× 104

λ2 −10−4 −10−2 1.922× 10

m ch2

6
+ uh

2
10−4 10−4

n 10−4 − 2k
h
+ ch

3
2k
h
− uh

3
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TABLE IV

Computational Details for the Problem Considered in Section 5.2.2

Eq. (44a) Eq. (44b) Eq. (44c)

h = 1
20

R1 = ch2

2k
1.25× 10−3 1.25× 10 1.25× 10

R2 = ch
u

5.0× 10−6 5.0× 10−6 0.1

R3 = R1
R2
= uh

2k
0.25× 103 0.25× 10−1 0.25× 102

h = 1
52

R1 = ch2

2k
1.85× 10−4 1.85 1.85

R2 = ch
u

1.92× 10−6 1.92× 102 0.38× 10−1

R3 = R1
R2
= uh

2k
0.96× 103 0.96× 10−2 0.48× 102

h = 1
100

R1 = ch2

2k
0.5× 10−4 0.5 0.5

R2 = ch
u

10−8 1 0.5× 10−3

R3 = R1
R2
= uh

2k
0.5× 104 0.5 103

FIG. 8. Computed solutions ofφ for the case given in (44a). (a)1x = 1y = 1
20

; (b) 1x = 1y = 1
52

;
(c)1x = 1y = 1

80
; (d)1x = 1y = 1

100
.
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FIG. 9. Computed solutions ofφ for the case given in (44b). (a)1x = 1y = 1
20

; (b) 1x = 1y = 1
52

;
(c)1x = 1y = 1

80
; (d)1x = 1y = 1

100
.

grids with different resolutions of1x = 1y = 1
20,

1
52,

1
80, and 1

100. In these tests, solutions
were obtained as the residuals, cast in theL2-norm, computed betweenx- andy- sweeps fell
below 10−9. The resulting steady-state solutions for the three test conditions are plotted in
Figs. 8–10, respectively. As these figures reveal, sharp profiles ofφ could be captured with-
out postshock oscillations. These tests demonstrate that the discretization scheme exhibits
strong stability even in the two-dimensional domain.

While solutions for three test cases considered in Eqs. (44a)–(44c) are all montonically
predicted, this does not mean that the proposed two-dimensional finite-difference scheme
always provides monotonic solutions. This is because the matrix equation involved in the
implicit scheme is conditionally claseified as anM-matrix. To show this, we can consider
an even more severe problem with|ū| = 10−4, c = 1, k = 10−6. As Fig. 11 shows, an
oscillatory solution profile is seen in regions adjacent to the boundary even when the grid
size has been reduced to1x = 1y = 1

80. This highlights the fact that the matrix equation
is not classified as anM-matrix for the investigated case and, thus, solutions may show
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FIG. 10. Computed solutions ofφ for the case given in (44c). (a)1x = 1y = 1
20

; (b) 1x = 1y = 1
52

;
(c)1x = 1y = 1

80
; (d)1x = 1y = 1

100
.

oscillations in high-gradient regions. This is not the case for conditions considered in (44a)
and (44c). Even when the value ofk is decreased to 10−6, the matrix equations for the two
cases considered are allM-matrices. The solutions shown in Figs. 12 and 13 are of the
monotonic type.

FIG. 11. Solution ofφ computed under1x = 1y = 1
80

for the case with|u| = 1, c = 10−4, andk = 10−6.
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FIG. 12. Solution ofφ computed under1x = 1y = 1
80

for the case with|u| = 10−4, c = 1, andk = 10−6.

6. CONCLUDING REMARKS

We have presented in this paper a finite-difference scheme for solving the two-dimensional
convection–diffusion–reaction equation. To gain computational efficiency in solving the
matrix equation, we have considered the alternating-direction implicit scheme, which is
similar to Polezhaev’s scheme. For the sake of accuracy, we have developed a nodally exact
one-dimensional convection–diffusion–reaction discretization scheme. To elucidate the na-
ture of the proposed scheme, we have performed a fundamental study, with an emphasis on
modified equation analysis and on Fourier stability analysis. We have also extended the ap-
plicability of this scheme to transient analyses by adopting the semidiscretization approach.
The flux discretization scheme has been validated extensively against test cases by repro-
ducing analytic solutions for the investigated one-dimensional equation. The application
scope has also been extended to the two-dimensional problem with an exact solution. Good
agreement with the smoothly varying exact solutions has been obtained, thus verifying the
applicability of the proposed ADI finite-difference scheme. Also, computations have been
performed for a problem with high-gradient solutions. A good ability to capture the sharply
varying profiles has been demonstrated.

FIG. 13. Solution ofφ computed under1x = 1y = 1
80

for the case with|u| = 0.5, c = 1, andk = 10−6.
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APPENDIX 1

Proof of |G| ≤ 1

Recall that the modulus of the amplification factor|G| given in Eq. (30b) is derived as

|G| = 1√
A2+ B2

, (A1.1)

where

A = c̄+ (1− cosβ){c̄+ (ū/k̄) sinh(ū/2k̄) cosh(
√

ū2+ 4c̄k̄/2k̄)}
cosh(ū/2k̄) cosh(

√
ū2+ 4c̄k̄/2k̄)− 1

, (A1.2)

B = ū

k̄
sinβ. (A1.3)

The above expression is derived under the condition thatk andc have the same sign. Here,
we take the positive sign as an example in the proof; i.e.,k > 0 andc > 0. As a result, one
can obtain

c̄ = 1+ c(1t) > 1, (A1.4)

k̄ = k(1t) > 0, (A1.5)

ū = u(1t). (A1.6)

Given that cosh(x) > 1 for all realx (except atx = 0), we have

cosh(ū/2k̄) > 1, cosh(
√

ū2+ 4c̄k̄/2k̄) > 1. (A1.7)

These, in turn, give

cosh(ū/2k̄) cosh(
√

ū2+ 4c̄k̄/2k̄)− 1> 0. (A1.8)

Sincex sinhx ≥ 0 for all realx andk̄ > 0, we haveū
k̄

sinh( ū
2k̄
) ≥ 0 and, thus,

[
c̄+ ū

h
sinh

(
ū

2k̄

)
cosh

(√
ū2+ 4c̄k̄

2k̄

)]
≥ 1. (A1.9)

Since−1≤ cosβ ≤ 1, the following equation holds by virtue of Eqs. (A1.7)–(A1.9):

(1− cosβ){c̄+ (ū/k̄) sinh(ū/2k̄) cosh(
√

ū2+ 4c̄k̄/2k̄)}
cosh(ū/2k̄) cosh(

√
ū2+ 4c̄k̄/2k̄)− 1

≥ 0. (A1.10)

As a result,

A = c̄+ (1− cosβ){c̄+ (ū/k̄) sinh(ū/2k̄) cosh(
√

ū2+ 4c̄k̄/2k̄)}
cosh(ū/2k̄) cosh(

√
ū2+ 4c̄k̄/2k̄)− 1

≥ c̄ > 1. (A1.11)

SinceA2 > 1 andB2 ≥ 0, we have
√

A2+ B2 > 1 and, thus,|G| = 1/
√

A2+ B2 < 1.
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APPENDIX 2

Derivation of the Exact Phase Angleθe for Equation (12)

Let the elementary solution be

φ = eαt ei Kmx. (A2.1)

One has

φt = αeαt ei Kmx, (A2.2)

φx = i Kmeαt ei Kmx, (A2.3)

φxx = −K 2
meαt ei Kmx. (A2.4)

In the above,Km (≡ 2πm
2L ,m= 0, 1, 2, 3, . . . ,M) denotes the wave number. As for 2L, it

is known as the period of the fundamental frequency (m= 1). Substituting (A2.1)–(A2.4)
into Eq. (12), we can deriveα as

α = −(c+ kK2
m

)− iuKm. (A2.5)

As a result,φ is expressed as

φ = e−(c+kK2
m+iuKm)t ei Kmx. (A2.6)

By virtue of (A2.6), the amplification factor is exactly derived as

Ge = φ(t +1t)

φ(t)
= e−(c+kK2

m+iuKm)1t , (A2.7)

or

Ge = ei θee−(c+kK2
m)1t , (A2.8)

where

θe = −uKm1t. (A2.9)

Invoking the definitions ofβ = Kmh and Courant numberν = u1t
h (whereh is the grid

size), we obtain the exact phase angleθe as

θe = −βν. (A2.10)
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