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In this paper we consider a passive scalar transported in two-dimensional flow. The
governing equation is that of the convection—diffusion—reaction equation. For pur-
poses of computational efficiency, we apply an alternating-direction implicit scheme
akin to that proposed by Polezhaev. Use of this implicit operator-splitting scheme
allows the application of a tridiagonal Thomas solver to obtain the solution. Within
each solution step, a semidiscretization scheme is applied to discretize the differ-
ential equation in one dimension. We approximate the time derivative term using a
forward time-stepping scheme. The resulting inhomogeneous differential equation
has only the spatial derivative terms and is solved using a newly proposed nodally ex-
act steady-state convection—diffusion—reaction scheme. Details on the development
of the flux discretization scheme are provided. Modified equation analysis, Fourier
stability analysis, and a study on scheme monotonicity are also performed to shed
further light on the proposed transient scheme. To validate the proposed scheme, we
first consider test problems which are amenable to analytic solutions. Good agree-
ment is obtained with both one- and two-dimensional steady/unsteady problems, thus
demonstrating the validity of the methodg 2000 Academic Press

Key Wordstwo-dimensional convection—diffusion—reaction equation; nodally ex-
act; modified equation analysis; Fourier stability analysis; monotonicity.

1. INTRODUCTION

In this paper, we investigate numerical methods for solving a convection—diffusic
reaction (CDR) scalar transport equation. This equation is practically important bece
the working equations of many cases fall into this category. Typical examples are
Helmholtz equation for modeling exterior acoustics [1], constitutive equations for mod
ing the turbulent quantitiek ande [2], and viscoelastic constitutive equations for mod:
eling the extra stresses in non-Newtonian fluid flows [3]. Furthermore, calculation of
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magnetic fieldB using the magnetic equatio%% =V x (u x B), coupled with the in-
compressible Navier—Stokes equations, involves a convection—diffusion—reaction m
equation [4]. Itis this wide application scope that makes numerical prediction of this mo
equation worthwhile. Considerable effort has been invested in developing convecti
diffusion schemes. However, comparatively few studies have been devoted to the r
general convection—diffusion—reaction equation [5-11]. Some of the previous studies v
focused on developing a discontinuity-capturing CDR scheme [12-14].

A reliable numerical model must have the ability to simulate transport phenomer
accurately while being able to suppress numerical instability arising in the course of «
cretization. The problem with numerical instability is particularly important since bo
advective and reactive terms may cause the solutions to diverge. It is, then, a questic
constructing upwind schemes which can stabilize the finite-difference equation, and
motivated the present study. In this paper, we are also concerned with prediction acct
since we do not regard a scheme as useful if it cannot provide accuracy to a certain
level. In addition, the lack of alignment of coordinate lines with the flow direction can res|
in unacceptable accuracy in the computation of two-dimensional problems. The aim of
present paper is to find a way to solve this problem.

The rest of this paper is organized as follows. Section 2 presents the working equa
In Section 3, an alternating-direction implicit scheme, similar to that of Polezhaev [1
is presented. This is followed by presentation of the semidiscretization finite-differer
scheme used to solve the steady/transient CDR equation in one dimension. Our emp
is on the derivation of a nodally exact scheme for the investigated differential equati
Section 4 is devoted to fundamental studies of the proposed flux discretization scheme,
emphasis on modified equation analysis and Fourier (or von Neumann) stability analy
Section 5 presents numerical results that demonstrate the validity of the method. In Secti
we give concluding remarks.

2. WORKING EQUATIONS AND SOLUTION ALGORITHM

We consider in this paper the finite-difference solution of the scalar convection—diffusic
reaction equation

ot + Ugx + U¢y — K(pxx + (byy) +co =0, (1)

whereu andv represent the velocity components alongsttandy directions, respectively.
Other coefficients involv& andc, which denote the diffusion coefficient and the reactiot
coefficient, respectively. For illustrative purposes, all these values are assumed to be
stant throughout. For simplicity, the investigated equation is subject to the Dirichlet-ty
boundary condition

¢=9g. onda,te(0T). (2)

Equations (1) and (2) constitute a closure problem provided that the initial data of, 0)
are prescribed.

The strategy we will consider for solving (1) is similar to the ADI (alternating-directio
implicit) scheme of Polezhaev [15]. By virtue of operator splitting, calculation of tf
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approximated solution of Eq. (1) is accomplished in two stepsptédictor step
At At At
¢+ S (g — k) + op” =" — - (vey — kejy), ©)

and thecorrector step

At At At
¢n+l + ?(U¢3+1 _ k¢9;»1) + 7C¢n+1 — ¢>k _ 7(”(1): _ k¢)>$(<x) (4)
Define
o At At
(u,v) = <2U,2U>, )
= At
K =Sk (6)
At
¢=1+c @)

The above two-step ADI scheme for solving Eq. (1) can be rewritten as

U} — K}y +Co" = fr, ®)

VP — Kyt + TN = fo. 9)

In the above, the source ternfisand f, are
fi=¢" — Vg) + K¢y, (10)
fo = ¢* — U + KoL, (11)

For the unsteady case, the scalr convection—diffusion—reaction equation in one dimer
is of the form

¢t + U(bx - k(bxx + C¢ =0. (12)

We apply the semidiscretization scheme to approximate Eq. (12). In the time-stepj
scheme, we considef = (¢"* — ¢™)/At, which yields first-order accuracy. The resulting
equation containing only the spatial derivatives is

J¢Q+l _ E¢)I’(1)4(—l + E¢n+1 — ¢n. (13)

The definitions ofr, k, andC arell = uAt, k = kAt, andc = 1 + cAt.

3. FLUX DISCRETIZATION SCHEME

Equations (8), (9), and (12) are known as the steady-state convection—diffusion-rea
equations. At this point, we realize that the key to success in solving Eq. (1) lies in
analysis of the following model equation:

Uy — Kopyx +Cop = . (14)

As is the case when a partial differential equation is simulated, we aim to obtain hig
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prediction accuracy. To this end, we employ the general solution for Eq. (14),
f
¢ = ae 4 b 4+ - (15)

wherea andb are constants. Substituting Eq. (15) into Eq. (14), we have two equations
A1 andi,, respectively:

kAf —ur; —c =0, (16a)
kA3 —urz —Cc =0. (16b)

The above two equations enable us to determinand, as follows:

u -+ /U2 + 4ck
)\.]_ = T, (17a)

u — +/u? + 4ck
hp = ST VU HACK (17b)
2k
For the CDR model equation (14), we can write the discrete equation at an inte

nodei. The idea is to approximate all the derivative terms using the center-like scheme

%(d’wl —¢i—1) — %(¢i+1 —2¢i + pi—1) + g(fﬁi—l + 49 +diy) = f, (18a)

(—;:1—:; >¢| 1+2<h2 §)¢i+(2uh—:;+g>¢i+1= f, (18b)

whereh is the uniform grid size. Given the above discrete representation of (14), |
prediction quality depends solely anin Eq. (18). As previously noted, we seek higher
accuracy through use of the exact solutions evaluated atnodal poamtgx; ;. By virtue of
Eq. (15), we can substitugg = ag + be? + I g1 = aghehx 4 be2hela 4

andg;_1 = ae*hek* 4 be*2ne’2% + Linto Eq. (18b) to derive

or

_ —(2/3)ch? — (ch2/6)[cosm1h) + cosh(xoh)] — (uh/2)[sinh(i1h) + smh()\zh)]
N — coshx1h) — coshxzh)

(19)

Under some extreme conditions, the valuesondi, may lead to a zero denominator
in Eq. (19). As a result, solutions cannot be obtained from Eq. (18). To avoid this situati
we can approximate Eq. (14) using another center-like scheme,

k
%«m — 9D — G — 26+ i) + g(qbi,l VA +d) =1, (20)

n_k. k n k ¢
<_% h2 >¢| 1+2(h2 )¢| (%_ﬁ“ré)(f)pﬂ_: f. (20b)

Substituting the general solutions #fr.; ande; into Eq. (20b), we can derive as

—(4/3)ch 2k/h + (2k/h — ch/3)[cosh(A;1h) + cosmzh)]
sinh(x1h) + sinh(A2h)

or

(21)
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TABLE |
A Comparison of Algebraic Expressions of Coefficients Shown in the Currently Developed
Three-Point Finite-Difference Equationd ¢;_; + Bi¢>i + & ¢i+1 = f with Those in the Exponential
Fitting Scheme

& by G
u 1 u 1 1 u 1
[10] T h exp—uh/k) -1 “h I:exp(uh/k)—l + exn—uh/k)—l] —C h expuh/k) — 1
Eq. (18b) —2c— /by + 2N - o 16c/3— (¢/3) 1N + e 21N 4 h2h 4 e—P2N) —2c+ w/hye1h + e2h — o
’ 1N e hah y hoh  e22h g 4—@1N 4 71 | g2l | g22h) N e tih ol e ih 4
w2y —etihy ol emioh)
4-(@1N 4 e41h 4 ehoh  o—22h)
k/h2)e*1h 4 220 _ o) % , 2 @/ *h 4 e r2h g
Eq. (2 — &/ : x4 x : : x
g. (20b) 21N _ g N goh ;g igh et 3 1h e rh 4 o _ =22
—c/3Eh 4 f2h _ g —(c/3 ey f2h _ g
FIN _ o iy goh _ g igh FIh _ o h ;. g2h _ gigh

As Egs. (19) and (20) show, the coefficients shown in the proposed three-point fir
difference Egs. (18) and (20) are functions of exponential terms. This fact provides imp
to compare with the exponential fitting scheme [10, 11], which was originally develor
to solve the singularly perturbed ordinary differential equation (ODE) (14) in the case
k « 1. The novelty of this model developmentis that the second-order ODE has been ex:
split into two first-order ordinary differential equations. One of them is approximated us
the symmetric discretization and the other equation is approximated using the expone
fitting scheme to render a three-point scheéinik _; + bi ¢ + €i¢i1 = f. Thereader can
refer to [10] for additional details. For comparative purposes, we tabélabg, andé; in
Table | for the currently proposed scheme and the exponential fitting scheme [10]. While
algebraic expressions &f, bj, andé are quite different, their values, tabulated in Table 1|

are identical for the case with= 1,k = —1, c = —2, andh (=45 and 75,).

TABLE Il
A Comparison of Values of Coefficients Shown in the Currently Developed Three-Point
Finite-Difference Equation & ¢;_; + Bi¢>i + & i+ =T with Those in the Exponential Fitting
Scheme

h=21 h= -1 h= 21 h= 1L h=21 h= 1L

20 100 20 100 20 100

@u=1k=-1c=-2

Ref. [10] 390.0833 9950.0833 802.1666 20002.1666 410.0833 10050.08

Eq. (18b) 389.9500 9949.9500 801.9001 20001.9000 409.9500 10049.95

Eq. (20b) 389.7020 9949.6737 801.3333 20001.3333 409.6313 10049.65
b)u=1lk=1c=1

Ref. [10] —410.0833 —10050.0833 801.1666 20001.1666 —390.0833 —9950.0833

Eq. (18b) —410.0277  —10050.0277 801.0555 20001.0555 —390.0277  —9950.0277
Eq. (20b) —409.8187  —10049.8304 800.6666 20000.6666 —389.8479  —9949.8362
(cu=1,k=x,c=-1
Ref. [10] —70.5545 —1550.5555 120.1090 3000.1111 —50.5545 —1450.5555
Eq. (18b) —70.5191 —1550.5198 120.0382 3000.0397 -50.5191  —1450.5198
Eq. (20b) —70.1257 —1550.1584 119.3333 2999.3334 -50.2076  —1450.1749
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After developing the discretization scheme for the CDR model equation, we proct
with the calculation of"** from Egs. (8) and (9) as follows. First we compute the sourc
term f, using the previous solutions computed at nAt. This is followed by computing
the solutionp™ using the nodally exact CDR scheme (18) or (20). Upon obtaining the val
of ¢*, we can computd, and then the solutiop™*! using the same nodally exact CDR
scheme used in the predictor step.

4. FUNDAMENTAL STUDY OF THE DISCRETIZATION SCHEME

To shed light on the nature of the proposed convection—diffusion-reaction scheme
will conduct a modified equation analysis [16]. The scheme given in (18) is considered
illustration. Using the scheme derived in Section 3, we can write the discretization equa
for Eq. (13) as

( injll ¢I’l+l) 2 (¢|nif. 2¢|n+1 + ¢n+l) ( n+1+4¢ln+1+¢lnjll) :¢in' (22)

R e

The expression fom is similar tom, defined in (19),

_ —(2/3)ch? — (Eh2/6)[cosmlh) + coshazh)] — (Uh/2)[sinh(x:h) + S|nm2h)]

m — coshA1h) — cosh(xzh)
(23)
where

— U+ /U2 + 4ck
M= ——— 24
1 K , (24)

— U—-W2+4ck
A= ———————, 25
2 o (25)

Substituting Taylor-series expansions into Eq. (22)#ft;, ¢, ¢, and¢", we
obtain

(At)2 h2
Pt + Uy — kopxx + € = —U [(At)¢xx + T(f’ttx + ¢xxx] — Kepyx
+ E |:¢xx h2 ¢txx (At)2¢ttxx]
At 6(Al)
At h? (At)Z h2
_ [7¢tt + 6(At)¢xx —dut + ¢txx:|
(At)?

- c[(Atm + %qsxx} L O[A, . (26)

Note that the left-hand side of Eqg. (26) is the investigated model equation while
right-hand side represents the discretization error that may be produced. The signific
of the terms on the right-hand side is easily seen if the time derivatives are repla
with spatial derivative terms. As a result, the modified equation for Eq. (12) is deriv
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as

2
¢t + Uy — Kpxx + Cop = {C At — *(At)z + O[(At)g]}

+ {CuAt — cu(At)? + O[(A1)3]}py

—k + m cm' + m,At—i— uzAt
At 2 2

N (%czk _ cu2) (AD? + O[(AD?, hF] }¢>xx L @)

where
T, Ch’+ (@h/2)sinh(x1h) + sinh(.zh)]
M=M= 8 = lcoshmh) +costioh)] —2 (28)

For a finite value ofAt, the following limiting condition holds:

lim M = kALt. (29)
h—0

From Eq. (27), it is clear that the consistency property necessary to obtain a conver
solution is satisfied aat andh both approach zero.

As a fundamental study of the proposed scheme, we will also consider Fourier (or
Neumann) stability analysis. First, we can derive the amplification factor for this scheme
conducting standard stability analysis. lget= 2’”“h m=0,1,23,..., M), leth be the
grid size, and let R be the period of the fundamental frequency=£ 1) the amplification
factor |G| (=|(¢]*!/¢])]) is derived as

:2_ ':2, (30a)
IG| = A21+B2’ (30D)
where
A (1 — cospB){C + (U/K) sinh(li/2k) cosh(~/UZ + 4ck/2k)} ’ (31a)
cosk(u/Zk) coshm/Zk) -1
B = lli:sinﬁ. (31b)

Referring to Appendix 1, we see thgs| < 1. Therefore, the scheme proposed here |
unconditionally stable.

The amplification factor shown in (30a) can be rewritten in its exponential férm
|G|€?, whered is the phase angle,

_1|Im(G) _.(—B
0 =tam!| ——| =tan!{ — ). 32
Re(G) < A) (32)
To study how this phase varies with the dimensionless numbers
ch?
Ry = K (333)
h
R = & (33b)

a’
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Rl_Uh

Ry = & — 11 33
3 R, ~ 2%’ (33¢)
At
b= UT (33d)

we must derive the exact phase angdeThe detailed derivation is given in Appendix 2.
Upon deriving the exact phase angle, we can obtain the relative phase shift error ove
arbitrary time step as

6 _tan 1(—B/A). (34)
Be —vB

We plotge againstg, Ry, Ry, andv in Fig. 1. When the relative phase error exceeds 1 fc
the specified values d®; andR,, the numerical solution has a wave speed greater than t
exact wave speed, and this is called the phase-leading error. The converse error is ca
phase-lagging error. As the figure shows, the proposed scheme has a phase-lagging
irrespective oRy, R, andv. Therefore, the implicit scheme proposed in this paper is calle
a phase-lagging finite-difference scheme.

Observations revealed by Fig. 1 are summarized below. As Figs. 1a and 1b, which
Z agalnstRl at the fixed values of = 1 andR, = 0.001, show, the value o} increases
W|th increasedr;. This gives an indication that the highB is, the less accurate is the
phase predicted under the circumstances. At the fixed values-of andR; = 0.001,
Fig. 1b plotsge againstR;. As Fig. 1b shows, when the reaction term becomes increasing
dominant over the convection term, the numerical phase continuously departs from the ¢
phase. For the purpose of comparison, we also %IagalnstRl atv =0.2, R, = 0.001
in Fig. 1c and againsk, atv = 0.2, R; = 0.001 in Fig. 1d. As Figs. 1a—d show, even

UNIT CIRCLE—\ UNIT CIRCLEO\

R,=0.001, v=1

R, =5.0E-3
5.0E-4 N

5.0E-5

/,50.001, v=1

A,20.001, v=0.2

T T 1
0.0 05 1.0
o,

(@)

FIG.1. Plots ofﬁie againstR;, Ry, andv. () R, = 0.00L v =1; (b) R, = 0.00L, v = 1;(c) R, = 0.001, v =
0.2; (d) R, =0.00L, v =0.2.
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the proposed scheme is unconditionally stable; the increase of the chosen time step, \
corresponds to increasing will deteriorate the phase prediction.

Inspection of the banded tridiagonal matrix Eqs. (18b) and (20b) shows that it is poss
to haves;; < Owithi # jand|a;| > > |a;| (i < j).Ifthisisthe case, the matrix equation
is, by definition, considered to be irreducible diagonally dominant. A matrix of this tyj
is called anM-matrix, and A > 0 holds. Under this condition, the solutions compute:
from the M-matrix equation are unconditionally monotonic. By virtue of tdematrix
theory [17], there is a potential advantage in using the proposed scheme to resolve
possible sharp gradient in the flow. We will address this issue through examples consid
in Section 5.2.2.

5. NUMERICAL RESULTS

5.1. One-Dimensional Problems

As is the case when a new scheme for solving any differential equation is presentec
have to validate the proposed scheme. For this purpose, we will employ test problems w
are amenable to analytic solutions.

5.1.1. Homogeneous CDR equatiotor Eq. (14), we consider first the homogeneou
case wheref = 0. To keep matters simple, coefficientsk, andc are all assumed to be
constant in the region 8 x < 1. Under the assumption thiat= —1, u = 1, andc = -2,
the exact solution for (14) takes the form

Pexact= € + e, (35)

This solution is obtained under uniform grid side = %) and the boundary conditions
¢(x =0) =2andp(x = 1) = (1+ €% /€. The computed result, shown in Fig. 2, is founc
to reproduce the analytic solution of the test equation. This test verifies that the prop
finite-difference scheme can provide a nodally exact steady-state solution.

28

exact

27 O numerical

26
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FIG. 2. A comparison of exact and numerical solutions for the one-dimensional steady homogeneous ¢
equation considered in Section 5.1.1.
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FIG.3. A comparison of exact and numerical solutions for the one-dimensional steady inhomogeneous (
equation considered in Section 5.1.2.

5.1.2. Inhomogenous CDR equatioHaving validated the code against the above one
dimensional test problem, we now draw our attention to the inhomogeneous casewhere
cosx — 3sinx. To allow comparison with the analytic solution, we consider a second te
problem which involves constant coefficierks= —1, u = 1, c = —2. Subjectto Dirichlet-
type boundary condition, the exact solution to the inhomogeneous convection—diffusi
reaction equation is derived as

Pexact= SiNX. (36)

Uniform grids are overlaid on the region©x < 1. The results plotted in Fig. 3 show good
agreement with the exact solutions, thus demonstrating the applicability of the propc
scheme to solving the inhomogeneous CDR equation.

To further verify that the scheme is applicable to problems containing discontinuc
source terms, we will consider the case where

. 0, X<%
= 37
8x10°, x> 3. 7)

Subject to the boundary conditioggx = 0) = 0 and¢(x = 1) = 1, the exact solution
takes the form

1 sinh(Ax) 1

__J 2sinhn/2)° X=3 (38)
¢ = _ 1sinhA(1—x)) X > 1
2 sinh(»/2) ° -2

wherex = (c/k)¥2. In this case we will considér = 1,u = 0, ¢ = 8 x 10%, andh = 2—10.
Figure 4 shows the exact solution (solid line) and the numerical solution (square symb
Good agreement between the two sets of solutions is obtained.
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FIG. 4. A comparison of exact and numerical solutions for the one-dimensional CDR equation with a ¢
continuous source term considered in Section 5.1.3.

5.1.3. Unsteady inhomogeneous CDR equatidtaving verified the proposed steady-
state scheme, we now turn our attention to the transient convection—diffusion—reac
equation in a unitdomainof @ x < 1,

¢t + Upy — Kpxx +Cop = f, (39)

wheref = 2(x — 1)et. We start the calculation with the initial dapax, t = 0) = x2. The
exact solution for the case with= 1, c = 1, andk = 1 takes the form

(bexacl(X, t) = Xze_t~ (40)

Under the time stept = 5 x 1072, the computed solution agrees well with the exac
solution plotted in Fig. 5. We also carried out computatations on continuously refined gr

0.9

exact

0.8 ] numerical

0.7

0.6

0.4

0.3

0.2

0.1

(=3
wn
YRR RN AR AR AR RN RN LA AAREE ARREE RA/

N IS IR SO N N T N VO T !
0.25 05 0.75 1
X

Q
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I

FIG. 5. A comparison of numerical and exact solutions for the one-dimensional time-dependent inhomc
neous CDR equation considered in Section 5.1.4.



134 SHEU, WANG, AND LIN

T

o
IS

L,-error norms

T T T T

2.237
2.306

1.031

L L 1 [T SN WA E e |

0.02 0.04 0.06 008 0.1
AX

FIG. 6. The rate of convergence plot for the inhomogeneous time-dependent CDR equation considere
Section 5.1.4.

-1 1 1 1 1 icti i iK- i
namelyh = 75, 5. 5. g5 @Nd15g, @nd cast prediction errors in theip-norms. This was

followed by plotting loderr; /err,) against logh; / hy) for the errors errand ers computed
at two continuously refined grids; andh,. As Fig. 6 shows, the rate of convergence is
obtained as 2.237 using the proposed scheme.

5.2. Two-Dimensional Problems

5.2.1. Analytical validation. Simulations were also performed in the two-dimensione
domain. In this paper, we will first present a simple test case to justify the use of
proposed ADI scheme to simulate Eq. (1) in the squareXd y < =. This test problem
was considered by Yu [18]:

¢xx + ¢yy + <75 =0. (41)

Provided that the Dirichlet-type boundary condition fpris analytically specified, this
equation is amenable to the exact solution

o= Pl (7))
Ll () o) o

wherep = (x2 + y?¥/2. In Eq. (42),C(p) and S(q) denote the sine Eresnel integral anc
cosine Fresnel integral, respectively; i.e.,

2 p ) 2 p5 p9 plS
—./2 ~ /2 (p- - 4
C(p) ﬂ/o cosu“du n(p T +9.4! 13,61 + ) (43a)
2 9 \/7 q° q qi qis
/= ~ 2 (E _ ). (4
S@ 71/0 sinu”du n<3 7.3 115 1Bt ) (43b)
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FIG. 7. The contour plots o§ for Eq. (41) considered in Section 5.2.1. (a) Exact contours computed fro
Eq. (42). (b) Computed contours ¢fand theL ,-error norm for the case withx = Ay = %

We computed solutions on two-dimensional grids with a uniform resolutidtxofE Ay =
6—10 and plottedy in their contour-valued format. As Fig. 7 shows, good agreement with t|
analytic solution is obtained. The computegterror norm is also shown in Fig. 7.

5.2.2. Test problem proposed by Codinddaving verified the applicability of the pro-
posed scheme in solving the two-dimensional smooth problem, we now consider a r
stringent test case. In all the test cases, the source term was takea asand the diffu-
sion coefficient was set o= 10~*. For simplicity, the velocity vecton was assumed to
be constant and was taken@s= |u| coS(3), v = |u[sin()). Three cases considered by

Codina [14] are investigated here:

lul =1,

c=10"%

ul =104 c=1;

] = 0.5,

c=1

(44a)
(44b)
(44c)

All three test cases, detailed in Tables Il and IV, were subject to the homogene
Dirichlet-type boundary condition (X € 32). Simulations were performed on uniform

TABLE 1l
Details of the Problem Considered in Section 5.2.2

Problems Eq. (44a) Eq. (44b) Eq. (44c)

k 104 104 104

u 1 10+ 0.5

c 104 1 1

f 1 1 1

A1 10 1¢? 0.502x 10*
A2 —10# -1072 1.922x 10
m ol 4 uh 104 104

6 2

n 104

2 4 ch
-5 t3

2% _ uh
h 3
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TABLE IV

Computational Details for the Problem Considered in Section 5.2.2

Eq. (44a) Eq. (44b) Eq. (44c)
=%
Ri=% 1.25x 1072 1.25x 10 1.25x 10
R, =& 5.0x 107 5.0x 107 0.1
R=g=4 0.25x 10° 0.25x 10°t 0.25x 102
h=2
52
Ri=2 1.85x 10 1.85 185
Ro=¢ 1.92x 10° 1.92x 10° 0.38x 10
Ro=m =15 0.96x 10° 0.96x 10°2 0.48 x 10?
h= L
100
R=% 0.5x 10 0.5 0.5
Re=¢ 10° 1 05 x 10
Rs = Q—; = ;—: 0.5x 10 0.5 16

(c)Ax = Ay =

1.
80’

(d)Ax =Ay =

L
100°

(d)

FIG. 8. Computed solutions of for the case given in (44a). (&dx = Ay =

1.
20°

(b) Ax = Ay = Z;
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(©) (d)

FIG. 9. Computed solutions of for the case given in (44b). (@x = Ay = %; (b)) Ax = Ay = Z;

() Ax=Ay=Z;(d)Ax=Ay= L.

grids with different resolutions ohx = Ay = &, &, &, and+5;. In these tests, solutions
were obtained as the residuals, cast inlthanorm, computed between andy- sweeps fell
below 10°°. The resulting steady-state solutions for the three test conditions are plotte
Figs. 8-10, respectively. As these figures reveal, sharp profilesadld be captured with-
out postshock oscillations. These tests demonstrate that the discretization scheme ex
strong stability even in the two-dimensional domain.

While solutions for three test cases considered in Egs. (44a)—(44c) are all montonic
predicted, this does not mean that the proposed two-dimensional finite-difference sct
always provides monotonic solutions. This is because the matrix equation involved in
implicit scheme is conditionally claseified as Bhmatrix. To show this, we can consider
an even more severe problem wiil = 107, ¢ =1,k = 10%. As Fig. 11 shows, an
oscillatory solution profile is seen in regions adjacent to the boundary even when the
size has been reducedAx = Ay = %. This highlights the fact that the matrix equation
is not classified as aM-matrix for the investigated case and, thus, solutions may shc
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FIG. 10. Computed solutions o for the case given in (44c). (aAAx = Ay = %; (b) AX = Ay = 5—12;
) Ax=Ay= X;(d)Ax=Ay= =

1. L
80’ 100°

oscillations in high-gradient regions. This is not the case for conditions considered in (4
and (44c). Even when the valuelofs decreased to 16, the matrix equations for the two

cases considered are aMl-matrices. The solutions shown in Figs. 12 and 13 are of tt
monotonic type.

FIG. 11. Solution of¢ computed undenx = Ay = X for the case withu| = 1, ¢ = 107%, andk = 10°°.
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FIG. 12. Solution of¢ computed undenx = Ay = X for the case withu| = 10, ¢ = 1, andk = 10°°.

6. CONCLUDING REMARKS

We have presented in this paper afinite-difference scheme for solving the two-dimensi
convection—diffusion—reaction equation. To gain computational efficiency in solving 1
matrix equation, we have considered the alternating-direction implicit scheme, whicl
similar to Polezhaev’s scheme. For the sake of accuracy, we have developed a nodally
one-dimensional convection—diffusion—reaction discretization scheme. To elucidate the
ture of the proposed scheme, we have performed a fundamental study, with an empha
modified equation analysis and on Fourier stability analysis. We have also extended thi
plicability of this scheme to transient analyses by adopting the semidiscretization appro
The flux discretization scheme has been validated extensively against test cases by
ducing analytic solutions for the investigated one-dimensional equation. The applica
scope has also been extended to the two-dimensional problem with an exact solution. (
agreement with the smoothly varying exact solutions has been obtained, thus verifyinc
applicability of the proposed ADI finite-difference scheme. Also, computations have b
performed for a problem with high-gradient solutions. A good ability to capture the shar
varying profiles has been demonstrated.

FIG. 13. Solution of¢ computed undeAx = Ay = % for the case withu| = 0.5,¢c = 1, andk = 1076,
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APPENDIX 1

Proof of |G| < 1

Recall that the modulus of the ampilification fact@{ given in Eq. (30b) is derived as

IG| = ﬁ, (A1.1)
where
Agy A= cosp){C + (U/k) sinh(T/2k) cosi+/TU2 + 4ck/2k)}  (aL2)
cosh(/2k) cosh(v/U2 + 4ck/2k) — 1
B= :i:sinﬂ. (AL.3)

The above expression is derived under the conditionktlaaidc have the same sign. Here,
we take the positive sign as an example in the proof;k.e.,0 andc > 0. As a result, one
can obtain

C=1+c(At) > 1, (A1.4)
k = k(At) > 0, (A1.5)
0 = U(At). (A1.6)

Given that costx) > 1 for all realx (except ak = 0), we have

coshu/2k) > 1, coshv/ U2 + 4ck/2k) > 1. (A1.7)
These, in turn, give
cosh(ti/2k) cosh(v/ U2 + 4ck/2k) — 1 > 0. (A1.8)

Sincex sinhx > 0 for all realx andk > 0, we havelz smh( ) > 0 and, thus,

c+ —_smh cos + 4ck 1 (A1.9)
o+ o) () -

Since—1 < cosp < 1, the following equation holds by virtue of Egs. (A1.7)—(A1.9):

(1 —cosB){c+ (u/k) smh(u/2k) cosh(/U? + 4ck /2k)}
coshuy/2k) cosh(v/ U2 + 4ck /2k) —

>0. (A1.10)

As a result,

A g (L= CosP)(C+ @/k) sinh(d/2k) cosht/i? + 4ak/20)) _ (A1.11)

cosr(u/2k) cosh(/U? + 4ck /2k) -1

SinceA? > 1 andB? > 0, we have/A? + B2 > 1 and, thus|G| = 1/v/A2 + B2 < 1.
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APPENDIX 2

Derivation of the Exact Phase Angled, for Equation (12)

Let the elementary solution be

¢ = etdkm, (A2.1)
One has
¢ = aeteimX, (A2.2)
by = IKme™dKmX, (A2.3)
bux = —K2eMtekm, (A2.4)
In the aboveK, E%, m=20,1, 2 3,..., M) denotes the wave number. As fok 2it

is known as the period of the fundamental frequemy= 1). Substituting (A2.1)—(A2.4)
into Eq. (12), we can derive as

a = —(c+kK32) —iuKp. (A2.5)
As aresultgp is expressed as
¢ — ef(CJrkKr%JriuKm)teiKmx. (A26)

By virtue of (A2.6), the amplification factor is exactly derived as

Ge — ¢(t + At) — ef(c+kK,.2n+iuKm)At (AZ?)
)
or
Ge = eiGeef(CkaK,.zﬂ)At’ (A28)
where
fe = —UKmAL. (A2.9)

Invoking the definitions ofs = K,h and Courant humber = ”TA‘ (whereh is the grid
size), we obtain the exact phase anglas

fe = —PBv. (A2.10)
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