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Abstract

The present study is a preliminary investigation into the total cavopulmonary connection (TCPC)
blood flow structure in Fontan procedures. Our aim is to gain a better understanding of flow reversal in
vascular circulation. In this paper we consider a two-dimensional mathematical model of the Navier-
Stokes equations. Specifically, we study the laminar flow in the blood vessel with outlets at which a free
boundary condition is specified. To further simplify the analysis, the vessel walls are regarded as being
rigid. In quadratic elements, we employ the streamline upwind Petrov—-Galerkin finite element model as
our strategy to simulate incompressible fluid flows. The adopted finite element model is featured by the
presence of artificial damping terms added solely in the streamline direction. With these terms added to
the formulation, the discrete system is enhanced while solution accuracy is maintained without
deterioration due to false diffusion errors. In this finite element flow study, our emphasis is placed on
the role of the offsets as a control parameter in order to optimize the blood flow after the surgical
intervene. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Depending on physiologic conditions and organ demands, blood vessels in the human
vascular system serve to supply human organs with their required amounts of blood. Under
normal conditions [Fig. 1(a)], arteries can adapt to changes in blood flow and blood pressure.
However, under certain abnormal circumstances [Fig. 1(b)], defects in the vascular system
cause arteries to fail to respond to imposed forces and, in the worst case, to be unable to
provide adequate blood to important organs. According to Kim et al. {1], 7 out of 1000 babies
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have congenital heart defects, resulting in impairment of the flow of unoxygenated blood to the
lungs. To fix this problem, the Fontan procedure [2] emerges as a surgical means to correct
such heart defects. The idea behind Fontan procedures is to reroute the blood flow around
these congenital passage blocks, thus allowing the blood to reach the lungs. Depending on
surgical techniques, there exist three main classes of Fontan circulation procedures. They are
the atriopulmonary connection (APC), cavopulmonary connection (CPC), and bidirectional
cavopulmonary anastomosis (BCPA). Previous studies showed that the hemodynamic and
energetic differences between different connections are small. Such small differences, however,
play a crucial role in the determination of failure or success of long-term follow-up patients
who have undergone Fontan operations [3]. This observation shows the need to perform a
detailed study to gain insight into the hemodynamics in vascular circulation.

In this study, we consider the total cavopulmonary connection (TCPC), which is a clinical
operation specifically designed for surgery on hearts with essentially a single ventricular
chamber [4,5]. As Fig. 1 shows, the TCPC operation involves disconnection of the pulmonary
artery from its ventricular origin, together with anastomosis of the superior vena cava (SVC)
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Fig. 1. (a) The principal blood circulation system for a normal human being; (b) the principal blood circulation
system after the TCPC operation; (¢) a schematic drawing of anatomy of normal vascular circulation system; (d)
illustration of anatomy after the TCPC anastomosis.
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with the right pulmonary artery. The operation is completed with construction of a right atrial
lateral tunnel. The tunnel connects the inferior vena cava (IVC) to the transected end of the
SVC, which is anastomosed to the right and main pulmonary artery. Completion of the TCPC
operation results in a by-pass of the right heart with the ability to create circulation driven
solely by a single ventricular pump [Fig. 1(d)]. Given that the energy generated by the left
ventricular pump is mostly dissipated in the systemic circulation the fluid dynamics in the
venae cavae and the pulmonary circulation are particularly precarious. Due to this potential
loss of steadiness, the operation warrants a detailed pre-study to yield good hemodynamics in
the anastomotic region.

A long-term success of a TCPC operation can be assessed from many aspects. From the
fluid dynamics viewpoint, a surgically created circuit serves to avoid vortices, separation,
recirculation, and stagnation in the blood flow. These abnormalities may induce low shear
stress and oscillating in pulsatile situations. This, in turn, could induce atherosclerosis and
cause increased energy dissipation in the blood flow. Also, high shear stresses are not permitted
since they tend to damage the blood vessel. From the energy point of view, surgically created
monoventricular circulation should provide adequate pulmonary perfusion for the global
circulatory system. In fluid dynamic terms, proper pressure and blood flow rates in the
pulmonary arteries are of primary importance. Also, elevation of the post-operative central
venous pressure should be avoided for an operation to be termed successful. Achieving these
goals poses a challenge to surgical doctors who conduct TCPC surgical procedures.

In the past two decades, extensive efforts have been devoted to experimental exploration into
the underlying blood flow transport mechanism in the vascular system. These investigations
have made significant contributions to our understanding of vascular disease. Experimental
success in conducting blood flow visualization has, however, been overshadowed by
increasingly higher costs and the time-consuming nature of the process. Most serious is that it
is still infeasible to use working fluids with the same characteristics as blood. In recent years,
improvements in hardware and software have enabled investigators to use computational
techniques to investigate complex hemodynamics in greater detail [6]. This article presents our
recent research into the modeling of blood flow in the human vascular system.

2. Mathematical model

Numerical modeling of blood flow requires solving three-dimensional transient-flow
equations in the time-varying physical domain. In this sense, the fluid and solid are allowed to
move to follow the distensible vessels and deforming fluid subdomain. The need to conduct
analysis in deformable blood vessels complicates the analysis. Use of a much more
sophisticated numerical model, such as an arbitrary-Lagrangian—Eulerian (ALE) model [7, 8], is
warranted in the vascular flow circulation analysis. According to surgical reports, the vessel
diameter change per cardiac cycle is around 5-10% in most of the major arteries. As a first
approximation, our assumption made here is that the vessel walls are regarded as being rigid.

To further simplify the analysis, the vessel is considered symmetric about the midplane (x-y
plane) and this plane is taken as the domain of the solution as illustrated in Fig. 2. As a first
attempt toward investigation into the hemodynamics in the human vascular system, we
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Fig. 2. Geometric configurations of the TCPC models: (a) schematic diagram of the TCPC model with bifurcation;
(b) offset value = 0 mm; (c) offset value = 5mm: (d) offset value = 7mm; (e) offset value = —4 mm; (f) offset

value = — 6 mm.

performed laminar flow analyses, and k—¢ two equation turbulence modelling is a subject of
future investigation. Other main assumptions made in the mathematical model are as follows:
the blood under investigation is a Newtonian fluid, which is treated as being homogeneous and
incompressible. Under these circumstances, working equations, adequate for steady blood flow
simulation in the vascular system, Q, are made dimensionless as follows:

u-v :——Vp—l——-Vzg, H

V.u=0. (2)

According to the chosen reference length, L, and characteristic velocity, U, given later in the
results and discussion Section, the Reynolds number shown in Eq. (1) is Re = UL/v, where v is
the kinematic viscosity of the Newtonian fluid flow.

The velocity-pressure formulation has proved to be effective in the simulation of
incompressible fluid flows. The reason for use of the primitive-variable formulation is due
mostly to its accommodation of the closure boundary condition [9]. Given that differential
Egs. (1) and (2) are classified as elliptic, specification of boundary conditions at the entire
boundary of the domain is required to close the differential system. We divide the boundary of
Q, namely I', as the sum of I'y and I',, subject to the constraint condition I'q+ I, ={0}. Along
the boundary of I'y, we specify u=g while along a boundary with an outward normal direction
n, we impose a boundary condition given by —pn+1/Re x du/dn=f[10].
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We now seek the steady-state solutions of the Navier—Stokes and continuity equations. Our
explanation for the choice to consider a steady problem is that the inlet flows of SVC and IVC
are non-pulsatile type, see also Ref. [5] for a more detailed explanation. The finite element
method, as the theory stands, can be useful for problems involving complex geometries. In this
study, solutions of the problem governed by Eqs. (1) and (2) were obtained by means of the
method of weighted residuals. It is crucial that the velocity vector field accommodates the
divergence-free property. To achieve this goal, we adopted the mixed formulation, see e.g.
Ref. [13]. First, we denote by £%(Q) the space of functions that are square integrable over Q.
We then define the constrained space Eé(Q) ={ge LX) = Jo 9dQ = 0}. This implies that
Eé(Q) consists of square integrable functions having zero mean over Q. In the mixing finite
element formulation of Navier—Stokes equations we need to define the Sobolev space
H(Q)={g e Cz(Q) : Dg € L*(Q)}. Here, D denotes the derivative of order 1. Let the subspace
of H!(Q), namely H(Q), be the space whose elements have one square integrable derivative
over Q and vanish on the boundary I H(l)(Q) ={geH(Q):q=0 on I'}. With these
functional space definitions, we can present the weighted residuals statement for the mixed
finite element formulation as follows: given an admissive function w € H(l)(Q) X Hé(Q) = H(l)
and a pressure mode g € E%(Q) = P, find solutions of (u, p) € ¥ = H) x P from the following
equations:

/(g-V_Lg)-mdx—FL/ Vg:md1+/pv-mdz§=f w-fYw e Hy, (3)
Q Re Jo Q r, =~

/g(v-@ngzo Vg € P. (4)

More precisely, if Neumann conditions are adopted on outflow, £¢H(l), but yeH}d, where Iy is
the Dirichlet boundary.

In mixed finite element analysis of incompressible fluid flows, choices of basis spaces for
primitive variables are not arbitrary. Instead, the analysis is subjected to the inf-sup stability
condition [11]. Violation of this condition will definitely result in spurious pressure modes and,
in extreme cases, locking of the velocity field [12]. For this study, we approximate velocities in
bi-quadratic elements and pressure in bi-linear elements, leading to a stable element-pair for
incompressible flow simulations.

2.1. Streamline upwind Petrov-—-Galerkin model in quadratic elements

In finite element analysis of high Reynolds number flows, we need to define test function
spaces that are appropriately applied to continuity and momentum equations. Given that the
representative equation for the pressure takes a Poisson type through the use of a continuity
equation, it is rational to use pressure basis functions as our test functions for the continuity
equation given in Eq. (4). As advection terms become increasingly important, the upwind
model is desirable. The motivation behind seeking the Petrov—Galerkin method as our upwind
technique is due to the physical consideration. By doing so, test function w is chosen to be
different from basis functions for # and v in the sense that more weights are logically placed on



24 T.W.H. Sheu et al. | Computers & Fluids 28 (1999) 19-39

the upstream side of the preferred flow direction. In this way, numerical oscillations and
instabilities can be prevented in the high Reynolds number case. The method adopted here is
considered to be in the Petrov—Galerkin framework [13].

Upwind models, while acceptable for stability enhancement, may not be adequate to
approximate advection terms in a domain with more than one spatial dimension. The accuracy
of the prediction may deteriorate due to the introduction of so-called false diffusion errors [14].
As our ultimate intention was to obtain flow details, we needed to improve further the
accuracy of the multi-dimensional flow prediction. The philosophy underpinning this effort was
to avoid crosswind diffusion but not at the expense of compromising stability. To achieve this
goal, test functions w; were constructed by adding unequally weighted functions B;, which were
cast in a tensorial-product form as follows, to trial function N;

~: N}
B =N oY
T (S (5)
where
_3(y)
T= Ul (6)

In the above equation, Vy stand for velocities which are evaluated at element centroids. The
coefficient §, which is written as a function of the Peclet number, vy =| u | #/2, remained to be
determined. In this study, the coefficient 6, which determines the degree of upwinding, is
analytically derived from the one-dimensional convection—diffusion scalar transport equation in
quadratic elements. Readers are referred to Ref. [15] for additional details. Depending on the

nodal classification in quadratic elements, analytic expressions have been obtained as follows:
i Y
ECOth(i) -

% - center-nodes,

8(y) = inh y coshy — sinh®y — 4 coshy — 2ysinhy — 4 @
¥ sinfy cosny — siny coshy — sy sy ; corner-nodes.

6 sinhycosh vy + ysinh?y — 6 sinhy — 4y coshy + 4y

Before entering into a discussion of the results, it is worthwhile to address some fundamental
features of the proposed upwind model. Firstly, biased weighting functions were applied to
each term shown in the momentum equations. This led to the satisfaction of the scheme
consistency property. Secondly, since a fundamental understanding of how discretization
schemes affect the prediction accuracy, it is useful to conduct a modified equation analysis for
the transport of a scalar variable ¢. The equation under investigation resembles the linearized
momentum equation given as follows:

a®y + b, = —p + k(D + D). (8)

As the following modified equation shows, application of the Petrov—Galerkin method to
Eq. (8) introduces a stabilizing term which is added solely to the flow direction.

a®y + bO, + p, — k(Dyx + D)) = (& + b*)1Dy; + O(RY). 9

Lastly, the derivation of ¢ is only analytically feasible on a one-dimensional basis.
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3. Problem description

A problem of considerable clinical importance in Fontan procedures concerns blood flow
distribution in the TCPC (total cavopulmonary connection). According to the anatomy of the
TCPC, which is shown in Fig. 3, blood flows from the SVC (superior vena cava) and IVC
(inferior vena cava) are confluent at the 7-junction. This is followed by a downstream flow
into the left pulmonary artery (LPA) and right pulmonary artery (RPA). Downstream from
the confluence of the SVC and IVC, the main pulmonary artery bifurcates into four branches,
namely, the left upper pulmonary artery (LUPA), left lower pulmonary artery (LLPA), right
upper pulmonary artery (RUPA), and right lower pulmonary artery (RLPA). These branch
flows proceed further downstream to the left and right lungs shown schematically in Fig. 1(b).

This study was based on a clinical case treated at the National Taiwan University Hospital.
According to measurements from angiocardiograms, the vessel diameters under investigation
were 16 mm for the SVC and the IVC, 7mm for the LUPA and RUPA, and 8 mm for the
RLPA and LLPA, respectively. The diameter of both the RPA and LPA was 15mm. For
better flow distribution and energy dissipation, surgical reasoning suggests the enlargement of
the TVC and SVC anastomoses. As the main pulmonary was approached, the diameter of the
SVC and IVC increased gradually, reaching 130% diameter enlargement at the IVC and SVC
anastomoses.

As clinical reports indicate, the SVC, carrying approximately one third of the systemic
venous return, goes preferentially to the larger right lung. As a result, the IVC flow carries
two-thirds of the systemic venous return and goes to the smaller left lung. Recognizing this, it
is a considerable incentive to prescribe a Dirichlet type boundary condition at inlets of the IVC
and SVC. For ease of simulation, the flow conditions at the inlets of the SVC and IVC were all
non-pulsatile types with a steady parabolic velocity profile. The flow rates at the inlets of the

SVC tonnel
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WVC tunnel

Fig. 3. Computational mesh for the TCPC model.
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SVC and IVC were kept constant throughout simulations considered here. According to the
diameters of the vessels and the volume flow rates, namely Q;vc=21/min and Qgyc=11/min,
the maximum inlet velocities of the IVC and SVC were obtained as 0.256 m/s and 0.128 m/s,
respectively. According to the density, p = 1060 kg/m?, and viscosity of the Newtonian blood,
i =3 x 107> Pa s, the Reynolds number under investigation was 565. This number was the
result of regarding D = 0.016 m as the reference length and U=0.1 m/s as the characteristic
velocity. To close the target elliptic-type differential system, there remained the specification of
boundary conditions at the outlet. In the numerical simulation of inflow—outflow problems
featuring the incompressible fluid flows, appropriate specification of inflow—outflow boundary
conditions is challenging. In Ref. [16], suitable inflow and outflow boundary conditions are
considered. Due to the presence of the lungs, through which LUPA, LLPA, RUPA, and
RLPA circulate, there is a tendency to impose a resistance force to the flowing blood moving
towards the lungs. This further complicates the analysis. According to the work of de Leval et
al. [17] who prescribed constant pressure at the outlet sections, analysis of TCPC blood flow
was conducted by coupling Navier—Stokes flow calculations with the lumped-parameter model
of the pulmonary circulation. The other assumptions made in their mechanical model of
pulmonary circulation were that both elastic compliances and inertia effects were absent,
leading to a sole resistance component. Due to the lack of pulmonary resistance and left
atrium pressure, which are usually included in the cardiac catheterization report, an alternative
approach was adopted to close the differential system. For this study, the free boundary
condition approach [10] was applied at four outlet sections. The free boundary condition
approach is featured by regarding f, given in Eq. (3), as unknown in the sense that
f=—pn+ 1/Re x du/on. As a result, [ serves as a part of the solutions to be computed. This
approach differs from the work of Leval et al. [17] who assumed constant pressure values
prescribed at the truncated outlets. For clearness, we summarize our discretized equations
formulated in biquadratic velocity-bilinear pressure elements as follows:

CY 0 M p oM o,
ox hox, u; —phy + go 7
ii i 9N’ i h h h
/ 0 Ccv —M/% + Bl% dQ vi )= / rou[le —pn, + 19y dar
Qb - ‘ D P }'0 Re on
i0NT pqi 0N J
M a M 5%, 0

(10)

In Eq. (10), M’ are biquadratic polynomials and N’ are bilinear polynomials.

Numerous factors may have appreciable impact on the hydrodynamic characteristics. For
example, the movement of the IVC anastomosis alongside the pulmonary artery helps improve
the balance between flow distribution and energy dissipation [17]. In this study the attention is
only given to studying the effect of the offset on two important energy indexes, namely, the
hydraulic dissipated power, Wy, and the total energy-loss coefficient C.. These definitions will
be given later in the results and discussion Section. Throughout this study, the axes of
symmetry of both the IVC and SVC are kept normal to the pulmonary artery. For this study,
results are shown only as functions of the offset, which is defined as the distance between the
centers of two caval anastomoses. Following the definition employed in Ref. [17], the negative
offset is that the anastomoses of the IVC is displaced toward the reader’s right side. For five
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offsets under investigation (Fig. 2), our goal was to optimize the flow after TCPC surgical
intervening such that energy-loss is reduced and flow distribution between the two lungs is
optimized.

4. Results and discussion

Computations were conducted under laminar assumption for five configurations, as shown in
Fig. 2. These configurations differ simply in their offset values. Grid sensitivity tests revealed
that 2500 elements were adequate to resolve the flow recirculation over the Reynolds number
considered in this work. Fig. 3 gives an overview of the mesh of quadratic finite elements. The
grids were packed near the vessel wall where the boundary layer profile may develop. Grids
were also clustered in regions where the vessel may undergo a marked change in its
configuration to better resolve flow separation or recirculation in the flow. The geometrical
complexity creates additional complexities to model nonlinearities in the equations, tending to
make it difficult for the analysis to converge. It is, thus, important to assure that the results are
indeed the convergent solutions. In this regard, we plotted in Fig. 4 the convergence histories
for all the primitive variables against iterations. For this study, «**!—u*, V1 —+& and
pF+!t — p* were all cast in their Ly-norm forms, where superscripts & and k& + 1 denoted two
consecutive iteration numbers. The convergence histories presented in Fig. 4 serve to
demonstrate the applicability of the proposed finite element code to model the hemodynamics
in vascular circulation.

With the computed convergent solutions, we can next explore the physics in the blood flow.
Our aim was to gain some useful insights from the prediction results. To give readers a global
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Fig. 4. Residual reduction histories for five investigated TCPC configurations: (a) velocities; (b) pressure.
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Fig. 5. Predicted streamline contours for the case with the offset of 0 mm.

picture of the flow structure in the blood vessel with bifurcations, we plotted in Figs. 5-9 the
computed streamline contours for five offset values. Common to these figures is the presence of
flow reversals. For offset values other than zero, the sizes of the recirculation regions in the
confluence area of the IVC and SVC as well as the intensity of the vorticities increase. In the
T-junction, the bloods in the SVC and IVC are with flow directions which are opposite to each

Fig. 6. Predicted streamline contours for the case with the offset value of 5 mm.



T.W.H. Sheu et al. | Computers & Fluids 28 (1999) 19-39 29

Fig. 7. Predicted streamline contours for the case with the offset value of 7 mm.

other. In the presence of such opposite flow directions in the pulmonary artery, together with
abrupt changes in geometry and velocity, the energy loss inevitably resulted. We will discuss
this issue later.

For the sake of description of the flow pattern, we take the case with the offset value—4 mm
(Fig. 8) for an example in this paragraph. As compared with the LPA, the pulmonary artery

Fig. 8. Predicted streamline contours for the case with the offset value of —4 mm.
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Fig. 9. Predicted streamline contours for the case with the offset value of —6 mm.

extends further downstream before the RPA bifurcates into the RUPA and RLPA. It is this
difference which causes the SVC blood to flow mainly towards the RPA while blood in the
IVC flows towards the LPA. Such a flow distribution pattern explained, in turn, why a
circulation bubble has been observed only in the upper RPA. The location where the
recirculation bubble forms was upstream of the bifurcation point. The mechanism leading to
the formation of flow reversal is the resistance of the pressure force established near the
bifurcation point, which served as a singular point. On each lower branch of the pulmonary
arteries, flow reversals were observed. They differed in their size of flow reversals. The reason
for the formation of two recirculation regions is mainly due to the flow expansion. Compared
to the expansion eddy in the right pulmonary artery, the left pulmonary artery is much larger.
This accounted for the appreciable flow curvature observed in the curved flow due to the
presence of the upper flow reversal in the right pulmonary artery. Another explanation for the
marked expansion eddy observed in the left pulmonary artery is the shorter length which
allows the flow development into the left branch of the vessel.

As Figs. 5-7 show, curved flows are a consequence of the 7-junction flow. As noted earlier,
blood in the SVC flows mostly to the RPA, resulting in the left SVC vessel being the pressure
side while the inner wall is the suction side (Fig. 10). On the other hand, the pressure side of
the IVC vessel is on the reader’s left side while the suction side of the IVC vessel is regarded as
the suction side. This explains why flow reversals in the confluence regime are observed on the
pressure side. To provide readers insight into the flow development into the pulmonary artery,
we plotted in the vessel the velocity profiles at some selected sections. As Fig. 11-16 show, one
can clearly see why the local velocity maximums in the [VC and SVC were observed along the
suction side. Flow reversals were also clearly seen from the streamline contour plots, shown in
Figs. 5-9.
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Fig. 11. Computed midplane velocity vectors at selected sections in the TCPC model with the offset value of 0 mm.

In an attempt to explore in greater detail the recirculating flow structure in the 7-junction
with geometrical bifurcations, we depicted the flow topology based on the topology theory of
Legendre [18]. Based on the computed velocities, we can determine critical points in the blood
vessel. According to the topological classification, critical points can be termed as separation,
reattachment, spiral, and saddle points. We marked in Figs. 16-20 the point of separation with
an ‘e’, the point of reattachment with an ‘C)’, the point of spiral with an “*’, and the saddle
point with an ‘ x *. Revealed by Figs. 16-20 are saddle points in the confluence region of the
IVC and SVC. Within the recirculatory bubbles, spiral points are captured. This is an
indication of the emergence of the core of the vortical flow.

Fig. 12. Computed midplane velocity vectors at selected sections in the TCPC model with the offset value of 5 mm.
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Fig. 13. Computed midplane velocity vectors at selected sections in the TCPC model with the offset value of 7 mm.

As clinical reports show, the best flow distribution between the right and left lung is
considered to be 55% to the right lung and 45% to the left. The distribution of blood is, thus,
a crucial factor in TCPC operations. This has motivated us to study blood distribution for
operations performed at different offset values. To accomplish this task, we have integrated the
computed velocities at four outlet planes to render the volumetric flow. We showed them in
Table 1 for five investigated offsets. As noted earlier in the numerical prediction of the 7-
junction, the marked change in configuration inevitably resulted in an energy loss. Better
design of connections in TCPC surgical operations involves consideration of energetic indices.
Two important parameters are often referred to. The first one is the total energy loss coefficient

Fig. 14. Computed midplane velocity vectors at selected sections in the TCPC model with the offset value of
—4 mm.
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Fig. 15. Computed midplane velocity vectors at selected sections in the TCPC model with the offset value of
—6 mm.

C., defined as follows:

GPVive + Prve)Qive + (1 pV3ye + Psve)Osve — ZilpV? + P)O;
1PV Ove + ViyeQsve)
i =LUPA, LLPA, RUPA, RLPA. (11)

C, =

’

The other indicator of prime importance is the hydraulic power given below:

Fig. 16. Flow details in regions with critical points for the case with the offset value of 0 mm. [separation point (e);
reattachment point (O); spiral point (*); saddle point (x)].
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Fig. 17. Flow details in regions with critical points for the case with the offset value of 5 mm. [separation point (e);
reattachment point (O); spiral point (*); saddle point (x)].

Fig. 18. Flow details in regions with critical points for the case with the offset value of 7 mm. [separation point (e);
reattachment point (Q); spiral point (*); saddle point (x)].
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Fig. 19. Flow details in regions with critical points for the case with the offset value of —4 mm. [separation point (e);
reattachment point (O); spiral point (*); saddle point (x)].

Fig. 20. Flow details in regions with critical points for the case with the offset value of —6 mm. [separation point (s);
reattachment point (O); spiral point (*); saddle point (x)}.
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Table 1
Results of quantities that are needed in the determination of C. and Wy in Egs. (11) and (12) for the TCPC
simulations

0 |74 P Gp 70 Total (GpP?+P)Q Total
Offset 0 mm
IvC 0.002726 0.1704 13.0287 0.0649 2.8262
SVC 0.001363 0.0852 34.1448 0.0081 0.073 1.4176 4.2438
RUPA 0.001394 0.2006 —0.5118 0.0436 1.4365
RLPA 0.000664 0.1069 0.0064 0.0061 0.6705
LUPA 0.000843 0.1284 ~0.0521 0.0117 0.8542 4.1619
LLPA 0.001175 0.1790 —1.9861 0.0283 1.2007
Offset 5 mm
IvC 0.002726 0.1704 13.7936 0.0649 2.8283
sSvC 0.001363 0.0852 27.7241 0.0081 0.073 1.4088 4.2371
RUPA 0.001407 0.2021 -0.5792 0.0449 1.4507
RLPA 0.000771 0.1078 0.0187 0.0074 0.7188
LUPA 0.000801 0.1158 -0.0519 0.0098 0.8105 4.1610
LLPA 0.001157 0.1751 —-1.6794 0.0259 1.1810
Offset 7 mm
IVC 0.002726 0.1704 13.2244 0.0649 2.8268
SvVC 0.001363 0.0852 24.8206 0.0081 0.073 1.4049 4.2317
RUPA 0.001397 0.2019 —0.4860 0.0439 1.4401
RLPA 0.000726 0.1095 0.0381 0.0081 0.7337
LUPA 0.000829 0.1201 0.0033 0.0104 0.8390 4.1564
LLPA 0.001122 0.1704 —1.4823 0.0234 1.1436
Offset —4 mm
IvVvC 0.002726 0.1704 13.0287 0.0649 2.8306
SVC 0.001363 0.0852 34.1448 0.0081 0.073 1.4107 4.2413
RUPA 0.000738 0.1065 —0.0988 0.0080 0.7455
RLPA 0.001194 0.1807 —1.4660 0.0276 1.2202
LUPA 0.001402 0.2027 —(0.9208 0.0453 1.4463 4.1585
LLPA 0.000738 0.1122 0.0365 0.0082 0.7465
Offset -6 mm
IvVC 0.002726 0.1704 13.7388 0.0649 2.8282
SvC 0.001363 0.0852 26.0674 0.0081 0.073 1.4066 4.2348
RUPA 0.000797 0.1145 —-0.0247 0.0096 0.8066
RLPA 0.001141 0.1726 —1.2762 0.0240 1.1636
LUPA 0.001400 0.2021 —-0.7022 0.0445 1.4431 4.1570
LLPA 0.000736 0.1111 0.0429 0.0081 0.7437

. 1 1 1
Wy =(§ pVive + PIVC) Qrve + (5 pVéve + Psvc) Qsvc — Z(i pyVi + Pi) Qi,

{

i =LUPA, LLPA, RUPA, RLPA. (12)

The computed C, and Wy were shown in Table 2 and plotted in Fig. 21 for all five investigated
offsets.
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Table 2
Summary of results for Wy, Ce and ratio of flow rates for five TCPC configurations

Waiss Waiss/ Wia Ce Orpra/OLra
Offset 0 mm 0.0819 1.9% 1.122 1.02
Offset 5 mm 0.0761 1.8% 1.142 1.082
Offset 7 mm 0.0753 1.78% 1.032 1.088
Offset —4 mm 0.0828 1.95% 1.134 0.903
Offset —6 mm 0.0778 1.84% 1.066 0.9507

5. Conclusions

This paper describes numerical simulation of blood flow to the lung after a surgical
procedure (TCPC Fontan procedure). Our strategy to simulate the flow in the neighborhood of
a junction is to solve the full nonlinear steady Navier—Stokes equations using a streamline
upwind finite element method. Through this study, we could draw a clear picture of the flow
structure which helps us to better understand the effect of offset values on the blood
distribution in the left and right pulmonary arteries. The role of the offset as a control
parameter in the Fontan practice to optimize anastomoses between superior venae cavae and
inferior venae cavae was examined in terms of the total energy-loss coefficient and the
hydraulic dissipated power. Clearly revealed from this study is that for operations with a
positive offset value they are the candidate for the TCPC surgical practice in the sense that
more blood can flow towards the larger right lung. Of two investigated positive offset values,

the one with 7 mm is our preference in that less energy loss is observed.
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Fig. 21. (a) Hydraulic dissipated power Wy;,, as difined in Eq. (12) vs offset values; (b) total energy loss, as defined

in Eq. (11) vs offset values.
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