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The sloshing dynamics in a tank partially filled with liquid oil was simulated in this
study. The formulation uses primitive variables on a staggered grid system for solving
incompressible Navier-Stokes equations, which are subjected to the distortion of free
surface. We made use of a volume of fluid technique to resolve numerical difficulties in
association with nonlinear free-surface boundary conditions while a two-dimensional
quadratic upwind advection scheme to deal with flux nonlinearities. Two problems,
namely the free oscillation and the solitary wave propagation, have been chosen for
benchmarking the method presented here. The liquid oscillations under conditions of
resonance or nonresonance frequency in an oil tanker containing a perforated baffle
plate have been studied extensively for two different liquid levels. Through this
simulation, we have found that the degree of sloshing can be mitigated by these baffle

plates.
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1. INTRODUCTION

In fluids engineering, there are numerous situa-
tions where considerations are warranted concern-
ing the interfaces across which different fluid
media exist. Examples include droplet/spray dy-
namics, metal forming processes, penetration/
impact dynamics, rolling with hydrodynamic
lubrication, two-phase flows in chemical processes,
and of course large-amplitude sloshing analysis.
This paper is concerned with the two-dimensional
flow of an incompressible fluid in an oil tank for a
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numerical study of the sloshing phenomena. To
allow for surface distortion, we will take the time-
varying free surface boundary condition into
consideration.

In the sloshing context, oil oscillations in large
storage tanks and water oscillations in reservoirs,
among other applications, are representative
examples of engineering significance. Damage
due to such sloshing is reported from time to time.
The purpose of conducting sloshing dynamics in
an oil tank is twofold. From an economic stand-
point, the demand for larger tanks is very great
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and calls for a sloshing load analysis for ships
classified as LNG carriers, LPG carriers, chemical
carriers and the like. From the practical view-
point, the quest for a free loading under slack
conditions is also necessary. Besides numerical
difficulties in dealing with nonlinearities in equa-
tions for an incompressible viscous flow, the
analysis is further complicated by conditions
applied at the free surface which is not known a
priori. A means capable of analyzing such a
nonlinear flow system is, therefore, indispensable
for a better understanding the sloshing dynamics
in a partially filled oil tank that is subjected to an
external force. The mathematical study of free
surface began with Lagrange in the early eight-
eenth century. Since then, substantial progress
towards the development of a variable way to
track interfaces has been made. Major research
efforts have been made, over the past few decades,
into the linear study of small amplitude waves and
nonlinear theory for shallow water [1]. In the
meantime, a new thrust in the application pertur-
bation theory to nonlinear problems raised. As far
as the sloshing analyses are concerned, they are
mostly based on the potential flow theory [2, 3],
which is no longer applicable to oil oscillations
under conditions where the viscous effect has a
notable impact on the sloshing dynamics. In
addition, there is still a considerable obstacle to
analytically resolve difficulties regarding nonlinea-
rities In many cases these difficulties are never
surmountable. By the 1970s with the wide avail-
ability of high-speed computers, there is a hope for
coping with problems that were previously in-
tractable. Recent computations have abandoned
the simplified working equation in favor of the
Navier-Stokes equations.

In the past four decades, there have been
substantial developments in predicting free surface
flows, among which two major classes of ap-
proaches have been frequently referred to. The
first approach is that of the Lagrangian formula-
tion in which mass-less particles are traced in
illustration the evolution of free surface. The
marker and cell (MAC) technique of Harlow and

Welch [4] is still widely popular among these
tracking methods. An attribute of this technique is
to distribute the markers in the fluid and to keep
track of their subsequent trajectories. Over time,
refinements have been made by many authors
[5, 6, 7}. The Lagrangian updating process is
simple in idea but has the disadvantage of being
restricted by a much larger demand for disk
storage and CPU time.

The second approach seeks to retain the
numerical versatility of the Eulerian® description.
For methods falling into this category, the high
function [8] and the volume of flmid (VOF) [9, 10
and 11], approaches are two well-known examples.
In the high function approach, it is comparatively
easy to conduct derivations. Besides this advan-
tage, extension of the idea of high function to flow
problems involving three dimensions is straight-
forward. This technique is, however, hardly
applicable to problems with breaking waves. In
the VOF approach, the underlying idea is to
introduce an additional field variable, whose value
stands for the ratio of fluid within a computational
cell, so that interface or free surface can be well
captured. Of various alternatives, the fractional
volume of a fluid is a variable choice. In 1980, a
method invoking both Lagrangian and Eulerian
computing techniques was proposed to solve
problems involving an appreciable change of water
surface curvature, but not at the sacrifice of
abandoning the merit of the Eulerian technique
[12). Apart from the complexity of implementing
this idea into practice, we can not dispense with
the numerical diffusion error across the interface in
the rezoning step. It seems not yet definite to us if
one class of methods should be abandoned in
favor of the other free surface tracing methods.

In the present study, we adopted the concept of
VOF to predict the nonlinear free surface in a
partially filled liquid tank. The investigated cases
include liquid sloshing induced by a swaying tanker
with/without a baffle plate on which several drilled
holes may exist. The computed loading owing to the
sloshing thus can provide designers with much
useful database to conduct stress analysis.
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2. GOVERNING EQUATIONS

Working equations capable of rationally describ-
ing the dynamics of an incompressible viscous fluid
flow are considered. Our concern here is with
conservation equations defined in a two-dimen-
sional domain D:

Ou Bv_

—t—= 2.1
8x+8y 0, (2.1)

at et T Tt et
(2:2)
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In dimensional form, p is the density, v the
kinematic viscosity, and p the pressure. In
the above two equations, G, and G, represent
the body forces along the x and y directions,
respectively. This mixed set of elliptic-parabolic
partial differential equations corresponds to the
following generalized equations:

0p 0J, 08J,

E+a+a—y-—5. (2.4)
Here, the total fluxes J, and J, are defined by
Jy = u¢ —T'(0¢ | 0x) and J, = v¢—I'(0¢ / Oy). For
clarity, the definitions of ¢ and I" are summarized
in Table 2.1.

3. DISCRETIZATION METHOD
AND SOLUTION ALGORITHM

For the present analysis based on the finite volume
method, the vector quantities (u,v) and scalar

variable p are stored in a staggered system [4] to
avoid pressure oscillations. The discretized equa-
tions for ¢ = (u,v) at a point P can be generally
represented as follows:

¢ =¢" + At (—FpX — F§Y — DPDN

3.1
+ VISX + VISY)" + GN. ' (3D

In the numerical approximation of advective
fluxes FpX, F¢Y by classical central schemes, a
spurious pattern of oscillations is resulted for an
advection dominated flow. To suppress such
oscillations, the upwind formulation should be
employed. Enhancement of stability, however, is
often accompanied by excessive numerical diffu-
sion errors. Development of an advection model is
thus of paramount importance in pursuit of higher
simulation quality. To obtain a stable-and-accu-
rate solution for equation (3.1), we have developed
a quadratic upwind scheme (QUICK-1/8) [13] to
approximate advective fluxes. The discretization
for the nonlinear advective fluxes follows the
scheme given below and the reader is referred to
Sheu and Lee [13] for additional details:

FoX = == (urdr — ),

1 (3.2)
FoY = ay (urér — updp),
where
1 1
up == (up + ug), ur == (up + uw),
2 2
1 1 (3.3)
ur = i(ur +uy), ug = E(uP + us),
i 1,
Pr=0LINg + M} ~gPCURV: +§¢CURVTR
(34)

N 1, _
+Mp [—‘8‘¢CURVR +§¢’CURVTR] )

TABLE 2.1 Definitions
é r S
continuity 1 0 0
X-momentum u v —(1/p) (Bp/8x) + Gy
y-momentum v v —(1/p) (9p/3y) + G,
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1 1 uR
== Mt=—[1+2E
PLINg 2(¢>P+ ?E), R=5 (1 + |uR|)’

Myp=1-M}
¢ZURVR = ¢r — 2¢p + ¢w,
bcurv, = PP — 20 + Pk,
SEurvry = PN — 20p + b5,
Scurvry = PNE — 20£ + PsE.
(3.5)

As for the diffusive flux approximation, it
suffices to apply a second-order centered scheme
to account for their elliptic behavior. In Figure 1,
discretization Eqs. (3.4-3.5) render solutions of
the same accuracy but a better isotropic phase
than does the original QUICK scheme in all
wavelengths. We also conduct convergence test for
a problem amenable to the analytic solution given

15
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by ¢ = 1 — (In (x> + »*)/(2 In 3)) in a given velocity
field (u =2y, v = —2x). According to the com-
puted errors cast in the L, and Ly-error norms, the
rates of convergence based on the QUICK-1/8
scheme are 2.108 and 2.093, as clearly seen in
Figure 2.

To compensate for loss of pressure smoothness
owing to the use of standard central differencing
for the pressure gradients, one can shift the
pressure forward so that pressure solutions are
regularized. This is made by adding a curvature
term to each pressure gradient term, yielding

PE—pp 1
~FPEZPP__° _ )
DPDX " 5 x(pEE 3pp + 2py),

pN—pp 1

DPDY ==~ 60y

(pnnv — 3pp + 3ps).
(3.6)

-15

FIGURE | Phase velocity error of the (a) QUICK and (b) QUICK —1/8 schemes for the advection equation in two dimensions.
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FIGURE 1}

To solve for the primitive variables u, v and p
from the coupled Egs. (2.1 -2.3), there are several
major_ solution algorithms for choice. In the
present study, we have adopted the segregated
approach to solve for the primitive variables in an
iterative manner. We first solved for velocities u
and v, respectively, from two momentum equations
provided an assumed pressure field has been given.
With these computed velocities, the discrete zero-
divergence constraint condition is not necessarily
satisfied. Our strategy to provide a rational amount
of pressure correction in Egs. (2.2) and (2.3) is
through the use of continuity equation, yielding a
Poisson ¢quation for the pressure correction:

&p'  8*p' Div

Frr iy ve (3.7)

(Continued).

Worthy to note is that Div = du*/0x + 8v*/dy is
calculated from the most updated velocities.

3.1. Update Procedure for a Cell
Full of Liquid Fluid

As is usual, the resulting velocities and pressure
are updated according to

At

— * ’_A ’
u=u +Ax D,
At
v=‘V* +’A_yAp’, (3.8)
p=p"+rp.

As the residual Div in Eq. (3.7) approaches
asymptotically to zero, the pressure correction is,
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FIGURE 2 Convergence test for the QUICK—1/8 scheme.

thus, no longer needed. This solution algorithm is
only applicable to a cell full of liquid fluid.

3.2. Update Procedure for a Cell
Containing a Free Surface

Referring to Figure 3, we first define a nondimen-
sional length n = (d./d), where d, is the distance
between two cell centers while d is the distance
from the center of interpolation cell to the nearest
free surface of interest. The line connecting the
center of the interpolation cell with the center of
the free surface cell is closest to the outward
normal! of the encountered free surface. The

pressure in a cell partially filled with water i1s thus
taken as the linear summation of the pressure p, in
the interpolation cell and the pressure p; at the free
surface:

p' = (1 —n)pn+nps —p* (3.9)

In response to the pressure variation in a free
surface cell, velocities vary according to:

du_ . 10p
di ~  pdx’
& 1o (3.10)
dt  pdy’
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FIGURE 3 Definition used in the free-surface boundary condition.

4. PREDICTION OF FREE SURFACE

To accommodate a deformable free surface below
which Navier-Stokes equations hold, we introduce
a field variable into the present Eulerian frame-
work to determine the location and the orientation
of a free surface. The computed field variable can
give us an estimation of the relative absence and
presence of the liquid in each computational cell.
The chosen fraction volume of the fluid F is
defined by

Vliquid

=— 4.1
l/'liqmd +- Valr ( )

This field variable follows the following trans-
port equation:

OF " O(vF)
at dx ay

OF | OuF) - 0. (4.2)

The entire free surface is depicted by piecewise
straight lines which exist in cells containing only
the free surface. In each surface cell, the slope of

the free surface is computed by

(%).-

where y; = y(x)) = F, ; 1Dy, + Fi jAy; + F 4
Ay;iq. This enables us to determine the volume
of = d./d. In the present work, we have applied
the donor —acceptor concept of Nichols, Hirt and
Hotchkiss [11]. On either side of a cell, there
exists a donor at the upstream side while an
acceptor at the downstream side. Four assign-
ments are invoked to designate the role of
acceptor or donor. The objective behind the use
of donor - acceptor concept is to preserve a sharp
definition of the free surface. Thus, the flux
limiter must be prescribed to prevent more gas or
liquid than is sufficient from being fluxed out of
the donor cell. In order to avoid the negative
diffusion error, the cutoff values of F must be
prescribed [10 and 11].

Axp_yy Axiyip
[(}'m - ¥i) 3}:}% + (¥ — yin1) Bxn

(Bxi_yp2 + Bxigiy2)
(4.3)
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5. COMPUTED RESULTS

In fluid engineering, very few problems can be
obtained analytically. In this study, we will
conduct some of them to benchmark the computer
code.

5.1. Free Oscillation

As shown in Figure 4, the filling height of the
liquid in a rectangular liquid basin of width | 1s set
to be 1. We will consider herein the case with the
following-free surface h(x,0) [14]:

h(x) = Asin(’;i), (5.1)

where A(=10.01). The calculation was featured by
the time increment Af = 0.001 and the spatial
spacings Ax = 0.0125, Ay = 0.005. As seen in
Figure 5, the time-varying heights of the free
surface at two vertical ends are referred to as being
periodically. For completeness, we also considered
the case with the fluid viscosity of 0.01. Clearly
revealed from Figure 6 is that [ree surface heights
decrease asymptotically with the increase of time.

Free Slip

Free Slip

5.2. Solitary Wave Propagation

Study of the propagation of a solitary wave in a
rectangular channel of uniform depth has received
much attention for two reasons [15]. This analysis
can provide engineers with useful data about wave
loadings to offshore structures. The problem under
consideration is configured in Figure 7 where the
undisturbed water height d is (1/16) of the channel
width. Above the adjacent undisturbed water level,
the crest of the solitary wave is given by

y:d+Hsech2[\/2l%x]. (5.2)

Here, we consider H(=2) and 4(=10) which
denote the initial wave height and the still water
depth, respectively. Initially, the velocities are

given by
H [ 3H
u= \/g—dESCCh [ Zﬁx],
3/2
= \/Sgd(g) (g)sechz (5.3)

2]

hx) = Asin (%)

b=0.5

b=0.5

FIGURE 4 Free oscillation in a two-dimensional container with/without viscous effect.
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FIGURE 5 Time history of computed wave heights.
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FIGURE 6 Time history of computed wave heights

y=d+ Hsechz{ )%f;x]

FIGURE 7 Problem definition for a solitary wave propagation.

where g(=9.81) is the gravitational acceleration.
For the case with At = 0.005 and Ax = 1.333,
Ay = 0.6667, the time-varying wave heights
plotted in Figure 8, show good periodicity. The
water heights are well maintained and are little
deteriorated by numerical damping. For compar-
ison purposes, the run-up height R, underlying
Laitone’s approximation [15].

d{ H\*
Ry= 2H+i(?) (5.4)

is also plotted together with the computed results
shown in Figure 8. Good agreement between two
sets of solutions is clearly shown.

5.3. Liquid Sloshing in LNG Tanks

The sloshing phenomenon [16, 17] 1s a key to
determining the limitations on tank size in a liquid
cargo carrier. This subject has been the focal
attention of the classification societies and the
concerned regulatory bodies. Extensive studies
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FIGURE 8 Time history of computed wave heights,

have been conducted by ship architects since 1960,
when larger-sized ships became a world trend.

Figure 9 shows a rectangular tank of width
46.3 m and of depth 26 m. This tank was excited by
a force given by (g,, g,) = (0.0l g sin wt, —g),
where g = 9.81 m/sec’. The response of the liquid
to the tank motion of interest, among other
parameters, depends also on the density, the
viscosity, and the filling level of the liquid. In the
present study, we considered a fairly viscous oil,
leading to a Reynolds number Re = 4743 ~ 5045.
The value of Re was computed based on the
velocity Rw and the depth of undisturbed oil, R.
Two heights of filling hquid, R = 14.5m and
19.33m, were considered. Different perforated
baffle plates, located in the middle of the tank,
were also included inthe present study.

The ume-varying wave heights against the
filling level, rolling frequency, length and poros-
ity of the baffle plate, have been investigated. The
evolutions ol water heights with flow conditions
under investigation are plotted in Figures 10—11.

We have also plotted in Figures 1213 the
velocity vector fields to give insights into the
general flow structure. These enlighten the role a
perforated baffle plate plays in the sloshing
dynamics.

As seen from Figures 14(a,b) which plot wave
heights at the left wall, the baffle plate definitely
has an impact on the oscillatory free surfaces.
This impact is particularly prominent in cases
when the rowing [requency corresponds to the
resonant frequency, no matter what investigated
filling levels are considered. Evident from these
plots is that the flow structure changes dramati-
cally from what without a baffle plate, implying
the mmportance of baffle plate. From these
results, we were led to conclude that the higher
the baffle plate is, the smoother the water surface
will be.

In situations when the oscillation frequency
departs from the tank’s natural frequency, the
maximum wave height illustrated in Figure
14(a, b) increases slightly as the length of the

LNG tank

A
surface

D=29 m

W=46.3 m

FIGURE 9 Configuration for a large amplitude sloshing problem.
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FIGURE 10 Time history of the wave height at the left wall (resonance frequency = 0.12 sec™' and water level = 19.33m) for

different precentages of perforation. Dh, and lengths of baffle plate, Lb, (a) Lb = 0.0m, (b) Lb'=7.25m, (c) Lb = 14.5m, (d)
Lb = 14.5m and Dh = 20%, and (e) Lb = 14.5m and Dh = 40%.

baffle plate increases for each investigated filling
level. In light of the flow structures illustrated in
Figures 12 and 13, the influence of the baffie
plate is clearly identified. The entire flow pattern

inside the tank has been altered from that at the
initial ‘state and resembles the oscillation flow
pattern in a tank which takes a half width of the
original tank.
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FIGURE 11 Time history of the wave height at the left wall (resonance frequency = 0.1128 sec™ ' and water level = 14.5m) for
different percentages of perforation, Dh, and lengths of baffle plate, Lb, (a) Lb = 0.0m, (b) Lb = 7.25m, (c) Lb = 9.67m, (d)
Lb = 9.67m and Dh = 20% and Dh = 40%.
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FIGURE 12 Instantaneous computed velocity fields of the liquid sloshing in an LNG tank (frequency = 0.09 sec™

! and water

level = 19.33m) for different lengths of baffie plate, Lb, percentage of perforation, Dh, and time, ¢. For (a) t = 200sec, (b)
1 = 230sec, (c) 1 = 260 sec, with Lb = 14.5m at (d) r = 200sec, (e) 1 = 230sec, (f) 1 = 260sec, with Lb = 14.5m, Dh = 20% at (g)
1 = 200 sec, (h) 1 = 230sec, (1) ¢ = 260 sec, and with Lb = 14.5m, Dh = 40% at (j) ¢ = 200sec, (k) t = 230sec, (1} ¢ = 260 sec.

The role that a perforated ‘baffle plate plays is
clearly demonstrated by the computed plots shown
in Figures 14(c, d). At the left wall, the maximum
water height for each investigated filling level is
mildly increased as the baffle plate is more
perforated for a tank rolling at a natural
frequency. The flow structure tends to change
back to that without any internal obstacle. The
main reason for this variation is attributed to the
fact that more fluid particles allowed to flow
through the holes of the baffle plate. In contrast,
the liquid heights at the left wall, as shown in
Figures 12 and 13 decrease with the increase of
value of porosity when the tank rolls at a
frequency of 0.09sec™'.
stances, the flow structure takes a form similar to
that without the baffle plate.

Under - these -circum- -

6. CONCLUSIONS

This paper concerns with ihcomprcssible Navier-
Stokes equations in a domain bounded by a
time-varying free surface. To circumvent difficul-
ties associated with oscillatory velocities, we
proposed a high-order upwinding scheme for
the nonlinear convective fluxes. To tackle the
problem in association with nonlinear boundary
conditions at deformable surface, we have
applied a donor—acceptor technique to keep
track of the time-varying free surface. Two
benchmark: problems were used to validate the
applicability of the computer program to sloshing
problems.. The- main' -conclusions that can be
drawn from the investigated sloshing problem are
as follows:
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FIGURE 13 Instantaneous computed velocity fields of the liquid sloshing in an LNG tank (frequency = 0.09 sec™ ' and water
level = 14.5m) for different lengths of baflle plate, Lb, percentages of perforation, Dh, and time, ¢. For (a) t = 200 sec, (b) + = 230
sec, (c) + =260 sec, with Lb=9.67m at (d) r = 200secc, (¢) 1 = 230sec, (f) 1 = 260sec, with Lb = 9.67m, Dh = 20% at (g)
1 = 200sec, (h) 1 = 230sec, (i) t = 260 sec, and with Lb = 9.67m, Dh = 40% at (j) 1 = 200sec, (k) 1 = 230sec, (1) ¢ = 260 sec.

L.

There is clear evidence that at different oscillat-
ing frequencies and filling levels the internal
baffle plate with/without perforated holes has
great influence on the flow structure in the
rolling tank. A longer baffle plate of zero
porosity can mitigate the distortion of the
liquid surface for a tank rolling at the resonant
frequency. For the other oscillation frequencies,
much distorted free surface is observed.

In the presence of a perforated baffle plate, the
liquid oil inside the tank may flow over the
baffle plate as well as flow through the drilled
holes. On increase of liquid commutation, the
wave heights are lowered and the degree of
sloshing is lessened in conditions other than the
resonant frequency. The maximum liquid
height at the vertical side wall increases slightly

at the resonant frequency, as compared with
that for a tank having the baffle plate of length
19.33 m which is largely perforated. This state-
ment holds regardless of the filling liquid level.
In contrast to the rigid body motion at the
-natural frequency, the maximum heights are
reduced when a larger perforated hole is
encountered. A complex yet small-scale flow
structure is the result.
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