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ABSTRACT

A variational method is developed for analyzing three—dimensional steady,
compressible and viscous flow—field starting with the energy formulation. A Clebsch
transformation of the velocity vector and a set of governing equations in terms of Lagrangian
multipliers and entropy are derived. This mathematical model is equivalent to the classic
full Navier—Stokes equations in terms of primitive variables. It provides an unified solution
scheme for potential, Euler and Navier—Stokes flow equations if different levels of flow
simplification are made. The isoparametric finite element approximation and a relaxation
solution scheme are employed to obtain the solutions at steady—state in an uncoupled
sequence.

A computer code is developed and verified by comparing the computed solutions
with the available theoretical results of developing entrance channel flow. A convergent
channel flow problem is also investigated.
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Introduction

The development of variational principle in fluid mechanics is one of the important
issues in the classical dynamics. It is known that the direct variational formulation of a
problem, written in self-adf'oint differential operator form, can be derived over the
Lagrangian coordinate syste 1]. Additional efforts must be made for obtaining a variational
principle of fluid dynamics equations in Eulerian description.

A valuable source of variational principle for inviscid flow problems over the
Eulerian coordinate system can be found in the classical works of Batema.n[2], Herivellg],
Lin[4]r and Serrin[5]. A further description of this theory was made later by Seliger and
Whithamlﬁ]. From these efforts, a set of Euler equations can be derived directly from a
generalized Bateman's variational principle. An Eulerian variational principle is obtained by
adding physically appropriate constraints to the Lagrangian density of Hamiliton's
Principle!™"). It leads to a Clebsch transformation of the velocity vector in terms of
potential-like variable and Lagrangian multipliers known as Clebsch variablesm. Numerical
implementations of variational formulation for compressible Euler equations have been
presented earlier by Ecer and his colleagues[8—13].

In this paper, the concept of developing a variational principle for compressible
Navier—Stokes equations is presented. This formulation provides potential and Euler
formulations, reducing to Bateman's principle, as the special cases. The verification of this
variational principle is made by showing: (1) the derived set of equations is equivalent to the
conventional momentum equations in primitive variables form, (2) the solutions by finite
element approximation are compared with the analytic solutions of developing channel flows.

Formulation of the variational principle
The governing equations in Eulerian description for describing three—dimensional,

compressible Navier—Stokes flows at steady state are 17]:
Continuity equation

(puj)’j=0 (i=1~3) (1)
Momentum equations
Dy; 1
P Dt =-p;t [2”(eij——;_ekk ‘%j )],j ‘ (2)
Energy equation, satisfing Stokes' hypothesis, in terms of entropy
(Psuj)’j=%‘ (3)

and equation of state for perfect gas
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p=pRT=Kp7ap«7—1%§j)
Px Sx
K= " exp(-(7-1)—) (4)

where « denotes the reference conditions.

The viscous dissipation function @ in equation (3) is

1 2
o=2p(e; e ———(u,,)?) (5)
jhj 4 k,k
where e i is the rate of shear defined by ,
=L (u.+u.

&= (%) (6)

and p is laminar viscosity modelled by Sutherland's La,w[M] as
W(T)=p (L8 e T (7)

— 11n° _ —4 N—S
where Sl = 110K, ko= 0.16758 x 10 —mT

For solutions of boundary value problems by using a variational method, ai
equivalent variational form of the given differential equations (1)7(4) is required
Finlayson[IS’w] indicated that there is no variational formulation for Navier—Stoke:
equations in terms of primitive variables. Over the years, attempts have been made t«
obtain the variational formulations mainly to inviscid problems by imposing a set o
constrained conditions using Lagrangian multipliersll*ﬁ]. The objective of this paper is ti
develop an Eulerian variational principle which describes the Navier—Stokes flow—field. Th
fundamental difficulty in developing an Eulerian variational principle can be overcome b;
introducing the appropriate constraints on the variational functional.

In the present compressible and viscous flows, the equation of mass (”1)
conservation of entropy equation (3) and the rate of shear defined by (6) are employed as th

constraints to specify the motions of fluid particles 17, The variational functional is writte
as:
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H=JQ[—%—pujuj—p(E(p,S)—Ho)

+4Coup); +n((pSup)=—)

1
_IF¢¢(pujnj+,f)dr
—Jrnn(pSujnj+g)dF
+Jrvkijnj(ui+hi)dl‘ (8)
where the Neumann boundary conditions
pujnj+f=0 9)
pSujnj+g=0 (10)

are specified on the surfaces, with an outward normal n;, to completely define the transport

properties.
Dirichlet boundary condition

is specified as an essential condition for considering the velocity conditions at the wall. In

the above functional (8), ¢, 7, kij are the Lagrangian multipliers corresponing to the

constrained conditions added to the original Lagrangian density. ‘
By applying the variational principle on functional (8), 6 II = 0, and employing
integration by parts, th

surface integrals disappearf It leads to a Clebsch transformation of velocity vector for

arbitrary 6 U

U= +80; -—})- i (12)
Equation (12) reduces to Clebsch transformation for inviscid ﬂows[2’3’5]. It is identical to
the approaches of dual—potential formulations[19_22] for inviscid rotational flows and
scalar—vector potential forlnula,tions[23_25] for Navier—Stokes flows.

A set of governing equations (1), (3) and equivalent momentum equation

PO ;= "%‘ ' (13)

for describing the equations of motion is derived by considering the variations with respect
to arbitrary &), 67 and &5 respectively. One can observe that the above variations
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provide the transport equations, which were specified as constraints on the variational form.
The variation of functional with respect to density p yields the expression for
stagnation enthalpy

H=H, ——p- u s (14)

which reduces to the constant stagnation enthalpy for inviscid flow along the streamline. In
general, the stagnation enthalpy is not necessarily a constant. The viscous stresses will act
on the boundaries of element and do work to accelerate and deform the fluid element such
that the kinetic and internal energies will change acoordmgly[ 6]

At this point, by considering variations with respect to the remaining variables,
equations (6) and expression for Lagrangian multipliers k

__4pn _ 1
ij T ( & I3

can be derived from arbitrary 151(i i and Jei i respectively.

ij
e &) (15)

The vorticity vector w, density p can be explicitly written in terms of the primary
variables by

= x -— X ——1—- s o
w=18xTn-Tx (5 k;) (16)
and .
p=(—1-:——l-—h)—7:l-exp(-——§—- (17)
K 7 ‘R

By substituting the relations shown above into the original functional in equation
(8), one can obtain the generahzed variational functional

n-j Pl e d 0 J ¢¢de‘—Janng‘ (18)

As can been seen from above equation, only the normal fluxes of mass and entropy have to
be specified as natural boundary conditions. The well known Bateman's Principle for
inviscid flows turns out to be the special case[2’ 5, 6]

Verification of mathematical model

The validity of the present constrained variational functional can be verified by
showing the equivalent relations between the set of equations (1), (2), (3) and (1), (12), (13),
(15), (3)-

By substituting the Clebsch transformation for velocity into the left hand side of
equation (2), one can obtain
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D u, ®
b = e 0= [0 (kg )
D |
—-—D—t( kmii)] (19)

by the use of equations (3), (13), and thermodynamic relation

- Ay
TS;=Ej+p(5);

Multiplying both sides of equations (19) and (2) by u; , the equivalency can be achieved

since
®
pugH ot =y 15 =y (0 (g ) = i ))

_ 1
=u (2n(e———eu &)

is obtained by the use of conservation of stagnation enthalpy.

This provides a complete formulation of mathematical model. One can employ
either the original variational functional (8) with proper constraint conditions or the
generalized variational functional (18) to analyze Navier—Stokes flows.

Development of finite element equations

The differential equations (1), (3), (12), (13) are a set of first—order equations for
describing compressible and viscous flows. It can be cast in second—order forms in S and 7
respectively by multiplying both sides of (3) and (13) by a convection operator. This
transformation not only provides symmetric matrices but also eliminates the use of artificial
dissipative mechanism, such as upwinding, in obtaining numerical solutions.

A set of pseudo—unsteady equations is developed for the steady state solutions by
time marching procedure. It is obtained by employing the relaxation scheme for primary
variables A in the derived set of second—order equations

yAPSY _y Aold + _%1.__ y Aoid

where wis a relaxation factor for the stable integration of nonlinear equations.

At this point, the.weak variational form of pseudo—unsteady equations can be
written as:
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JQ [( — /;‘:t (pR¢,+pSTny+pS;Tn)
_(,;Agt¢+psyn)+(Vij,ﬂ,j+"ij,j’7)
+=g (v () vyng) - 100

+(——%—t—(pu-YS,t)—pn'YS+¥:{—)pu-16n

+ (-t (pu- Iny)-pu- Yn—~P—R )ou- 155] dQ

+jr¢pg-gs¢dr=o (20)
where ’

4 p 1
= (% ok Gy)

The resulting equation will be used as the equation for finite element
approximation. The dependent variables ¢, #, S, and test functions &, &y, &S are
interpolated by an isoparametric shape function N

A (x,y,5%t)=N" (x)A%0) (21)
where A stands for ¢, 7, S, &, én, and &5.
By subtituting equation (21) into (20), one can obtain finite element equations
A"X"=R" (22)
where

n_[ @ _n g4n,_ n 0, 0
R = §¢ 5¢¢¢. (I_<.¢,7 -K—vi)fl
n n .n
Gy —Kgyn

n n n
L gvi - .Iisn §

Kpp= 3 jﬂe pN;NT a0

)
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Jge i NiZ it Y=

Joo —=(omN a0

[ (pu-minar

Ly

Kga = ( damping factor ) x Jﬂe ﬁlﬂTldQ

T
5¢”_§~erSN’N .dQ
T

K¢s—§unepn,,ﬂl_l‘l,,d9
I‘{'Sﬂ—gugePUN (puN ) dQ
g—vi-_'ze:~~Q (pul-l)d9
K.= v..N.NT N; NTdQ

e

)

e

T

e

K—da is used to prevent the appearance of numerical disturbances produced by
convective operator, and the small values of K_S - _Igvi near the stagnation region. The

addition of this damping does not change the solutions when steady state is reached.
By examining equation (22), one can observe that the solutions can be obtained in
an uncoupled sequence by calculating

i = Ky, +K§,) ™ (G5~ Ks,,zz) (23)
n_ n n 1 n n

first by frontal 'method[27]. The solution of én is then calculated by substituting (23), (24) ‘

into the first equation of (22). The solution is advanced from time n At to (n+1)At until
the steady state solution is reached. The detailed solution procedures can be found in
references [17,18].

Numerical results

The accuracy of the developed three—dimensional code is evaluated by comparing
the available theoretical results of two—dimensional, steady, incompressible laminar flows
between two parallel plates. The test problem is designed to analyze low Mach number flows
over the geometric configuration of high aspect ratio in z—direction (Fig-1), Ax:Ay:Az=
2:1: 10, since the theoretical results require two—dimensional incompressible flow over (x —

y) plane.
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The velocity vector plot over half of the developing channel in length 1.92 m is
shown in (Fig.2) where u = 1 m/sec, p = 122 N/m2, M = 4.528x10—3, p =
3.5x10"3kg/m3, T = 121.5°K, Re = 153 at the inlet. The computed x—component
velocities in (Fig.3,4,5) at locations x = 0.115m, 0.46m, 1.035m respectively are in
agreement with those by P. A. Longwell[28] and H. Schlichting[M]. The comparsion of fully
developed velocity profile with the theoretical first—order result is illustrated in (Fig.6). The
contours of velocity in x direction and vorticity are shown in (Fig.7,8) respectively, where
the length scale in y direction is enlarged by seven time for easy observation.

“The velocity vector plot of inlet Reynold number 2750 flow is shown in (Fig.9)
where P, = 2193 N/m%, p = 6.3x10™ kg/m’, T = 121.5°K. The solution of higher

Reynold number flow, Re = 25000 for example, can also be obtained without difficulty. The

velocity plot over the divergent channel with a 5 degree inclination in illustrated is (Fig.10)
where the inlet Reynold number Re is 975.

Conclusion

A set of equations for describing Navier—Stokes flows from the present variational
principle is equivalent to those in primitive variables form. It provides a direct extension of
Bateman's Principle for inviscid flows to viscous counterparts. The representation of inviscid
potential flows in terms of velocity potential can be considered as an alternate of Clebsch
transformation. One can easily make comparsions of potential, Euler and Navier—Stokes
solutions by using the same numerical procedure. Such an approach provides computational
efficiency for the solution of Navier—Stokes flow by starting with the solution of inviscid
flow. Considerable computing time may be reduced if different levels of flow simplification
are made in the case of multi—dimensional flow problems.

The variational principle for laminar Navier—Stokes flows is further verified
numerically by finite element approximation. The computed results of developing entrance
channel flows with different Reynold numbers are in agreement with the available
theoretical and finite difference solutions. The block—structured numerical scheme for
complex flows will be included for adapting the advantages of present unified formulation.

Nomenclature

E : internal energy per unit mass
rate of strain tensor
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normal mass flux
normal entropy
stagnation enthalpy
reference constant for internal energy of a particle
coefficient matrix of finite element equations
: components of normal vector
static pressure
gas constant
entropy

oo e ™

(=)

temperature

boundary domain

ratio of specific heats
variational operator
Lagrangian multiplier
laminar viscosity
variational functional

mass density

viscous dissipation function
velocity component in i direction
Lagrangian multiplier
enthalpy

£ ™S T S 2 3 noe R R

i

-
Pty

vorticity vector

total derivative

derivative with respect to j
Kronecker's delta function
relaxation factor

shape function

Reynold's number
Lagrangian multiplier
entropy

m-e-?'p|z € - gcl& =
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Figure 1 Computational Grid for the Flow within a
Straight Duct (48 x 9 x 1 Elements, 980
Nodal Points)
= = F = = =
Figure 2 Velocity Vectors at Different Sections ofa

Straight Duct (Inlet Re= 153, Ax= 0.24
m)
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Figurc 9 Velocity Vectors at Different Sections of a
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Figure 10 Velocity Vectors for the Flow within a
Convergent Duct (Inlet Re= 975)
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