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We investigate the vortical flow structure which has evolved in a rectangular cavity
defined by a depth-to-width aspect ratio of 1:1 and a span-to-width aspect ratio of 3:1.
The vortical system of interest consists of a dominant eddy, secondary motions, and
spiraling spanwise motion. The objective of this study was to broaden knowledge of: 1)
how the Taylor-Gdortler vortices emerge and modify the flow structure; 2) why the left
vortex differs from its right counterpart in each unsymmetric pair of TGL vortices.
Most importantly, the intent of this study is to discuss the formation of flow instabili-

ties from the energy standpoint.
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1. INTRODUCTION

Computer simulation of fluid flows has received
little attention for some time because many ob-
stacles remain for its use in practical applications.
Chief among them is the need to solve large sys-
tems of linear equations. Only recently, with the
advent of computers exhibiting both fast process-
ing speed and large storage capabilities, has the
use of computational fluid dynamics (CFD) as a
substitute for much more expensive experiments
increased. The most notable attribute of CFD is
that it is suitable for conducting parametric stud-
ies and exploring flow physics which are experi-
mentally intractable. It offers significant potential
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for exploring in depth flow evolution by using a
Navier-Stokes analysis code.

Lid-driven flow, resulting from an upper lid
motion, represents a suitable benchmark for
incompressible CFD codes and has been widely
chosen for study. Its popularity is mainly attribu-
table to its geometrical simplicity, which facilitates
implementation of numerical analysis. This prob-
lem, as depicted in Figure 1, is also experimentally
important since flow characteristics typical of
industrial manufacture processes such as bound-
ary layers, eddies of different sizes and characters,
and various instabilities coexist in this cavity. As a
result, experimental or predictive data are useful
for gathering information about industrial flows.
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FIGURE ! An illustration of investigated rectangular cavity,
together with the computed pressure gradient, spanwise veloc-
ity, and end wall effect.

Investigation of the lid-driven cavity problem
dates back to the pioneer work of Burgraff [1],
which was followed by many two-dimensional
analyses. While these studies shed light on some
principal flow characters prevailing in the cavity,
physical subtleties are still inaccessible because
realistic flows are three-dimensional in nature.
More recently, fueled by technological advances in
computer hardware, the use of three-dimensional
numerical simulation as a tool for investigating
more realistic flow phenomena has been growing

steadily. In a parallel development, experimental
calibrations on the shear-driven cavity flow ap-
peared in the early 1980s. An extensive literature
review on the lid-driven cavity flow problem, ex-
perimentally or numerically, should include the
work of Street and his colleagues [2-13]. In fact,
experimental visualization and numerical predic-
tion of Taylor-Gértler-like (TGL) vortices were
reportedly found at Stanford University by Koseff
et al. [3] and Freitas er al. [10], respectively.
Experimental investigation of cavity flows for
Reynolds numbers between 1000 and 10000
started in the early 1980s. From 1982 to 1984,
Koseff and Street [2-7] addressed the values of
SAR(=L:B) on 1,2, and 3., They observed not
only the corner vortices in the vicinity of the two
vertical end walls, but also the local TGL vortices.
In the case of Re ~ 3000, eight pairs of TGL vor-

tices were observed. At Re ~ 6000, three more

pairs {11 pairs) of TGL vortices became visible.
For Reynolds numbers as high as 6000 ~ 8000,
regular unsteadiness no longer remained and,
thus, evolved into turbulence. Spiraling motion
along the spanwise direction has been discussed
mainly inside the downstream secondary eddy
(DSE). In 1988-1989, Reynolds numbers falling
into the range of 3200 ~ 10000 were considered by
Prasad, Perng and Koseff [8] and Prasad and
Koseff [9], who took different values of SAR =
1:2,2:3,5:6,and 1:1 into consideration. The em-
phasis of their study was placed on investigating
the influence of the reduced SAR on the increase
of viscous drag originating from the two end walls.
More recently, Reynolds numbers classified as low
to medium (100 ~ 2000) were considered by Aidun
et al. [14] Their paper is important in that they
provided a detailed description of how the flow
characteristics vary with Reynolds numbers.

In 1991, the GAMM-Committee sponsored a
workshop dedicated to numerical simulation of a
lid-driven cavity flow at Re =3200 for SAR =3:1.
To provide some insight into the computed results,
Deville Lé and Morchoisne [15] summarized and
discussed 'the main features of the solutions ob-
tained by the contributors of this workshop. Com-
parison studies were made on the number of TGL
vortex pairs appearing in the transverse direction,
on the performance of the computed codes em-
ployed, and on the CPU time per unit of physical
time. It was surprising to find that the conclusions
were quite different among the contributors not
only on the accessibility of flow symmetry, but
also on the number of pairs of TGL vortices, In
recognition of this, we feel that much work needs
to be done in the years ahead. As a result, we
consider a Reynolds number much lower than
3200. For numerical simulations of a cavity flow
at Reynolds numbers other than 3200, the reader
is referred to Deng et al. [10]

We begin by introducing the equations of fluid
motion for the incompressible case in Section 2.
Subsequently, the underlying finite volume discreti-
zation method, ‘together with the solution
algorithm and the multi-dimensional advection
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scheme, are briefly described. In Section 3, we
validate the applicability of the computer code by
carrying out an intensive comparison with ana-
lytic results. In Section 4, we discuss in detail the
complex flow, which is rich in interesting phe-
nomena, from different viewpoints. Numerical
tests in this section bear out the presence of TGL
vortices. Attention is given to a physical expiamw
tion of the onset of laminar lﬁSi&uuu_y from the
energy viewpoint and the transport kinetics of
TGL vortices. Closing remarks are presented in
Section 5.

2. MATHEMATICAL AND NUMERICAL
METHOD

The mathematical model, permitting analysis of
incompressible and viscous fluid flows; takes the
following form “for a given Reynolds number
Re:

fu; 0 ‘ op 1 u
I )= m__+ 2
+ox (ntt) Rem 0x,, @

ar - éx,

In the open literature, we find several sets of
working variables to choose from. Amongst these
alternatives, we abandon others in favor of the
primitive-variable formulation mainly because
this setting accommodates the closure boundary
and initial conditions [17].

Two fundamental impediments to application of
equations {1 ~2) in modelling incompressible
Navier-Stokes equations are briefly described be-
low, The first deals with the stability problem
when a problem of advection dominance is con-
sidered. Very often, numerical prediction error suf-
fers from oscillatory velocities and false diffusion
errors, grossly polluting the flow physics over the
entire domain. In order to alleviate these difficul-
ties, we advocate the use of the third-order

upwind QUICK [18] scheme to model nonlinear
advective fluxes defined in a non-uniformly
discretized domain. The reader is referred to refer-
ence [19] for additional details. The remaining dif-
fusive fluxes and pressure gradient terms, are, as
usual, discretized by second-order centered sche-
mes. A fully implicit forward time integration
scheme is used for the time derivatives. Moreover,
discretization errors stemming from the use of a
one-to-one curvilinear coordinate transformation
are considerable provided the problem of interest
involves complex geometry and highly distorted
meshes. Because there is potential loss of accuracy
arising from the calculation of metric tensors, to
accurately explore the rich physics, we conduct
analysis of a cavity containing rectangular grids.

In as much as the velocity-pressure formula-
tion is considered, we are faced with the choice of
grid staggering [207] or collocating [21] strategies
to store these working variables. While numerical
instabilities exhibiting node-to-node pressure os-
cillations can be suppressed at both grids, we fa-
vor the staggered grid setting and exploit it to get
rid of these oscillatory pressures regardless of
programming complications. We abandon collo-
cating grids due to a lack of the closure boundary
pressure, which is indispensable for an analysis
involving a Poisson-type pressure correction
equation. On the control surface of a finite vol-
ume cell, each primitive variable takes over a
node to itself whereas the pressure node is sur-
rounded by its adjacent velocity nodes. This per-
mits natural use of finite volume integration for
each working differential equation under these
circumstances.

Even though the discrete divergence-free velo-
cities can be unconditionally ensured by using a
mixed formulation, we encounter a much larger
discrete system. The need to resolve the demand
for much larger computer storage has prompted
researchers to consider segregated approaches.
In the present paper, the solutions to the finite
volume discretization equations are obtained
sequentially for all primitive variables using the
underlying SIMPLE iterative algorithm [20].
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3. VALIDATION STUDY

As a means of conducting investigation of vortical
flow in a cavity, we first validate the computer
code by means of an analytic problem. In an at-
tempt to verify the flux discretization scheme as
applied in the present analysis tool and to then
estimate its spatial rate of convergence, we con-
sider the Navier-Stokes problem of Ethier and
Steinman [22]. In a simple domain of three
dimensions (—1<x,y,z< 1), the solution to
equation (1 ~2) takes with Re=1 the following

u= —ale* sin(ay + dz) + e* cos (ax + dy)Je™*",
v=—ale” sin(az + dx) + e** cos (ay + dz)]e”*",

w= —a[e* sin(ax + dy) + ¢ cos (az + dx)]e ™",

2
a .
p=— 5 [ez"’”%— €2ay+e2az

+ 2 sin (ax + dy) cos (az £ dx) e
+ 2 sin (ay + dz) cos (ax + dy) 2+
+ 2 sin (az + dx) cos (ay + dz)e***9 Je~ 24",

where a =4 =2 As is usual, we assess the quality
of the finite volume solutions on the basis of
nodal values computed in the uniformly dis-
cretized domain. We measure the discretization
error by caleulating the difference between the
finite-volume  solutions and the analytic solu-
tions. 'With these nodal errors being computed,
we sum them to yield an L;-error norm. With
grid’ spacings: continuously refined, we ¢an com-
pute the rate of convergence.

We have carried ‘out computations at a time
spacing At= 1/160 and under several grid spac-
ings (h=1,2/3, 1/2, 2/5, 1/3, 2/7). According to the

finite volume solutions at r=0.1, the good agree-
ment demonstrated -in- Figure 2 confirms the ap-
plicability of the proposed scheme to analyzing
incompressible Navier-Stokes equations. The re-
sults of this analytic validation study encourage us
to proceed with investigation of the flow physics
which are driven by a constant upper lid in a
rectangular cavity.

4. RESULTS AND DISCUSSIONS

In this section, we will describe the simulation of
a three-dimensional incompressible fluid flow
inside - a' - rectangular- cavity, as -defined = by
L:B:D=3:1:1in Figure L. The Reynolds numb-
er chosen for this cavity is based on the lid speed,
the-width of the cavity, and the kinematic viscosity
of the working fluid. At time 1 =0, the roof of the
cavity of the present interest is driven by a sudden
lid motion. Experimental evidence [14] reveals
TGL vortices become visible at Reynolds number
beyond 1300. These laminar instabilities continue
to evolve into turbulence at Re = 6000. With this
recognition, we deal only with Reynolds numbers
whose values are not so high as to render a turbu-
lent flow simply because of the complication of
turbulence modeling. On the other hand, the
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FIGURE?2 The computed rates of convergence for velocities

and pressure based on the Navier-Stokes equations define in a
cubic.
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Reynolds numbers considered must not be too
small (less than 1300); otherwise, the TGL vortices
will not emerge in the confined cavity. Physical as
well as computational reasoning leads us to con-
duct analysis at a moderate Reynolds number
Re = 1500. To avoid ambiguity regarding whether
or not symmetry of the flow will persist in the
investigated rectangular cavity, we simulate the
flow physics in the whole cavity having non-uni-
form grids of 34 x 91 x 34 resolution. For each
time step in this three-dimensional analysis, the
disk space required is roughly 1.8 M bytes while
for the core memory it is about 6 Mbytes, Nor-
mally, ten days of CPU time, as measured on an
HP730, are needed to complete a calculation in-
volving a time evolution of 450 seconds.

As noted in the introduction, the flow of a vis-
cous fluid in a three dimensional cavity driven
constantly by a sliding upper plane has been ex-
tensively studied because of its geometric simplic-
ity and well defined flow structure. 'As a result, we
consider spanwise ratio SAR =1, and Reynolds
numbers 400 and 1000, for further confirmation of
whether the computer code being analytically veri-

fied is applicable to simulation of this problem.
The simulation aualifv was assessed on the basis
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of mid-sectional velocity profiles along both the
vertical and horizontal centerlines. According to
the computed finite volume solutions and grid re-
finement tests, as depicted in Figures 3(a,b), for
the cavities considered and the Reynolds numbers
investigated, the agreement with other numerical
solutions [23-26] is close enough. In the remain-
ing sections; we will focus on subjects-which have
been little explored. To shed light on the onset of
TGL vortices from the energy viewpoint, we have
computed the kinetic energy from the computed
primitive working variables.

4.1. Dynamics of TGL Vortices

From pioneer work using experimental observa-

finn 1T and anunmerical nrsdiction. . af TG var-
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tices [10], we realize that in high Reynolds
number circumstances, the incompressible system
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in & rectangular lid-driven cavity can support
TGL vortices. The question remains unanswered
whether TGL vortices are still present at a much
lower Reynolds number, say Re = 1500. We plot
the velocity distributions along the spanwise direc-
tion. Of these wavy velocity profiles, the crest of
u in Figure4 corresponds to the trough of the
velocity profile w. The spatial location where the
spanwise velocity experiences an inflection is exactly

where the local extremities of u and w are located.
Velocity - profiles  characterized = as  possessing
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FIGURE 4 Computed solutions plotted at the plane x = 0.525.

coexistence of maximum, minimum, and inflection
at the same location have a strong resemblance to
the longitudinal Taylor-Gartler vortices which were
originally found in the concave boundary layer.
The name Taylor-Gortler-like (TGL) vortices stems

from this similarity. There is some analogy be-
tween the centrifugal force in the concave bound-
ary layer and the buoyancy force in the thermal
stratification layer. In many industrial flows,
Taylor and Rayleigh instabilities may coexist.
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These vortices might interact with each other,
leading to premature transition to turbulence, and
thus aid the transfer rate.

Due to space considerations, we will address in
this paper only the kinetics of Taylor-Gortler vor-
tices at a time beyond the periodic motion. The
plausible causes leading to the formation of TGL
vortices have been clearly discussed in our previ-
ous work [19]. Subsequent to t=138, Taylor
Gortler vortices evolve into a periodic motion. To
confirm that periodicity is indeed attainable, we
have plotted TGL vortices from ¢ =210 to t = 354
in Figure 4, from which we find that the time per-
iod is 72. TGL vortices emanating from a span-
wise location fall into the domain between the
symmetry plane and its adjacent vortices. They
proceed along the same direction as do the nearby
TGL vortices that will be immersed to the corner
vortex. As a result, no more than five pairs of
TGL vortices are visible over the entire span.
These possible well-established TGL vortices can
be furthermore divided into two classes, depend-
ing on the nature of their symmetry. As seen in
Figure 5, for TGL vortices established at the sym-
metry plane, y = 1.5, their physical symmetry can
be well-maintained. In contrast, the remaining
TGL vortices fail to retain symmetry. According
to their formation mechanism, we classify the left
vortex as being a well-shear vortex and the one on
the right side as a free-shear vortex. At t =258,
TGL vortices (TGL(1,2) in Fig. 4) emerge in be-
tween two well-developed TGL vortices, as desig-
nated by “1” and “2” in Figure 4. The nearer the
end wall approaches, the larger the size of this pair
of TGL vortices is. The flattened velocity profiles,
as seen in Figure 4 at t =270 and 282, are attribu-
table to mutual interactions among the TGL vor-
tices TGL(1,2) and the left corner vortex.

In light of Figures 6 and 7, the time-periodicity
is well-maintained at 72. As to the formation of
TGL vortices at the symmetric location, the maxi-
mum value of w velocity varies in a mild and per-
iodic fashion. This implies that the TGL vortices
(TGL C) at the symmetry plane are fairly station-
ary. As for unsymmetric TGL vortices (TGL

&——————==— velocity 0.1

TGL 1

FIGURE 5 Finite volume solutions computed at 1 = 138 and
x=0.525 plane for showing the symmetry behavior of the TGL
vortices (at the mid span y = 1.5) and the asymmetry of the rest
of TGL vortices. (a) velocity vector plots; (b) streamlines.

1,2,3,4), shown in Figure7, an increase in w is
clearly illustrated, followed by small-scale fluctu-
ations. A rapid decrease in w is observed as the
end-wall is approached. In circumstances when
TGL vortices are immersed into the corner, an-
other pair of TGL vortices emerges.

Physical reasoning suggests that the w profile,
as shown in Figure 4, is best-suited to illuminating
TGL vortices. We designate “3” at the spatial lo-
cation y ~ 1.7 so as to facilitate demonstration of
the formation of TGL vortices next to the symme-
try plane. It takes a time period (At=72) for
marker “3”. shown in Figure 4, to return to the
location at which marker “2” is located. Similarly,
another period of time is needed for marker “2” to
proceed to the location marked by “1” in Figure 4.
In the meantime, marker “1” continues its journey
toward the end-wall. A period of time is in need
before marker “1” is immersed into the corner
eddy at y ~ 2.8. In summary, for TGL vortices just
next to the symmetry plane, it takes three time
periods for them to complete the entire transport
process.
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FIGURE 6 Description of the size of detached upstream sep-
aration surface, measured in y, for TGL vortices and corner
eddy in the whole evolution.
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FIGURE 7 Time history plots for showing the maximum vel-
ocity component w, measured at z=0.04, for different TGL
vortices.

Within a time period of At =72, we can divide
the vortical system into four major groups. In
Figure 4, over the entire span, there exist three
well-developed pairs of TGL vortices at ¢t =210
which are roughly spaced with a constant length
of 0.75. In between these developed TGL vortices,
new TGL vortices tend to emerge. After a half
time period or At =36, five sets of mature TGL
vortices become visible. While these vortices are
symmetric with respect to the y = 1.5 plane, they
are slightly unsymmetric within themselves, as
seen in Figure 4 (¢t = 246). The magnitudes of w for
threc middle TGL vortices, equally displaced with
a distance of 0.52, are almost identical to each
other. For the remaining two pairs, they are dis-
tanced from the end wall with a length of 0.49. In
between t =210 and t =246 and between t = 246
and t =282, three to five pairs of well-developed
TGL vortices can be observed. By taking the
differentiation of the y coordinate at which w

takes its local maximum with respect to time, we
can obtain the corresponding wave speeds. From
Figure 8, we realize that TGL vortices do not
necessarily proceed monotonically along the span-
wise direction. In fact, subsequent to t=138, a
highly rugged wave seems to last for one and half
time periods for each three time periods.

In an attempt to clarily that asymmetry does
exist in the TGL vortices, we consider one pair of
vortices of this kind nearby the symmetry plane.
We designate (y,,z,) and (yg, zg) as the rotational
centers for each of the counter rotating vortices,
shown in Figure 5. The values of y; and y, plotted
in Figure 9(a) reveal that vortices of different
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FIGURE 8 A plot is showing the transport velocity of TGL 2.
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FIGURE9 Vortex centers (defined in Fig. 5) for a unsymmet-
ric pairs of TGL vortices (a) A plot in showing the distance, in
the spanwise direction, between two vortices which constitute a
pair of unsymmetric TGL vortices. (b) A plot in showing the
asymmetry of TGL vortices against time.
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physical relevances proceed with a fairly equal
spanwise velocity. From the plot depicting the
evolution of the heights of two rotationary centers,
a large discrepancy is clearly visible in Figure 9(b).
Within 138 <z < 282, the values of z;z and z; con-
tinue to increase until ¢ =162. Prior to t =210,
two vortices are equally displaced along the z di-
rection. Subsequent to this time, z; maintains a
slowly increasing pace while the pace of z; drops
sharply. This results in a marked change in their
relative positions in the vicinity of the two end
walls. The main cause of this difference is the rota-
tional velocity direction. Of the two vortices, the
rotation direction of the TGL vortex adjacent to
the corner is opposite to that of the corner vortex.
The velocity is thus cancelled out by the corner
vortex so that the strength of the wall-shear in-
duced TGL vortices tends to be smeared by the

corner vortex. Unlike the wall-shear induced vor- -

tex, the free-shear induced vortex is only slightly
affected because it rotates in the same direction as
does the corner vortex.

The revealed counter-rotating TGL vortices
have close resemblance in their velocity compo-
nents. It is, thus, worthwhile to look for plausible
reasons why four of the five sets of TGL vortices
are unsymmetric. To elucidate the origin of this
asymmetry, we have plotted in Figures 10(a, b,c)
the streamlines at planes x = 0.525, z=0.525 and
in Figure 11 the so-called USE cut plane. In the
very early stage, say t =15, the corner vortex be-
comes clearly visible even though the contour line
of v =0 varies little in regions away from the end
wall. After a time interval of At = 10, a circulation
cell is established as a mutual consequence of the
developing corner vortex and the outward-run-
ning spiraling flow motion over the bottom plane.
This circulation cell interacts with the corner vor-
tex at spatial locations near the two end walls.
This cell will be engulfed in the corner and will,
thus, enhance the corner vortex at t = 65, followed
by a newly developing circulation cell of the same
physical character. Subsequent to t =70, this cell
grows in size and interacts with the corner vortex.
Before being engulfed into the corner vortex,

another circulation cell is established. As clearly
evidenced from the wavy contour line of v=0
shown in Figure 10, the first roller of primary flow
relevance is established at t ~ 75. In between the
two circulation cells which are away from the bot-
tom wall, a circulation cell emerges from the
boundary layer. Then, in between the two counter-
rotating vortices originating from different physi-
cal relevances, the separated boundary layer is
clearly manifested by upward velocities. Notable
in Figure 10, is that the isoline of v =0 crosses
these counter-rotating vortices. Taking into con-
sideration a control volume of small size, over
which the interface of these vortices is located and
the spanwise velocity is negligibly small, the veloc-
ity component in the direction of the lid-plane
motion decreases due to the underlying conserva-
tion of energy. The velocity distribution, thus,
tends to be of the Gortler type. Exclusive of the
TGL vortices located at the symmetry plane,
y= 1.5, the right vortex in each pair of TGL vor-
tices is classified as the free-shear vortex while the
left one is the wall-shear vortex. Clear demonstra-
tion of the asymmetry of two vortices can be
found in Figure 5. According to Figure 10, the for-
mation of one shear-induced circulation cell at
t =85 and another circulation cell emanating dif-
ferently from the primary region paves the way for
the emergence of another new pair of TGL vor-
tices.

During the course of the formation of TGL vor-
tices, we measured the height and width for both
secondary eddies. We have summarized them
graphically in Figure 12. As the separation surface
at the upstream side detaches from the vertical
side wall, the width of the USE tends to increase.
The summit forms accordingly. In contrast, the val-
ley forms in regions where the width of the DSE
decreases. Once the vortex pairs reach the local
maximum kinetic energy, at time t=8S5 for
example, the USE width and DSE width shown in
Figure 12(a) evolve to their extreme values. At
that moment the spanwise length of “A”, shown in
Figure 12(a), is exactly the length of two spatial
points where the line of USE width intersects with
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(a)

FIGURE 10 Computed solutions plotted in terms of streamlines for showing how TGL vortices form.
(a) at x = 0.525 plane; (b) at z = 0.525 plane; (¢) at USE cut plane (defined in Fig. 11}

the line of DSE width. To confirm that this finding
is universal to the investigated lid-driven cavity,
we have plotted widths and heights for both sec-
ondary eddies. Plots depicted in Figures 12(b,c)
not only confirm the above conclusion, but also
provide us with a clear illustration of the flow
periodicity for At = 72. Figure 6 plots the length of
the upstream detached separation surface against
the time frame. This figure provides another view-
point for understanding. the evolution of the for-
mation-transport-termination. of -TGL - vortices
{designated by A,B;C,1,2,3,4,5). [In the whole
evolution period of Ar =426, the symmetric TGL
vortices (TGL C) which formed at y =15 do not
emerge until t = 95. Once this pair-of TGL vor-
tices forms, it remains quite stationary. This figure
also clearly shows the formation of new TGL vor-
tices, as designated by TGL(A, B), TGL(1,2) etc.

4.2, Energy Aspect in Association
with the Formation of TGL Vortices

We will now discuss the formation of TGL vor-
tices, or the onset of laminar instabilities, from the
energy viewpoint. In the present incompressible
and - isothermal flow system, the specific total en-
ergy varies only with the potential and kinetic en-
ergy. In particular, the kinetic energy represents
the primary change of the total energy because the
potential energy in the investigated system varies
very little. In response to a disturbance, the under-
lying energy principle dictates that the-fluid flow
remain in a minimal energy status if the system
still - remains - stable. This clearly ~explains -the
necessity of plotting energy contour levels in the
vicinity of the maximal kinetic energy to deter-
mine where TGL vortices will most likely develop.
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z #xis

x axis

FIGURE 11 Contour plots of kinetic energy at the symmetry
plane y = 1.5 and at time ¢ =25 for indicating where the local
maximum kinetic energy locates.

Figure 13 shows the kinetic energy (u® + v* + w?)
at the plane x=0.525. From this figure, it is sur-
prising to find that the location where the free-
shear roller is located always falls into the highest
level of kinetic energy, as denoted by the dotted

ergy.

Now, it is worthwhile to explain why we are
interested in plotting figures at the x =z=10.3525
planes. The main reason is that the structure of
TGL vortices can be most clearly seen there. At a
spanwise location y= 1.5, we have plotted the
contour lines of kinetic energy at time £=25 in
Figure 11, This figure clearly shows that the local
maximal of kinetic energy falls into a part of a
circle, centered at (x=0.525, z=10.525) with a
radius of 0.4. This implies that as TGL vortices
emerge, they will most likely appear and be clearly
visualized in a plane cutting through {x=0.525,
z = 0.525) where the kinetic energy takes on its local
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FIGURE 12 llustration of width and height of secondary
eddies together with the contour lines of zero spanwise velocity
at x =0.525 and z =0.525 planes, against the coordinate y.

(a) t = 85; (b) t =282; (c) t = 354.

‘maximum value. ‘Finally, we have plotted in

Figure 13 the contours of kinetic energy at the
x =0.525 plane to illustrate the relationship between
the local maximal kinetic energy, the detached up-
stream separation surface, the TGL vortices, and the
zero contour lines of spanwise velocity.

5. CONCLUDING REMARKS

In this paper we have applied a QUICK-type advec-
tive scheme and a finite volume method to explore

FIGURE 13 Computed plots at x =0.525 plane for showing
the formation of TGL vortices from the energy principle. The
shaded area in these plots are indicative the higher level of
kinetic energy.

in depth the flow evolution in a lid-driven rectan-
gular cavity. We have carried out laminar flow
analysis in a rectangular and non-uniform grids.
The algebraic equations, thus, are exempt from the
necessity of dealing with approximation of metric
tensors and employment of turbulence modeling.
The predicted physics, thus are contaminated less
by numerical errors, and the acquired solution can
realistically mimic the flow physics. Based on the
problem investigated and the solutions obtained,
some important findings from this numerical
simulation are summarized below.

1. Beyond t = 85, the first two pairs of unsymmet-
ric vortices emerge from where the flow
becomes separated. In these counter-rotating
vortices, one vortex is not symmetric with the
other because they originate from different
physical phenomena,

2. Prior to t =138, four pairs of TGL vortices of
unsymmetric character have fully developed.
Only after the symmetric pair of TGL vortices
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is stably formed at y = 1.5 does the evolution of
the mobile TGL motion enter into a periodic
mode having a time-periodicity of 72. In the
course of the flow development, which can be
classified as periodic, new TGL vortices emerge
only at y~ 1.7. Along with unsymmetric TGL
vortices moving towards the two end walls,
these vortices are destined for immersion into
the corner eddies. This implies that the number
of TGL vortices does not unconditionally in-
creases. Five pairs, at most, of well-developed
TGL vortices are observed in the whole cavity.
Subsequent to r =138, three time periods are
needed for a pair of TGL vortices, having
emerged, to finish their journey.

. We have discussed the formation of flow in-

stabilities from the energy viewpoint. As the en-
dwall induced left- and right-running vortices
spiral monotonically towards the symmetry
plane, the normal force exerted there resists the
subsequent transport process, leading to the
flow destabilization. The isosurface of v =0 is,
thus, radially expanded in a direction towards six
solid surfaces of the cavity. In the course of this
outward extension, a free shear vortex is induced
along a curved layer where the kinematic energy
takes its local maximum. The formation of shear
vortex, in turn, adds an additional drag to the
developing boundary layer that is attached to the
floor of the cavity, leading to the onset of a wall
shear vortex. It is these free- and wall-shear vor-
tices that provide a mechanism for the non-
stationary bursting TGL vortices.
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