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MONOTONIC, MULTIDIMENSIONAL
FLUX DISCRETIZATION SCHEME FOR
ALL PECLET NUMBERS

Tony W. H. Sheu, S. F. Tsai, and S. K. Wang
Department of Naval Architecture and Ocean Engineering,
National Taiwan University, Taipei, Taiwan, Republic of China

The focus of this work is to resolve discontinuities in the flow by a hybrid scheme comprising
two classes of flux discretization schemes. Construction of a stiffness matrix having the
M-matrix property is desirable in finite-element codes for capturing a solution profile with
an appreciable gradient. In this study, two finite-element formulations capable of yielding an
irreducible diagonal dominant type of matrix equation are proposed and compared. The first
class of finite-element method is suited for high-Peclet-number problems and is formulated
within the Galerkin context. The other class of upwind scheme, which is applicable to
lower-Peclet-number flows, falls into the Petrov-Galerkin category. The finite-element test
and basis spaces are spanned by Legendre polynomials. Assessment studies are made, with
emphasis on the accuracy and stability of the solution. We alse address the sensitivity of this
scheme 1o Peclet numbers in obtaining monotonic solutions. Numerical investigation reveals
that the propesed scheme is effective in producing menotonic solutions at high- and
{ow-Peclet-number conditions.

INTRODUCTION

A computer code with good discontinuity-capturing capability is a challenging
task to develop for simulating high-speed gas dynamics or incompressible hydrody-
namics. Since the simplest prototype equation characterizing these flows is that of
the scalar convection-diffusion equation, the flux discretization scheme for the
solution of this passive transport equation is a subject of fundamental importance
in fluid mechanics and has been the focus of many intensive studies over the last
few decades. Working equations of this type are also of considerable engineering
interest because they are amenable to analytic solution. Investigation of this
equation is instructive for detailed assessment of the discretization methods so far
devised. It is for these reasons that this model problem is the continuous subject of
much research interest, academically as well as practically.

Over the last 40 years, considerable progress has been made in numerical
modeling of the scalar convection-diffusion equation. There remain some notori-
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NOMENCLATURE

h mesh size W, weighting function
hg, h,  mesh sizes in the computational plane 5 ; permutation notation
J Jacobian of the transformation Ax, Ay mesh size along the x and y directions,
N; basis test function respectively
P, ith term of the Legendre polynomial m diffusivity of the fluid
Pe Peclet number &n normalized spatial coordinates
s streamline coordinate b primary variable for the scalar
T truncation error transport equation
u, v velocity component in x and y

directions, respectively

ous difficulties to be circumvented, and answers are not definite yet. Examples
include, among other difficulties, numerical modeling of fluxes in a multidimen-
sional region where convection prevails. In many cases, flow discontinuities in the
flow may further complicate the analysis, due to the possible presence of wiggles in
high-gradient regions. The need to suppress these oscillatory solutions motivated
the present study. Flux discretization errors can be broadly divided into two main
categories: those that deal mainly with dissipation and dispersion, and those that
deal with numerical diffusion as a whole. Numerical dissipation refers to artificially
introduced smearing of the predicted profile, while numerical dispersion refers to
nonphysical spatial oscillations in the solution. Besides solution accuracy, numeri-
cal stability, and scheme consistency, an efficient numerical simulation also in-
volves computational efficiency and ease of programming. These desired properties
are, however, difficult to achieve simultaneously. What fits for solution accuracy
may not for solution stability. The focus for this study is solution monotonicity and
accuracy.

Numerical solutions to multidimensional flow equations are often grossly
smeared by excessive addition of false diffusion errors. Employing a flow-oriented
flux discretization scheme serves as a way to circumvent this deterioration of the
solution. In many flows, steep gradients appear, causing the solution to deteriorate
further. In these circumstances, a flow-oriented flux discretization scheme no
longer suffices for production of oscillation-free solutions. Difficulties in suppress-
ing over- or undershoots in the solution have led to the development of bounding
schemes. Much of the previous work has been devoted to designing a scheme that
can accommodate the total variational diminishing (TVD) property [1]. However,
we encounter difficulty in extending the underlying criterion of the TVD conditions
to multidimensional analyses.

The flux-corrected transport (FCT) algorithm of Boris and Book [2], which
was later generalized by Zalesak [3], is regarded as the first multidimensional
high-resolution scheme developed by the finite-difference /volume community.
This scheme, together with the filter remedy and methodology (FARM) of Chap-
man [4] and other variants of flux limiters, have been applied to different classes of
equations by one of the present authors [5, 6]. Among other schemes, the simple
high-accuracy resolution program (SHARP) [7] and nonoscillatory, integrally re-
constructed volume-averaged numerical advection (NIRVANA) scheme [8, 9],
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developed by Leonard, and SMART (sharp and monotonic algorithm for realistic
transport), developed by Gaskell and Lau [10], have also gained wide popularity. In
a parallel development, the FCT algorithm has been applied to the Taylor-Galer-
kin framework to resolve sharp profiles [11-14]. The other approach for construct-
ing oscillation-free schemes is to apply a global positivity principle to numerical
analyses that were developed within the explicit context [15, 16]. While this
principle has a sound basis in theory and is easy to implement in existing computer
codes, its application scope is limited to explicit schemes. Filtering techniques,
applicable to analyses that involve solving field variables from simultaneous alge-
braic equations, must be devised. To avoid erroneous oscillations near jumps, we
have modified the test functions defined in the streamline upwind Petrov-Galerkin
(SUPG) model by means of added nonlinearities [6]. With this nonlinear addition,
the resulting stiffness matrix ensures satisfaction of either the total variational
diminishing property [1] or the maximum principle [17-19]. Expioiting this princi-
ple yields a monotonic solution profile. Instead of modifying the test functions,
Rice and Schnipke [16] and Hill and Baskharone [20] took a different approach in
an attempt to achieve the same goal. Integral terms involving convection terms
were evaluated along the local streamline, thus providing a monotonic solution
profile.

Recently, Ahue and Telias [19] used an exponential-biased test function to
construct an M-matrix. Their success has prompted us to propose a biased
weighting function that is constructed in favor of the upstream field variable.
Guided by this mathematically rigorous theory, we have successfully captured sharp
gradients or discontinuities in the flow {21, 22]. The purpose of this study is to
assess this Petrov-Galerkin formulation against the monotone streamline upwind
model of Rice and Schnipke [16].

We begin by describing the target problem, known as the convection-diffu-
sion equation. We bring the monotonicity-preserving property into the Petrov-
Galerkin framework. Bearing in mind that simulation quality depends on accuracy
and stability, we have carried out fundamental studies and discussed them here in
detail. In order to validate the proposed flux discretization scheme, we will present
a problem which has a closed-form solution for the scalar transport equation and is
defined in a square cavity. Attention is directed to assessing the scheme perfor-
mance.

MULTIDIMENSIONAL FLUX DISCRETIZATION SCHEME

The working equation considered here is that of the transport equation for
the passive scalar ®:

udb, +v®, = u(d, + ) (D

We consider in this study a simple flow given by u = (i, v), where u and v are two
constants. This simplification avoids difficulties in handling nonlinearities in the
equation. For simplicity, this article is concerned with a constant diffusion coeffi-
cient w in a simply connected domain D. Due to the elliptic nature of the partial
differential equation (1), closed-form solutions demand that boundary values of @
be prescribed at the entire boundary of the physical domain D.
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Finite-element solutions, Aci), to the transport equation (1) are obtained by
demanding that R = u®, + v®, — u(®,, + ®,,) be orthogonal to the weighting
function. Solutions thus obtained can be viewed as a search for the weak solutions
to Eq. (1). Depending on the relative ratio of the convection and diffusion effects,
as measured by the maximum values of Pe, = u Ax/u and Pe, = v Ay/pu, differ-
ent test spaces (W)} are chosen for computational reasons. Here, Ax and Ay
denote mesh sizes along the x and y directions, respectively. Within the weighted
residuals context, substitution of bilinear basis functions N; for ® = L N( &, 1)®;
into the weighted residual statement, [,WRd{}, = O, yields a matrix equation for
the element e. Upon assemblage of finite elements, the global coefficient matrix is
thus formed. There remains selection of a test function to close the algebraic
system. How the weighting functions are constructed is of pivotal importance and
warrants further discussion.

For problems involving multiple dimensions, the first-order derivative terms
in Eq. (1) present numerical difficulties. While use of upwind approximation of
these terms circumvents notorious difficulties arising from the direction-dependent
fluxes, questions remain as to whether or not bounded solutions can be uncondi-
tionally computed. According to Ahue and Telias [19], a stiffness matrix of the
irreducible diagonal dominant type is a key to constructing an M-matrix, which is
needed to assure monotonic solutions, Construction of an M-matrix equation
[17-19] can be achieved in different ways. Two alternatives underlying different
ideas are considered in this article.

Monotonic Scheme Constructed by Legendre Polynomials

The first step in achieving the convective stability property for the differential
equation (1) is to weigh convective fluxes unequally in favor of the upwind side. For
purposes of consistency, diffusive fluxes are also bias-weighted in the weak sense.
In conditions where bilinear basis functions are used to approximate the scalar
transport variable ®, use of conventional upwind finite-element schemes presents
difficulties because of the insufficient polynomial degree used in the basis function
when performing integration by parts on the diffusive flux and the biased part of
the test function which, as is usual, involves 9N,/ dx or dN,/4dy. This motivated us
to choose the finite-element space which is spanned by infinitely differentiable
functions. Sheu et al. [21, 22] demonstrated that use of exponential weighting
functions offers not only convective stability, but also the Peclet-number-depen-
dent monotonic property for scalar as well as incompressible Navier-Stokes equa-
tions. One disadvantage inherent in this model is that use of exponential functions
for finite-element integration can produce prohibitively high computational costs.
This deficiency motivated further refinement of this model with a view to improv-
ing computational efficiency. In an attempt to arrive at this goal, we have
constructed a new Legendre-polynomial test space [23]:

W, = Di[dg Po(£) + dg P(E)][d, Polm) + d, P(n)] )
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where
1 uhg§ vh,m
Df—zexp( 20 ]“P —z;]
uh. &
W, (£)=(»1+ §;§)CKP(“E
—uvh
W,(n) = 1 + nm) exP( lsz_ﬂn]

2n+1 44
dg, = — f]u’f(t)P,,(!)dt

2n + 1

d’ln 2

[ worwa
-1

In Eq. (2), h, and k, denote grid sizes. Equation (2) involves the Legendre
polynomials Py(¢t) = 1 and P/(¢) = ¢. It is worth noting that the gain in computa-
tional efficiency is attributable mainly to the orthogonal property inherent in the
finite-element space spanned by Legendre polynomials:

+1 2 . .
[—1 P(0)P(t) dt = 2i_+1—6"j (i is a dummy index) 3

This mathematically appealing integral identity considerably reduces the
CPU time. It is for this reason that we are prompted to rewrite the bilinear shape
functions N,(£, n) in terms of Legendre polynomials as follows:

1
N(&,m) = Z[Po(§) + &P (EIPy(n) + m,P(n)] @

It is also important to address here that matrix equations resulting from the
use of the Legendre-polynomial weighting functions are exactly identical to those
obtained by employing our previously developed exponential weighting functions.
For the justification of using this upwind finite-element model and the proof of the
mathematical equivalence between the Legendre and exponential polynomial based
schemes, the reader is referred to the work of Sheu et al. [23].

Characteristic Galerkin Finite-Element Approach

Depending on the physical nature of flux terms, we divide them into two
groups and discretize them separately. We can rewrite the convective flux terms in
terms of the streamline coordinate s as follows:

ud, + vd, = u®d, (5)
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As for diffusive fluxes, they are more suited to formulation conducted in the
Cartesian coordinate system and are approximated in a weak sense by employing a
Galerkin approach.

_ According to Rice and Schnipke [16], we take u®, as a constant value in
each element. Following the standard weighted-residuals finite-element proce-
dures, we can derive the following weak form:

PX
usngdA—hW(fbﬂ+nyy)dA=0 (6)

where W is the weighting functions. For purposes of consistency, weighting
functions are chosen as the basis functions. The rationale behind choosing the
Galerkin formulation is to avoid dealing with diffusive fluxes in conditions when
bilinear shape functions are chosen for use. According to Figure 1, which depicts
the flow direction within an element, we approximate d¢/ds as (1/AsX®;; — @'),
where

1
¢ = ——(bhd, +ad Ta
oy b( 1 2) (7a)
u
a = (x; —x;) — (y; _}‘2); (7b)
u
b =y, _J’Z); (7c)
F1 viT- ,
! |
®,(x,.Y,) D, (x,,v,) :
side 1 u
(i,3)
F2 — pide 2 N As aide 4 _——
gide 3
a <>~ . b
@, (x,.v,} D {x.,y) ®,(x,.y,)

i

F3

Figure 1. Illustrative plot showing the downwind node identification.
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and
As = [(x3 -x) 4+ (y, —,'V')z]ll2 8)

It remains to determine the coordinates x',y’, and the value of ®(x',y").
Take u > 0, v > 0 as an example. Incorporation of the characteristics into the
Galerkin formulation is done by approximating ®{(x = x', y = y') as follows [16]:

@ = (1 - F)®, + (1 - F,)®, + F,F®, (9)
where
NS
0 < F, = max{min F—,l 0 <1 (10a)
2
.| Fa
0 < F, = max{min F_’l 0y <1 (105)
3

Here, F,(i = 1-4) denote the outward normal facial fluxes:

Fy=v(xy —x,) +uly, —y;) (11a)
Fy=v(x; —x) +uly, —y)) (116)
Fy=0(x, —x)) +uly, —y,) (11c)
Fy=v(x, — x3) + uly, —y,) (11d)

The spatial location (x', ¥’} is chosen as the extension of the velocity vector from
the node (x3, y,) shown in Figure 1. Their coordinates are approximated by similar
linear summation as those of @' defined in Eq. (9). By substituting Eqgs. (7)-(11)
into the Galerkin statement, as shown in Eq. (6), we can derive the following
stiffness matrix for an element:

0 0 0 0
0 0 0 0
5 U U U, {(12)
—FF = —(1 - F)—= —-= -1 -F)—=
F‘DF"ASAf ( ")AsAf ASAI (1 F‘D)ASAf
0 0 0 0

where

Ap= [[N(g, )1 d¢ dn (13)
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FUNDAMENTAL STUDIES ON THE PROPOSED
UPWIND MODEL

There are several areas that warrant detailed investigation before a newly
developed discretization scheme can come into widespread use for industrial flows.
Typical of them are accuracy and stability studies.

Following the standard procedures of Warming and Hyett [15], we can derive
the following modified equation for our finite-element model:

u®, + v, — (@, +@,) =T (14)
where
T =c®,, + o8, + 30, + dd,,, + dy®,,, + ds®,,, + d,D,,,
+ed,,. + P, +ted,,, +ed,, b, + (15)

Algebraic complications preclude functional expression of the coefficients
shown in (15). To compensate for this, we express these coefficients numerically.
According to Figure 2, the rates of convergence for ®, ., and ®,,  are O(h*),
while those for @, ®,,,, ®,,,, B, ¥\, Prrrrr Dy, and P, are in the
vicinity of O(h?). As for the leading terms, ®,, and @, , their errors are reduced
by a convergence rate of O(h?). In light of these results, this fundamental analysis
gives insight into the order of accuracy for the finite-element approximation
constructed by using Legendre polynomials and helps to assure that a uniformly
consistent property can be obtained.

According to Ahue and Telias [19], a monotonic prediction of the solution
profile for Eq. (1) demands that the stiffness matrix be a real, irreducible,
diagonally dominant matrix where off-diagonal entries are non-negative. At this
point, it is instructive to examine whether the upwind scheme formulated on the
basis of Legendre-polynomial finite-element spaces can be applied to yield an
unconditionally monotonic solution. To this end, we derive the discrete finite-ele-
ment equation with its coefficients expressed in terms of Peclet numbers. By
varying the values of Pe, and Pe , we compute the coefficients, from which we can
determine whether or not it is pos51ble to obtain the sufficient (but not necessary)
condition of yielding a monotonic solution. In Figure 3, shown in the shaded area
are the solutions computed under grid sizes for a given set of diffusivity and
convective velocities, which are, by definition, monotonic.

NUMERICAL RESULTS

For purposes of validation, we consider first an analytic test problem. This
problem is designed specifically to benchmark the solution accuracy and examine
the solution monotonicity for two investigated upwind finite-¢lement schemes, The
question of whether the upwind schemes under investigation accommodate good
discontinuity-capturing capability is answered by solving the well-known skew
advection-diffusion problem. ’



Downloaded by [China Science & Technology University] at 02:47 26 February 2014

DISCRETIZATION SCHEME FOR ALL PECLET NUMBERS 449

10}

1-3)
1-4)

¢ (i
d, (i

(a) (b)

w* h 19"

(©
Figure 2. Computed rates of coefficients in Eq. (15): (&) &,,,®,,, P, (B} &, D, ., P, D, (c)

P ¢ P P P,

xR Txxxy? Txxyyr Fryyyr Tyyyyt

Analytic Study

The first problem we will deal with is configured in Figure 4. Subject to the
analytically prescribed boundary data, the advection-diffusion equation (1) is
amenable to a boundary-layer-type analytic solution:

{1 — expl(x — D(u/pw)IH1 — expl(y — D(v/u)]}

P(x,y) = [1 — exp(—u/w)1 — exp(—v/u)]

(16)

Finite-element solutions are sought in a square of unit length, that is covered
with a uniform grid. We start from a very coarse grid, namely, 11 X 11, and
proceed to continuously refined grids 21 X 21, 31 X 31, 41 X 41, and 51 X 51. For
this study, numerical errors are computed and cast in the L, norm sense. We have
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S Figure 3. Iustration of the monotonic
40 region underdying the proposed upwind
scheme (F,, = Pe, P, = Pe ).

tabulized the L, error norms for the investigated schemes in Tables 1 and 2. As
Table 1 reveals, the computed errors are due mainly to the machine errors. As to
the computed errors shown in Table 2, they are continuously reduced with an
increase of the grid density. It is thus instructive to plot ¢ =

loglerr, /err,) /log{M, /M), from which the rates of convergence for both schemes
can be clearly seen. Here, errdi = 1,2) denotes L, norms of errors computed at
two continuously refined grids, (M, + 1)* and (M, + 1)°. Notably, computed
solutions, as shown in Table 1, are highly accurate for p = 1.0, 0.1, and 0.01, so
that the rates of convergence are meaningless. According to Table 2, the rates of
convergence are plotted in Figure 5. Up to now, we can conclude that in pursuit of
a high-resolution monotonic solution, it is preferable to apply the Legendre-poly-
nomial finite-element model to problems with lower Peclet numbers and to apply

¥
4 Dal
1»exp{éy~%§§«g}
f - TOR— - Gl
t-gupl 5y
#
1 X
©o : u
oo ORI
gl ;} 3

Figure 4. ustration of the analytic test problem.
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Table 1. Computed L, error norms with different viscosities for the analytic problem using the
Legendre-polynomial finite-element model (4 = 1, v = 1)

451

Grid n=10 p=10x10"" w=10x 1072
11 x 11 1.175 x 10* 1217 X 109 4.407 x 10~
2l x 21 1.095 x 10~° 1.156 X 10~° 5.885 x 103
31 x 31 1.174 x 107° 1.134 x 1077 3.694 x 10~1°
41 x 41 1073 x 10°° 1.112 x 10~* 2.865 x 10~ 10
51 % 51 1.090 x 10™? 1.106 x 10™° 2671 % 10710

Table 2. Computed L, error norms with different viscosities for the analytic problem using the
characteristic Galerkin finite-element model (u = 1,0 = 1)

Rate of Rate of Rate of

conver- COnver- CONver-
Grid p=10x10"% gence u=10x10"% gence p=10%10"% pgence
11x11  1.125% 107! 1.508 x 1072 1.575 x 10~
21 X21 7616 x 1072 0.563 2.184 % 1073 2787 2569 x 10~7 9.259
31x31  6220x 1072 0499 4929 x 10~* 3671 6976 x 107 14572
41x 41 5483 %1072 0.438 1.455 x 10~* 4241 2966 % 10712 18.980
51 %51 5026 %1072 0389  5178x 1077 4630 7.250x10°1 6.314

the characteristic Galerkin finite-element model to problems with higher Peclet
numbers. It is also important to note that computational experience tells us that
oscillation-free solutions are not found for problems with Peclet numbers higher
than 20 using the Legendre-polynomial finite-element model,

For the
angles on the

L2-error norm

10"

10* |

10°
10*
10°

10*

107 |

10"
10°
10"

10"

102 1

sake of completeness, we have also investigated the effect of flow
solution quality. To accomplish this goal, we considered another flow

rate o fconvergence=0.5 -

rate o fconvergence=3,3
v
3
F rate ofconvergence=13.3
F Al
-
L
—8—— 11 = 0.01 charac. G. model
3 b/ 1 = 0.001 charac. G. model
r @ = 0.00001 charac. G. modet
§
i H i 1
0.03 0.05 0.07 0.09
h

Figure 5. Rates of convergence for the analytic test problem.
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Table 3. Computed L, error norms for the analytic problem using the Legendre-polynomial
finite-element model with different flow directions ( u = 0.01)

Grid u=1lv=1 u=1lLuv=05
11 x 11 4,407 x 1076 1.357 x 10~8
21 x 21 5.885 x 1078 8.586 x 10™10
31 x 31 3.694 x 1078 5534 x 1010
41 x 41 2.865 x 10710 7.628 x 10710
51 x 51 2671 x 1071 5.670 x 1010

condition. The case considered is that with constant velocities given by # = 1 and
v = 0.5. Solutions were sought at grids similar to those for the case of (u = 1,v =
1). For comparison, we plot the computed error norms for both schemes and flow
conditions here in Tables 3 and 4. The value of the investigated viscosity is 0.01. As
Tables 3 and 4 reveal, the computed quality using the characteristic Galerkin
finite-element mode!l deteriorates as the flow angle moves away from 45°. The shift
condition is, in fact, accommodated in the characteristic Galerkin finite-element
model. As to the quality of the computed solutions using the Legendre-polynomial
finite-element model, it is affected very little. Before considering the next test
problem, it is worthwhile to examine in Figure 6 the computed profiles of the
passive scalar for both schemes. These profiles are plotted at y = 0.5 for different
grid resolutions under intermediate Peclet numbers such that monotone solutions
can be ensured. As Tables 1 and 2 indicate, the solution accuracy obtained using
the Legendre-polynomial finite-element model is much better than that obtained
using the characteristic Galerkin finite-element model.

Skew Advection-Diffusion Problem

An even harder problem, configured in Figure 7, follows. This problem,
known as the skewed flow transport problem, is featured as having an internal
layer and is regarded as a worst-case scenario for any upwinding method. Within a
square cavity of unit length, a tilted line passing through a corner point at (0,0),
making a slope of m = v /u, divides the unit square into two subdomains. For this
study, the y directional component of the velocity remains unchanged with v = 1
in the whele domain, Subject to the boundary condition for the working variable, a
sharp change in the transport variable is observed across this dividing line.

Table 4. Computed L, error norms for the analytic problem using the characteristic Galerkin
finite-element model with different flow direction ( 2 = 0.01)

Grid u=1lv=1 u=1,0=05
11 % 11 1.125 x 10~! 1.401 X 107!
21 x 21 7.616 x 1072 1.092 x 10~!
31 x 31 6.220 x 1072 9.756 x 10~2
41 x4 5.483 x 1072 9.139 x 1072

41 x 41 5.026 x 10~? 8.759 x 10~2




Downloaded by [China Science & Technology University] at 02:47 26 February 2014

DISCRETIZATION SCHEME FOR ALL PECLET NUMBERS 453

1.0 & - a-0-0-0-8 - & .y A .

08 |

08 I

07 |

06 |-
—*— 11 X 11 charac. G. model

® 05} —+—— 21 X 21 charac. G. model
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o2k ~———— Exact Solution

o1 |

0.0 3 1 A 1 " | P, 1 i i

0.0 02 0.4 0.8 0.8 1.0

X

Figure 6. Computed solution profiles at y = 0.5 for the analytic test
problem for the case of u = 0.01.

The aim of investigating this case is to demonstrate the effectiveness of the
composite monotonic scheme in resolving a high-gradient solution profile in the
flow. Since this problem is not amenable to analytic solution, the solution com-
puted at the finest grid resolution of 160 X 160 is taken as a reference for
comparison, This problem is conducted in a unit square that is also covered with
uniform grids of different resolutions. Different diffusivities are considered in this
study to examine the sensitivity of the proposed scheme to the Peclet numbers.
Given that the value of w is as low as 1.67 X 1072, the Peclet numbers still fall
within the monotonic region for a grid with 21 X 21 resolution. We apply the
Legendre-polynomial finite-element model. With continuous reduction of the
diffusivities, namely, p = 1.0 X 1073 and p = 1.0 X 1075, we use the characteris-
tic Galerkin finite-element model. According to the solution profiles shown in
Figure 8, we can capture nonoscillatory high-resolution solutions in the whole

Q=1

+1
v

O=1

o=
-2

Figure 7. Illustration of the skew advec-
(0.0 @=0 +1 X tion-diffusion problem.
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___‘.-“\\\\“

@)

Fipure 8. Computed solutions for the skew advection-diffusion problem for the case with 21 X 21 grids:
(@) p = 0.1 using the Legendre-polynomial model; (b) p = 1.67 X 10~? using the Legendre-polynomial
model; (¢) u = 1.0 X 10~* using the characteristic Galerkin model; (d) x = 1.0 X 10-3 using the
characteristic Galerkin model.

range of Peclet numbers. For clearness, we also plot in Figure 9 the solution
profiles at y = 0.5 for different grid resolutions. For the sake of completeness, we
consider the case with (u, v) = (0.5,1). As Figure 10 reveals, monotonic solutions
are also computable using the Legendre-polynomial finite-element model for cases
with larger viscosities while the characteristic Galerkin finite-element model is
used for smaller viscosities.

CONCLUDING REMARKS

Two classes of upwind finite-element schemes for discretizing advective fluxes
have been selected for use in the present study. The first approach falls into the
Petrov-Galerkin context, where both the biased finite-element test space and the
basis space are spanned by the Legendre polynomials. The other approach consid-
ered here is due to Rice and Schnipke [16). The underlying idea in formulating the
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Figure 9. Computed solutions profiles at y = 0.5 for the skew advection-diffusion
problem for the case of (i, v) = (1, 1) at different viscosities.

upwinding capability is to take the flow characteristics into consideration. This
comparison study has addressed solution accuracy as well as solution monotonicity.
Both schemes under investigation accommodate monotonic matrices. The underly-
ing theory used to determine whether or not the solution monotonicity can be
ensured is based on the discrete-maximum principle. Matrix equations obtained
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Figure 10. Computed solutions profiles at y = 0.5 for the skew advection-diffu-
sion problem for the case of (u,v) = (0.5,1) at different viscosities.
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from two different schemes fall into the monotonic category. Monotonicity can be
achieved by choosing the Legendre polynomials to span the test space or by
incorporating the flow characteristics into the finite-element formulations. Compu-
tational exercises reveal that the Legendre-polynomial finite-element model is
most applicable to lower Peclet numbers, while the characteristic Galerkin finite-
element model is best suited for higher Peclet numbers. With this fact in mind, we
have proposed a hybrid monotonic finite-element model to capture the flow
discontinuity for all Peclet numbers.
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