
Free 
boundary 
condition

95

Implementation of a free
boundary condition to Navier-

Stokes equations
Morten M.T. Wang and Tony W.H. Sheu

Department of Naval Architecture and Ocean Engineering,
National Taiwan University, Taipei, Taiwan, Republic of China

Introduction

Numerical prediction of flow physics involves the specification of boundary con-
ditions to close the problem. Whether all or part of the boundary needs consid-
eration depends on the nature of the investigated partial differential equations.
Taking as an example, closure boundary conditions for Navier-Stokes equations
at an incompressible limit take different forms because a time-dependent problem
is classified as elliptic-parabolic while it is elliptic in its steady counterpart. Even
though we are under the restraint of mathematic classification, in an attempt to
obtain a weak-form solution we may impose boundary conditions according to
the physics since boundary conditions, no doubt, come from nature.

Many flow problems of practical relevance in oceanography and meteorology
are defined in a fairly large spatial domain. For some flow problems, like ocean
circulation, air pollution, and weather prediction, we need to truncate the
physically unbounded domain because of CPU-restrictions, memory-limitations,
etc. The ambiguity regarding synthetic boundary conditions poses significant
computational difficulties since information is hardly available there. Use of an
erroneous outlet boundary condition leads sometimes to numerical instability
and very often to appreciable inaccuracy in the interior solution. This has
motivated researchers, in the community of computational mechanics, to make
efforts towards circumventing this difficulty. We may fabricate outlet boundary
by intuition and experience. Inclusion of a far-field perturbation solution or a
buffer layer in the analysis is also referred to. In general, these “cures” are
problem-dependent and fail to properly represent the local physics in reality. As
a consequence, we have felt the need for a treatise on developing a viable outflow
boundary condition which can mimic or retain the local real behaviour.

We have organized this paper as follows: in the second section, we present
Navier-Stokes equations in the form of primitive working variables which are
then discretized by a mixed finite element method. In the third section, we
discuss some existing outflow boundary conditions and some important issues
regarding the consequences of the imposed outlet boundary conditions. We
bring forward here a new outflow boundary condition. In the fourth section, we
present the computed results of an analytical problem for the validation
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purpose, followed by a backward facing step benchmark problem and a
problem of practical relevance. In the final section, we offer conclusions.

Theoretical formulation
In the present study, we consider the following time-independent set of partial
differential equations for the solutions of an incompressible fluid flow:

(1)

(2)

where Re = u0L/v stands for the Reynolds number, L is the characteristic length,
u0 the characteristic velocity, and v the kinematic viscosity of the fluid.

In considering governing equations which are classified as elliptic, we demand
that boundary conditions be prescribed on the entire boundary of the physical
domain. In order to close the differential equations (1-2), we specify velocities at ΓD

(3)

Besides the above imposed Dirichlet velocities, the following Neumann type
boundary condition is needed at the open boundary ΓN having the unit outward
normal vector n:

(4)

When simulating an incompressible fluid flow, we demand that divergence-free
discrete velocities be attainable. Attempts to ensure that the fluid flow is
everywhere and always incompressible have dominated the subject of
computational fluid dynamics. We analyse equations (1-4) by using a mixed
formulation rather than by using a segregated approach so that the mass and
momentum conservations can be simultaneously coupled1-3. The pressure in the
incompressible Navier-Stokes equations serves as a Lagrangian multiplier4. As
a result, accurate predicted discrete solenoidal velocities may accompany a non-
smooth pressure. Legitimate choice of finite element trial spaces for primitive
variables is thus of importance because the mixed finite element method is
subject to the LBB (Ladyzhenskaya-Babŭska-Brezzi) stability condition5-7. To
retain a sufficiently smooth solution for the investigated elliptic system (1-4), we
take an element free of the LBB stability constraint into consideration. By
substituting the well-paired bilinear interpolation function for the pressure and
the biquadratic interpolation function for the velocities into the weighted
residual statement of (1-2), we can derive the following matrix equations along
with the bilinear test function for the mass conservation equation:

(5)
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where

It remains to define test functions for placing weights on the momentum equ-
ations to resolve non-linear velocity oscillations. While the discretized system is
stabilized, introduction of biased weighting functions may contaminate the
solution. The deterioration in accuracy is mainly attributable to the false
diffusion error which arises from the multi-dimensional flow simulation. To
achieve stable and accurate solutions, we present a Petrov-Galerkin finite
element model. Furthermore, this upwind model belongs to a variant of the
streamline upwind schemes on the condition that the biased weighting
functions are chosen as:

(8)

As with the Streamline-Upwind Petrov-Galerkin (SUPG) method8, the
parameter τ needs to be determined. In the present two-dimensional study, τ is
constructed by carrying out an operator splitting procedure. As a result, the
expression for τ takes the following form:

(9)

The coefficient δ will be analytically derived as follows in the sense that nodal
exactness is achievable in the single dimension. In a domain comprising quadratic
elements, the finite element solutions remain nodally exact if we demand that

where êξ and êη are the local co-ordinate basis unit vectors. In the course of finite
element calculations, linearization procedure is performed, as exemplified by
the linearized velocity

(6)

(7)
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Here, we denote the superscript (n) as the n-th iteration number while ω is the
user’s specified relaxation factor.

This section concludes with a brief description of the solution algorithm, by
which primitive variables are obtained simultaneously. The analysis begins with
a guessed velocity field from which the global stiffness matrix can be formed.
The coupled system of algebraic equations being linearized is then solved
subjected to the boundary conditions, which are the main theme of the next
section, on the truncated outlet. We will terminate the iteration procedures, in so
far as all convergent tolerances reach the users specified values. Worthy to note
is that the resulting algebraic equations are classified as being unsymmetric and
indefinite and are amenable to the conventional frontal direct solver9.

Boundary condition
General remarks and literature review
To the authors’ best knowledge, a permissible boundary condition applicable to
through-flow problems has not been found yet. At a solid wall or a free surface,
one can apply physical arguments to render boundary conditions. Unlike the
closure conditions which are derivable at a solid or a free surface boundary, one
often makes the analysis domain smaller than the real domain. As a result, no
physical reasoning is available for us to derive physically plausible outflow
conditions because downstream behaviour is unknown and is hard to predict. In
fact, there will never be an ultimate answer. For computational reasons, the
physical domain needs to be truncated at a synthetic boundary where the
surface traction vector, ftraction, defined in equation (4) is not known a priori.
This ambiguity is particularly pronounced when a simulation involves a solid
boundary to which a boundary layer is attached. Under this circumstance, it is
hoped that the artificial boundary will be far away from the inlet to prevent
unphysical feedback noises, emanating from the outflow boundary, from being
propagated upstream, and from destroying the solution. Even for problems
having very large extension in size, the analysis domain must be truncated
somewhere; otherwise, the disk storage and the computer time will be
prohibitive. This implies that there exists a dilemma in determining the trade
off between these two considerations.

Over the past few decades, considerable research has been devoted to studying
the consequences of applying artificial outflow conditions to truncated boundary.
Much of the previous works in this area have focused on compressible flow. For
an inviscid Euler fluid flow, analytical open boundary conditions which pertain to
the truncated boundary are derivable from differential equations of the hyperbolic
type. However, artificial conditions underlying the Sommerfeld radiation
condition or method of characteristics hold only for a limited flow realm. It goes
without saying that these conditions can be applied to incompressible Navier-
Stokes flow simulations. Nevertheless, the Sommerfeld boundary condition
remains as one of the most popular open boundary conditions.

As to the open boundary conditions applicable to an incompressible Navier-
Stokes fluid flow, there have been comparatively few developments. In the open
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literature, there exist several techniques which have been reported to be effective
in circumventing computational difficulties in association with the large extent
of the fluid domain. We broadly classify them into four major classes:

(1) imposition of a boundary condition by physical intuition;

(2) a hybrid coupling of the discretization method with an infinite element10

or a boundary element11;

(3) non-reflecting boundary condition12; and 

(4) free boundary condition13.

Within the realm of the first class of outflow boundary conditions, there exist
several variants. These underlying concepts differ in the implementation of
physical intuition so as to yield a boundary condition of the Dirichlet or
Neumann type. While these methods have an overwhelming advantage in
numerical implementation, they lack the underlying analytic evidence.
Simplified equations of motion have been applied at the outlet boundary to
study gradually developing flow14. More analytically, Chen and Jiang15 have
specified velocities at the outflow boundary as the sum of those at the far-field
and its analytically derivable perturbed velocities based on the corresponding
steady incompressible Navier-Stokes equations.

Nonreflecting boundary conditions are devised to absorb waves incident on the
boundary. This class of outflow boundary conditions abounds in the literature.
For a good review of nonreflecting boundary conditions, the reader is referred to
Jin and Braza12, who have made remarks on the works of Engquist and
Majda16,17, Rudy and Strikwerda18, Hedstrom19, Thompson20, Halpern21, Bayliss
and Turkel22, and Nataf23. Liu and Lin24 followed a different line to resolve
erroneous noise by attaching a buffer layer to the physical domain. The reflected
outgoing waves from an artificially truncated outlet are thus absorbed. In each
momentum equation, they added a buffer function only to the streamwise second-
order derivatives. This aids damping of the erroneous fluctuations.

Until recently, techniques like perturbation and asymptotic analyses have
been applied to flow equations between a synthetic boundary and far
downstream where matters are not disturbed. These approaches, however, are
feasible only when the flow downstream from the synthetic outflow is amenable
to asymptotic analysis. In regions sufficiently far from the object, in the case of
an external flow simulation, or far from the inlet in the case of an internal flow
analysis, the Navier-Stokes equations can be rationally linearized about the
constant state at infinity. Johansson25, and Halpern and Schatzman26 adopted
this idea to design their outflow boundary condition by linearizing the
incompressible, time-dependent Navier-Stokes equations about a constant flow
and then solving the reduced equations of a much simpler form analytically in
the Fourier space using a Laplace-Fourier technique. In this context,
Johansson25 suggested a set of outlet boundary conditions. These boundary
conditions, although quite mathematically involved, cannot be regarded as
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exact outflow boundary conditions since an assumption on the linearization of
advective fluxes has been made.

Free boundary condition
Prior to solving the unsymmetric and indefinite matrix equations, normal and
tangential components of the surface traction vector ftraction at the synthetic
outlet are needed. The difficulty is that the exact stresses are unknown a priori
at the synthetic outlet; thus, any erroneous boundary stress will result in
unphysical reflection waves and cause a significant distortion of solutions in the
interior. This, together with the fact that approaches, as was discussed in
Section 3.1, hold only for a limited flow condition and certain type of equation,
makes the search for another means of alleviating fundamental difficulty
becomes indispensable.

In this paper, we extend the validity of the mixed finite element formation to
the outlet without imposing an ad hoc stress boundary condition at the artificial
boundary. This corresponds to regarding the surface traction vector ftraction as
unknown, serving as a part of solutions to be computed. The flow structure
upstream of the outlet boundary remains unaltered in the circumstances. This
is equivalent to computing primitive variables (u, p) directly from the matrix
equations:

It is noteworthy that the underlying boundary condition matches the outflow
physics exactly with the Navier-Stokes equations which are well defined inside
the domain. As a consequence, both non-linear and diffusive fluxes in the flow
can be taken into account.

Test problem and results
Analytic validation
Prior to simulating a realistic flow problem, it is important to verify the
applicability of the proposed finite element model to the simulation of a problem
involving an attached boundary condition. A test problem amenable to analytic
solutions is, thus, desirable. In a square domain of length 1, the problem
investigated is subject to the boundary conditions defined in Figure 1.
According to the analytic solutions given by
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the boundary condition at the outlet corresponds to a traction-free outflow
boundary condition. In this calculation, analyses are carried out in a square
which is uniformly discretized with different resolutions, namely 5 × 5, 10 × 10,
20 × 20, 40 × 40. With the computed global L2– error norms, we can estimate the
rates of convergence for both working variables from Table I. As Figure 2
indicates, y-independent pressure distribution is obtained which takes the same

Mesh size ||u–uexact|| Convergent order ||p–pexact|| Convergent order

mesh 5 × 5 1.193 × 10–4 5.504 × 10–5
mesh 10 × 10 5.364 × 10–5 1.153 2.147 × 10–5 1.358
mesh 20 × 20 2.130 × 10–5 1.332 7.451 × 10–6 1.527
mesh 40 × 40 6.870 × 10–6 1.632 2.252 × 10–6 1.726

Table I.
Error of L2 norm and

convergent order for the
analytic problem defined

in Section 4.1

Figure 1.
Illustration of the

analytic problem given
in this section

Figure 2.
Computed pressure

contours for the analytic
problem given in this

section
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form as the analytic pressure given in (10). For completeness, we also plot the
reduction of residuals against the iteration in Figure 3 for each primitive
variable. Fairly good convergence behaviour is demonstrated.

Backward-facing step internal flow problem
The flow over a backward-facing step is best-suited to confirming the
effectiveness of the free boundary condition applied at the synthetic boundary.
The widespread popularity of this problem is attributable to the well-
documented experimental and numerical data. In fact, this problem was chosen
as a benchmark test by the Minisymposium on Open Boundary Conditions held
at Stanford University on 14 July 1991. While the flow under consideration has
a regular configuration, the flow physics illustrated in the interior passage are
far from simple since in the course of flow development it undergoes a series of
detachment-and-reattachment processes. Referring to Figure 4 which depicts
the investigated configuration, the aspect ratio of the height of backward-facing
step s to the width of the cross-sectional H is s: H = 1 : 2.

Figure 3.
Convergent history for
the analytic problem

Figure 4.
Illustration of the
backward-facing step
problem defined in 
this section
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At the inlet which is upstream of the step with a length of H, we have specified
a parabolic velocity profile. This corresponds to saying that the flow has been
fully developed. No-slip conditions were imposed at solid walls. In the present
study, we consider a Reynolds number which still exhibits a steady and visible
secondary eddy at the top wall. According to the characteristic velocity –u =
2/3Umax and the characteristic length H, the Reynolds number is 800. 

With the finite element grids illustrated in Figure 5 we can analyse the flow
upstream of the step, and thereby account for the geometric singularity at the
step corner. In this paper, we are interested in studying the influence of the
truncated length on the circulation eddy established just behind the step,
followed by a downstream upper secondary eddy. With a fine mesh in the
smaller channel of length 2s just upstream of the step, the physical domain of
largest size contains 1,440 non-uniform biquadratic elements. Hereafter, the
shorter domain refers to the length of L is shorter than Lmax.

Figure 5.
Finite element mesh of
the backstep problem
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To begin with, we have carried out the calculation on the basis of L = 66s, as
measured from the step. According to the computed results in Figure 6, the
velocity profile in close proximity to the exit has reached full development
(Hagen-Poiseuille). We take these solutions as being exact. Several shorter cases
with cutting planes at L/s = 10, L/s = 20, and L/s = 32 are also investigated. Test
problems with different lengths of L are carried out, of course, using the same
computer code. Figure 7 explains why reliable analysis needs to be analysed at
a truncated length, at least at L/s = 32. For L/s beyond 32, the traction forces
approach fairly close to zero.

We denote x1 as the computed reattachment length of the recirculating zone
behind the step. We also define x2 as the location of detachment and x3 as the
location of reattachment of secondary recirculating zone near the upper wall.
These values are plotted in Figure 8 for L/s = 10, 20, 32, 66, respectively, and
compare with the FIDAP results of Sohn27, finite difference results of Durst and
Pereira28, and experimental data of Armaly et al.29. The reattachment length
obtained does not match well with the experimental results, probably owing to
the fact that the experimental work of Armaly et al. was carried out at H/s =
2.061 while 2 in the numerical simulation. For cases other than L/s = 66, the
disagreement might be attributed to the fact that the channel length (L) is too
short to permit flow development. Of note is that when the Reynolds number is
greater than 400, the computed reattachment length differs from the
experimental measurement in that the flow becomes three-dimensional.

As seen from the residual reduction plot in Figures 9 and 10, convergent
solutions for each truncated boundary are attainable. The smaller the physical
domain is, the faster the convergent rate is. Also of note is that some shorter

Figure 6.
Velocity vectors and
streamlines inside the
flow domains of
different truncated
lengths, (a) L/s = 10; (b)
L/s = 20; (c) L/s = 32; (d)
L/s = 66; (e) L/s = 66
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Figure 7.
Computed traction

forces at the
investigated truncated

lengths: (a) x-component
of the traction force

vector defined in
equation (4); 

(b) y-component of 
the traction force 

vector defined in the
equation (4)

Figure 8.
Predicted locations 

of the flow detachment
and reattachment 

and the referred
comparison locations
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truncated outlets cut across the developing recirculation eddies. Indicated by
these figures is that a guessed channel length may mask the physical reality.
Consequently, a problem accommodating the free boundary condition is worth
investigating. Also of importance is that the presence of the reversed flow at the
synthetic boundary can be well-predicted. Through numerical experimentation,
we have found that the grid needs to be finely graded, otherwise the solution
might diverge. 

By examining the convergent solutions shown in Figure 6 for problems
having different truncated lengths, we have found that the solution accuracy
deteriorates for the case having a shorter domain because insufficient
downstream information has been conveyed through the wall-attached

Figure 9.
Velocity convergent
history for backward-
facing step problem on
four different truncated
lengths

Figure 10.
Pressure convergent
history for backward-
facing step problem on
four different truncated
length
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boundary layers. Figure 11 plots the outlet normal velocity profile on different
truncated lengths. As is clearly illustrated in Figure 11 and Table II global mass
conservation is obtained from the present mixed formulation.

Flow analysis in a wharf
With an increasing demand for electric power supply, discharged thermal
pollution from power stations in coastal areas has drawn considerable
attention. For cooling purposes, sea water is inducted. After undergoing a
circulation cycle, the heated water is finally discharged back into the ocean
environment. The resulting temperature increase due to these discharges might
affect living species or cause inconvenience and permanent damage to the
environment. Resolution of the conflict between environmental protection and
economic growth thus depends heavily on the design quality of the discharging
system. Under incompressible circumstances, the flow and thermal fields are
decoupled. Information about the discharged flow structure is, thus, of
importance to satisfy the environmental emission regulation.

The present study has attempted to provide the velocity distribution around
the Sen Au fish wharf, near the north part of Taiwan, where a fuel-fired thermal
power plant is located. The coastal line of the Sen Au wharf is depicted in

Figure 11.
Outlet velocity

distribution for the
backward-facing step
problem having four

different truncated
lengths. (∆: fully

developed velocity
profile)

L/s = 10 L/s = 20 L/s = 32 L/s = 66

Qoutlet/Qinlet 0.99608 0.99969 0.99973 0.99970
||Uc – Uf.d.|| 0.39002 01.6004 0.05230 0.00325

Table II.
Mass ratio of outlet flow

to inlet flow and L2 norm
of the deviation between

outlet normal velocity and
fully developed velocity
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Figure 12, where 
—
al represents the drainage outlet. A mode, as represented by

——
ijkl and 

——
bcde was constructed for the prevention of severe sea waves and

currents. To provide readers with an idea of the size of the problem under
investigation, we choose a characteristic length 

—
al for reference which takes a

length of 187m. Admittedly, to simulate such a large-scale flow problem in a
three-dimensional context, it is computationally infeasible within the
framework of mixed finite element model. To make the problem amenable to
computers presently available, we need to reduce the problem to two
dimensions and truncate the outflow boundary to ——0102

——0304 for the sake of disk
storage restriction. By applying the technique of the free boundary condition,
we can effectively obtain the velocity vector plots, shown in Figure 13. With
these velocities, the temperature distribution can be rendered by solving the
energy equation, which takes the form of a scalar convection-diffusion
equation.

Figure 12.
Illustration and mesh
for the flow analysis in
a wharf



Free 
boundary 
condition

109

Conclusions
As truncated boundaries do not exist in reality, there is no genuine physical
reasoning for deriving open boundary conditions. Nevertheless, we have to
make the calculation domain smaller than the physical domain by specifying
appropriate boundary conditions there.

For constructing open boundary conditions, we need not impose any
constraint condition at the synthetic outlet, but rather extend the validity of the
weighted residual finite element equations to the truncated boundary to prevent
the interior solution profile from being distorted by the feedback noises. This
approach indeed yields a convergent solution regardless of where the open
boundary is truncated and whether the reversed flow appears at the artificial
open boundary or not. The difference is only evidenced by a slight deterioration
of convergence rate when the synthetic open boundary intersects the circulation
bubble. With the convergent solutions, the developing stresses at the truncated
outlet can be computed a posteriori. If these stresses approach the user specified

Figure 13.
Velocity vectors and
streamlines for flow
analysis in a wharf
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zero, the computed convergent solutions within the whole domain can also be
regarded as accurate. If not, the solutions have room for further improvement.
This can be simply achieved by enlarging the computational domain while
keeping the original grid system unchanged. In other words, we pursue
numerical solutions in the truncated domain which are close to those found in
the infinite domain. The extension length from the open boundary is
determined a priori from the previously computed line integral containing the
traction vector. It is worth emphasizing that in the present method there is
neither artificial specification of an open boundary condition nor tedious
mathematic derivation. The proposed outflow boundary treatment is clean and
robust. Based on the test problems considered and the results obtained, we can
confirm the validity of the proposed boundary treatment.
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