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ARBITRARY LAGRANGIAN EULERIAN-TYPE FINITE ELEMENT
METHODS FORMULATION FOR PDEs ON TIME-DEPENDENT

DOMAINS WITH VANISHING DISCRETE SPACE
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Abstract. The aim of this paper is to introduce a finite element formulation within an arbitrary
Lagrangian Eulerian (ALE) framework with a vanishing discrete space conservation law (SCL) for
differential equations on time-dependent domains. The novelty of the formulation is the method
for temporal integration which results in preserving the SCL property and retaining the higher
order accuracy at the same time. Once the time derivative is discretized (based on an integration or
differentiation formula), the common approach for terms in differential equation which do not involve
temporal derivative is classified to be a kind of “time averaging” between time steps. In the spirit of
classical approaches, this involves evaluating these terms at several points in time between the current
and the previous time step ([tn, tn+1]), and then averaging them in order to provide the satisfaction
of discrete SCL. Here, we fully use the polynomial in time form of mapping through which the
evolution of the domain is realized—the so-called ALE map—in order to avoid the problems arising
due to the moving grids. We give a general recipe on temporal schemes that have to be employed
once the discretization for the temporal derivative is chosen. Numerical investigations on stability,
accuracy, and convergence are performed and the simulated results are compared with benchmark
problems set up by other authors.
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Reynolds transport theorem, space conservation law
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Introduction. When dealing with problems in time-dependent domains, usually
in the context of fluid dynamics, the arbitrary Lagrangian Eulerian (ALE) framework
is probably the most natural setup environment (certainly among the most popular
ones) in finite element and finite volume methods. A detailed description of the ALE
framework can be found in [1] and references therein. ALE formulation is realized
through a homeomorphic map (usually referred to as the ALE map), which at each
time t associates the current configuration (a physical domain) with some fixed refer-
ence one. This ALE map is prescribed (or can somehow be obtained for current time)
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ALE FEM FORMULATION WITH VANISHING DISCRETE SCL A1549

on the domain boundary, while it is quite arbitrary in the interior. Consequently,
there is some freedom in defining it in the domain interior. Several issues have been
raised by various authors on the regularity of the ALE map in order to ensure the
problem of interest is well posed, as well as on the concrete discrete realizations of
it. It has been noticed that some properties of the ALE map, which are trivially sat-
isfied on the continuous level, fail on the discrete level and introduce, in turn, extra
errors in the numerical approximation of the solution as well as influence the level of
stability of the resulting algorithm. This issue was noticed with some delay compared
to that with the introduction of ALE formulations. Moreover, many authors do not
pay any special attention to it. However, in recent years, numerous studies have been
published reporting conspicious results and issues on this topic in the context of finite
element, finite volume, and finite difference methods, and the core of them is the
so-called Space Conservation Law (SCL) introduced in [2, 3]. The heart of this issue
(which will be formally defined later) is the method for the temporal integration of
the considered equations and the effects arising from the indispensable discrete grid
velocity. Most of the original work on this topic has been done in context of the finite
difference method [3, 4, 5, 6, 7] and the finite volume method [8, 9, 10, 11, 12, 13], and,
lately, extended to the finite element method [10, 11, 14, 15, 16, 17]. In this work, the
finite element method is considered.

In the context of fluid dynamics and related problems, these mentioned effects
usually appear in the form of artificial sinks and sources and may possibly influence
stability and accuracy of the numerical method. The ALE formulation consists of
rewriting the equations, naturally posed in the moving domain, with respect to a
fixed reference configuration, employing the Reynolds transport theorem in the pro-
cess. In this framework, the temporal derivative expressed with respect to reference
configuration introduces an extra term in which grid velocity appears and is known
as the cause leading to the mentioned issues.

The attempt of this paper is to intertwine the topics from above, ALE framework
and SCL, from, somehow, a different perspective than the majority of papers we came
across up to this point. The problems with grid velocity in the ALE approach for
treating the moving domain problems appear in the transition from continuous to
discretized formulation (in time). The mentioned SCL condition is a trivial identity
on the continuous level which only comes to the fore in the discrete counterpart of
the considered problem. In its integral version, it takes the form [3]

d

dt

∫
Ω(t)

dx =

∫
Ω(t)

divw dx,

which is also often referred to as the finite volume form, with Ω(t) being the domain
at time t and w the domain velocity. There are several different versions of the finite
element form of SCL, but essentially they are all derived from the above identity.
It seems that the usual approach in dealing with the mentioned numerical issues is
based on employing a better time integrator. For example, Formaggia and Nobile in
[14, 15] proposed multipoint time quadrature of the right-hand side of the system of
ordinary differential equations (ODEs) in time chosen in a way such that the SCL is
not violated: to solve an ODE of the form dy/dt = f(t, y(t)), they replace the usual
backward Euler method

yn+1 − yn = ∆tf(tn+1, y
n+1) by yn+1 − yn = ∆t

m∑
l=0

wlf(tln,n+1, y
n+1),
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A1550 F. IVANČIĆ, T. W.-H. SHEU, AND M. SOLOVCHUK

where tln,n+1 is the time instant in [tn, tn+1] and the wl are the appropriately chosen
weights. For large finite element problems, evaluating all quantities on the current
domain might be unattractive from the computational (or implementational) point
of view. In this case for each involved time instant, the finite element space has to
be updated due to its dependence on time through the domain time-dependence, and
integration on each midpoint domain has to be performed in order to construct a line
system.

In [16] a similar approach as in [15] is taken. They investigate a model ALE
scheme with respect to different choices of the time discretizations. For the considered
scheme they investigate the relationships between the scheme stability and the SCL.
In both [15, 16] they show that satisfying the SCL condition is neither a necessary,
nor a sufficient condition for stability, except for the implicit Euler scheme. The same
conclusion is derived in this paper as well.

Here, however, the full potential of the polynomial (in time) form of the ALE map
will be used. Since the polynomials can be integrated exactly, by ably transforming
the problem into some appropriate configuration, the SCL can be made trivially sat-
isfied again in the discrete counterpart of the problem formulation. Apart from its
very natural and intuitive look, we will show that adapting this approach to a cho-
sen temporal discretization is straightforward. Generalizations to the higher order
schemes based on some integration or differentiation formulas are straightforward to
derive. Also, there is more room in choosing the method of calculating of the grid
velocity without (essentially) changing the formulation of the problem, thus making
the coding easily adjustable. Implementationwise, everything is kept on the origi-
nal reference configuration and consequently introduces some additional differential
operators in order to transform the space derivatives from the current configuration
onto the reference one. We believe this approach offers a few advantages ahead of the
implementation on the current configuration (of course, under the assumption that
the two approaches are equivalent on the discrete level which will be argued later).
Among them, we mention three here. The first two lie in the fact that the reference
domain is fixed in time. Then the test/basis function spaces will be time independent
and the finite element spaces do not need to be updated at each time step. The
third, keeping everything on the reference configuration, the evolution of the domain
is kept in the Jacobians of the ALE map thus making the connection between the
domain time dependency and all the terms in the differential equation more clear. In
cases when a weak formulation is posed on the current configuration, the only explicit
connection between the domain time dependency and the under the integral terms is
through the domain velocity which appears in the form of convective terms.

The paper is organized as follows. In section 1 the ALE formulation is reviewed
and the notation is introduced. In section 2 the pullback to the reference configura-
tion which is more convenient for working with problems on time-dependent domains
is illustrated for the heat equation. Section 3 deals with SCL—the basis for the intro-
duction of the new type formulation. In section 4, the new formulation with vanishing
discrete SCL is introduced and two different ways of calculating the grid velocity are
presented. In section 5 some of the most popular schemes (implicit Euler and Crank–
Nicolson schemes, backward differentiation formulas) are adapted in the environment
of our new formulation. In section 6, some insights on the restriction of the spatial
discretization of the ALE map with finite elements are given. Section 7 deals with
numerical validation. Finally, in section 8 we give the summary of what has been
done and draw the conclusions.
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ALE FEM FORMULATION WITH VANISHING DISCRETE SCL A1551

1. The ALE formulation. In this section, the ALE formulation for moving
domain problems is reviewed. All the details on the results here and more math-
ematically rigorous derivations of them can be found in [1, 14, 15] and references
therein.

The general idea of the ALE framework consists of the interplay between the fixed
reference domain (which most often coincides with the initial domain, but does not
have to) and the current physical domain occupied by the medium. The interplay
between these two domains is realized through the so-called ALE map which maps
the reference domain into the current one. In order to perform the necessary calculus,
a minimal smoothness of the ALE map has to be demanded—e.g., a kind of inverse of
the ALE map has to exist in order to ensure the correspondence between the reference
domain and the current one (in the sense that one can be obtained from the other).

Let Ω̂ ⊂ Rd, d = 2, 3, be a fixed reference domain and Ω(t) ≡ Ωt ⊂ Rd the
current (physical) domain occupied by the fluid. It is assumed that boundaries of
the domain are sufficiently smooth—this usually refers to the Lipschitz continuous
boundary—and that the domain evolution can be followed through a one-parameter
family of mappings (Ât)t∈[0,T ] ≡ (Â(·, t))t∈[0,T ], T <∞,

Ât : Ω̂→ Rd , t ∈ [0, T ] , (x̂, t) 7→ (x, t), x̂ ∈ Ω̂ , x ∈ Ω(t),(1.1)

i.e., Ât maps the reference into the current domain, Ω̂ 7→ Ωt ≡ Ω(t) = Ât(Ω̂). In this

context, we refer to x̂ ∈ Ω̂ as the ALE coordinate while for x = Ât(x̂) ∈ Ω(t) we refer
to an Eulerian (or spatial) coordinate.

Denote by Q̂T = Ω̂×(0, T ) the reference domain and by

QT =
⋃

t∈(0,T )

Ω(t)× {t}

the domain trajectory (sometimes we write QT = Ω(t) × (0, T )). Let f : QT → R
and ĝ : Q̂T → R be two scalar fields defined on the current and the reference config-
urations, respectively. We define their ALE and Eulerian counterparts, respectively,
by

f̂ : Q̂T → R , f̂ = f ◦ Ât and g : QT → R , g = ĝ ◦ Â-1
t .(1.2)

In the ALE environment, the temporal derivative of an Eulerian field can be
considered from different viewpoints. Let f : QT → R be an Eulerian field, and
f̂ = f ◦Ât its ALE counterpart. The time derivative of an Eulerian field f in the ALE
frame—i.e., time derivative in the ALE frame, written with respect to the spatial
coordinates—is defined as

(1.3)
∂

∂t

∣∣∣∣
x̂

f : QT → R ,
∂

∂t

∣∣∣∣
x̂

f(x, t) =
∂ f̂

∂t
(x̂, t), x̂ = Â-1

t (x).

The time derivative of an Eulerian field in the spatial frame is just the classical time
partial derivative

∂

∂t

∣∣∣∣
x

f =
∂f

∂t
.

Now, the domain velocity is defined as

(1.4) w(x, t) =
∂

∂t

∣∣∣∣
x̂

x , x = Â(x̂, t), i.e., w(x, t) = ŵ(x̂, t) =
∂

∂t
Â(x̂, t).
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A1552 F. IVANČIĆ, T. W.-H. SHEU, AND M. SOLOVCHUK

In terms of displacement, the ALE map can be written in the form

(1.5) Â(x̂, t) = x̂+ û(x̂, t) , û(x̂, t) = x(x̂, t)− x̂,

û(x̂, t) being the displacement of x̂ at time t. By application of the chain rule it is
straightforward to obtain

∂

∂t

∣∣∣∣
x̂

f =
∂

∂t

∣∣∣∣
x

f +
∂ x

∂t

∣∣∣∣
x̂

· ∇f =
∂f

∂t
+w ·∇f.(1.6)

As a result, by introducing an ALE temporal derivative instead of an Eulerian one,
an extra convective-type term, due to domain movement, will be introduced into the
equation of interest.

An important role in the interplay between configurations is played by the gradient
and the Jacobian of ALE map, given, respectively, by

(1.7) F̂ t = ∇̂ Ât , Ĵ t = det(∇̂ Ât).

The so-called Euler expansion formula states

(1.8)
∂

∂t
Ĵ t = Ĵ t d̂ivw.

1.1. Test function spaces in the ALE framework. The finite element method
(FEM) is based on the weak formulation of the considered partial differential equa-
tion (PDE) in which the space of test functions plays an essential role. The standard
approach on stationary domains is to take test functions independent of time, and
a similar approach is followed in the current context. However, since here we are
dealing with the time-dependent domain, following this arrangement, a whole family
of test function spaces is obtained such that for each t, test functions on Ωt are time
independent (in the context of the current configuration Ωt). Surely, this deserves
some special attention.

Let V (Ω̂) be a space of admissible test functions defined on a reference domain

which consists of regular enough functions ψ̂ : Ω̂ → R. Admissible here stands for
well defined in the sense of preserving boundary conditions—e.g., ψ̂ ∈ V (Ω̂) has to

vanish on the Dirichlet part of the boundary so V (Ω̂) depends on the problem itself.
By regular enough we mean that all integrals in the weak formulation of the problem
make sense—e.g., after partial integration and transferring derivatives onto the test
function, all terms under the integral sign are integrable. Usually, for second order
PDEs, V (Ω̂) will be some subset of H1(Ω̂) with H1 being the Sobolev space here
defined in the standard way [19]. Then, through ALE mapping, we can identify
a corresponding set V (Ωt) of admisible test functions on the current configuration
defined as

(1.9) V (Ωt) = {ψ : Ωt × [0, T )→ R | ψ = ψ̂ ◦ Â-1
t , ψ̂ ∈ V (Ω̂)}.

Taking into account the correspondence between V (Ω̂) and V (Ωt) and the definition
of the ALE temporal derivative ∂

∂t |x̂, the following relation is obtained

(1.10) 0 =
∂ ψ̂

∂t
=

∂

∂t

∣∣∣∣
x̂

ψ =
∂ψ

∂t
+w ·∇ψ ∀ψ ∈ V (Ωt).

Now, let f = f(x, t) be an arbitrary time-differentiable Eulerian field. By employing
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ALE FEM FORMULATION WITH VANISHING DISCRETE SCL A1553

the chain rule, it follows that

(1.11)
∂(ψf)

∂t

∣∣∣∣
x̂

= ψ
∂f

∂t

∣∣∣∣
x̂

∀ψ ∈ V (Ωt).

Recalling the Reynolds transport theorem, the following identities are obtained:

d

dt

∫
Ωt

ψ dx =

∫
Ωt

ψ divw dx,(1.12)

d

dt

∫
Ωt

ψf =

∫
Ωt

ψ

(
∂

∂t

∣∣∣∣
x̂

f + f divw

)
dx,(1.13)

d

dt

∫
Ωt

ψχ =

∫
Ωt

ψχdivw(1.14)

for all ψ, χ ∈ V (Ωt).

1.2. A construction of the ALE map. In practical problems, one usually
faces the problem of determining the ALE map Ât in Ω̂×(0, T ) with Ât being pre-

scribed on the boundary ∂ Ω̂×(0, T ), i.e.,

given Ât(x̂) = ĝ(x̂, t) on ∂ Ω̂×(0, T )

determine Ât in Ω̂×(0, T ).
(1.15)

Several techniques have been proposed in the literature for the extension of Ât from
the boundary into the interior. Based on the problem we are facing, one technique
may be more appropriate than the other. Classically, one solves a PDE for unknown
Ât in Ω̂×(0, T ) subjected to Dirichlet boundary conditions. Since, most often, the
ALE map is needed only at discrete time levels, this adds up to solving a PDE for
unknown Ân+1 with Ân+1 = ĝn+1 prescribed on ∂ Ω̂, where Ân+1 = Â(·, tn+1).

Once Ân+1 is known, Ωn+1 = Ω(tn+1) can be obtained. The most popular extension
in the literature seems to be a harmonic extension but we mention that alternative
approaches are possible. For example, instead of the Laplace equation (harmonic
extension), the linear elasticity equation is a quite popular choice as well.

Remark 1.1. The most common way to prescribe the velocity on the boundary is
to demand that the normal components of the domain and fluid velocities be equal.
More specifically, if v is the fluid velocity, n the normal to the boundary, and k a
vector which denotes the principal movement of the domain, then one can prescribe

w =
v ·n
k ·n

k on ∂Ω.

The vector k is determined from the physics of the problem. For example, if one
considers a problem involving a free surface flow without breaking waves, then motion
of the boundary denoting the free surface is only in the vertical direction, so k can
be chosen as k = [0, 0, 1]T .

2. The transformation of configurations. The SCL nonviolating formulation
we propose here turns out to be particularly convenient if the PDE of interest is
pulled back to the reference configuration. However, during the pullback procedure,
spatial differential operators (originally functions of current configuration) have to be
transformed into their respective counterparts in the reference configuration. In this
section we summarize the necessary results, illustrate the pullback procedure on the
simple heat equation, and recall some “tricks” which make the transition from the
current to the reference configuration profitable.
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2.1. Pullback of the heat equation. Consider a heat equation subjected to
the initial and Dirchlet boundary conditions

∂

∂t
u− α∆u = f in Ω(t)× (0, T ),

u(0) = u0 in Ω(0),

u = uD in ∂Ω(t)× (0, T )

(2.1)

with α being a constant for simplicity and assuming (Ω̂, t) 7→ Ω(t) is realized through

Ât which is prescribed. Employing the ALE time derivative, (2.1)1 becomes

(2.2)
∂

∂t

∣∣∣∣
x̂

u− α∆u−w ·∇u = f . . . Ω(t)× (0, T ),

and the corresponding conservative weak formulation is

(2.3)
d

dt

∫
Ω(t)

ψudx+

∫
Ω(t)

[α∇ψ · ∇u− ψw ·∇u− ψudivw−ψf ] dx = 0

with an appropriate choice of the test function ψ (e.g., ψ has to vanish on the ∂Ω(t)×
(0, T ) due to Dirichlet boundary conditions). Transforming the weak formulation (2.3)
onto the reference configuration, (2.3) takes the following form that we will work with
in this paper:

0 =
d

dt

∫
Ω̂

ψ̂ û Ĵ t dx̂

+

∫
Ω̂

[
α∇̂ψ · ∇̂u Ĵ t− ψ̂ ŵ ·∇̂u Ĵ t− ψ̂ û d̂ivw Ĵ t− ψ̂ f̂ Ĵ t

]
dx̂ .

(2.4)

Remark 2.1. One should pay extra attention to the terms ∇̂ψ, ∇̂u, d̂ivw and no-
tice that the differential operators in these terms operate with respect to the current
configuration and then the whole expression is pulled back to the reference configu-
ration, e.g.,

d̂ivw = (divw) ◦ Ât 6= d̂iv ŵ .

This results in a problem, since we are able to perform the spatial differentiation
only with respect to the reference configuration. Thanks to the ALE map, all of
these operators can be expressed with respect to the reference configuration as a
composition of two operators (see the next subsection).

2.2. Transformation of first order spatial differential operators. We wish
to express the differential operators defined in the physical configuration in their
reference configuration counterparts. To begin with, note that by the chain rule

(2.5)
∂

∂xi
=
∂ x̂ j

∂xi

∂

∂ x̂ j
,

with the Einstein summation convention1 being employed for the sake of compact
presentation. Now, by the direct application of the above chain rule, it is easy to derive

(2.6) ∇ψ = ∇ ψ̂ = F̂
−T
t ∇̂ ψ̂ and divψ = div ψ̂ =

1

Ĵ t

d̂iv(Ĵ t F̂
−1

t ψ̂)

for the scalar field ψ and vector field ψ̂.

1In the Einstein summation convention there is an implied summation over the terms with the
repeated index.
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ALE FEM FORMULATION WITH VANISHING DISCRETE SCL A1555

Note that in the above expressions F̂
−1

t appears, which is a function of x, i.e.,
defined on the physical configuration, while our framework is set up on the reference

configuration. To express F̂
−1

t in the reference framework, we recall some facts from
linear algebra. Assuming that we are given regular matrices A = (aij) and B = (bij)
such that B = A−1, it is well known that

(2.7) bij =
1

detA
(−1)i+iMji,

where (−1)i+jMij is the (i, j)–cofactor of A.

In the spirit of the above discussion, we can now transform F̂
−1

t into its counter-
part defined on the reference configuration. For the sake of illustration we show this
in two dimensions, while the three dimensional case is similar. Using the notation

x̂ = Â
−1

t (x) (due to invertibility of Ât) we have

(2.8) F̂
−1

t =

[
∂x x̂ ∂y x̂
∂x ŷ ∂y ŷ

]
=

1

Ĵ t

[
∂ŷy −∂ŷx
−∂x̂y ∂x̂x

]
=

1

Ĵ t

F̂ t,

where

(2.9) F̂ t :=

[
∂ŷy −∂ŷx
−∂x̂y ∂x̂x

]
.

Finally, we have the necessary identities for scalar and vector fields ψ and ψ being
transformed onto the reference configuration:

∇̂ψ =
1

Ĵ t

F̂
T

t ∇̂ ψ̂ and d̂ivψ =
1

Ĵ t

d̂iv(F̂ t ψ̂).(2.10)

Employing them enables us to rewrite (2.4) into the form convenient for the numerical
implementation:

0 =
d

dt

∫
Ω̂

ψ̂ û Ĵ t dx̂

+

∫
Ω̂

[
α

1

Ĵ t

F̂ t F̂
T

t ∇̂ ψ̂ · ∇̂ û − ψ̂ F̂ t ŵ · ∇̂ û − ψ̂ û d̂iv(F̂ t ŵ)− ψ̂ f̂ Ĵ t

]
dx̂ .

(2.11)

Remark 2.2. In context of the spatial differential operators a question of whether
the discrete derivatives on the current domain and their counterparts on the reference
domain coincide may arise. However, this is not expected to be a problem if the
ALE map is polynomial in space (since then the grid is moved by a polynomial) and
polynomials are treated exactly.

Remark 2.3. From the computational point of view, it seems that a procedure
of pulling back to the reference configuration may offer some advantages. In prob-
lems posed on moving domains (fluid structure interaction, free surface problems,
etc.) the movement of the domain is itself part of the problem. A very common
solution involves the algorithms of iterative nature based on the fixed point theorems.
In the context of finite elements, this means that at each iteration the ALE map is
updated, the grid is adjusted accordingly, and the finite element spaces have to be
reconstructed. In cases when the integration formula to be used includes (possibly
multiple) midpoints, this becomes particularly unattractive since the spatial integra-
tion has to be performed on (multiple) midpoint domains. Each of these domains
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drags a separate finite element space to be constructed with it. Keeping the environ-
ment on the reference configuration, only the ALE map has to be updated while the
finite element spaces remain unchanged. This might be more attractive from the com-
putational and/or implementational viewpoints, although the equations involved now
will take more complicated form as discussed above. It is not clear which approach is
computationally more effective.

3. The SCL. As far as the authors know, the first mention of the SCL was
by Trulio and Trigger in [2]. SCL was later rediscovered and formalized by Thomas
and Lombard in [3], and its differential form was derived. A significant work on the
subject has been done in the series of papers [10, 11, 12, 13]. In [10] they showed that
for space-time finite elements (STFEM) the discrete SCL vanishes. However, since for
STFEM [18] the dimension of the discrete system to solve is significantly larger than
for classical FEM; in the practical applications, classical FEM is often preferred. In
[12] it was shown that for a given scheme that is p-order time-accurate on a fixed grid,
satisfying the corresponding p-discrete SCL is a sufficient condition for this scheme
to be at least first order time accurate on a moving grid.

Although it seems that more work has been done in the context of the finite
volumes and finite difference methods, in the context of finite elements, noticeable
work has been presented in [14, 15, 16, 17]. We also mention that the SCL is often
referred to as the Geometric Conservation Law—a phrase coined by Thomas and
Lombard. It seems that various authors stick to one of these two names—here we
decided to stick to the name SCL since it emphasizes more clearly the physics of the
problem.

3.1. Introduction of SCL. For the numerical approximation of the equation,
the domain is triangularized into a discrete grid and the numerical solution is an
array of number values attached to the grid points. Apart from numerically solv-
ing the equations of interest, two additional equations come into play when dealing
with moving domains. These two additional equations pose a balance between the
relevant geometric parameters—the surface conservation law (SCLs) and the volume
conservation law (SCLv) are, respectively, given by∫

∂Kt

k ·ndS = 0 and
d

dt
vol(Kt) =

∫
∂Kt

w ·ndS,

where k is an arbitrary direction. As noted and discussed in [8], a numerical scheme
which does not satisfy them shall produce additional numerical errors in the flow
field. The violation of the SCLs leads to misrepresentation of the convective fluxes
while violation of SCLv introduces artificial sources or sinks in otherwise conserved
medium. Together, volume and surface conservation laws define the SCL.

Let Kt ⊂ Ωt be an arbitrary control volume—on a discrete level we are looking at
a cell (triangle or tetrahedra) of the triangulation Th(t) of Ω(t)—and denote domain
velocity at time t by w(t). Then the time variation of the control/cell volume in terms
of its boundary properties (orientations, velocities, and areas) is given by

(3.1)
d

dt

∫
Kt

dx =

∫
∂Kt

w ·n dS =

∫
Kt

divw dx,

which is the integral statement of SCL. On the continuous level, relation (3.1) is
trivially satisfied as long as the ALE map is regular enough. On the discrete level,
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however, this doesn’t have to be the case and consequently artificial sources/sinks
appear and (possibly) significantly influence the solution.

3.2. SCL in the FEM. Recall the Euler expansion formula (1.8)

∂

∂t
Ĵ t = Ĵ t d̂ivw,

which can be interpreted as an evolution law for the Jacobian if the domain velocity is
known. It is worth remembering that the Jacobian holds the information on volume
changes during the coordinate transformation.

Multiplying the previous equation by the test function (from the appropriate
function space) and integrating over the control volume, the weak (conservative) form
of the above identity can be obtained,

(3.2)
d

dt

∫
K̂

ψ̂ Ĵ t dx̂ =

∫
K̂

ψ̂ Ĵ t d̂ivw dx̂

for K̂ ⊂ Ω̂ and ψ̂ ∈ V (Ω̂). Using Kt = Ât(K̂ ) to map everything onto the current
configuration,

(3.3)
d

dt

∫
Kt

ψ dx =

∫
Kt

ψ divw dx,

where ψ = ψ̂ ◦ Â-1
t ∈ V (Ωt).

As mentioned in the introduction, for the technique derived in this paper the
environment on the reference configuration is more appropriate. Therefore, we stick
to the SCL pulled back on the reference configuration, i.e., with the identity (3.2) ob-
tained directly from the Euler expansion formula. Applying the theory from section 2,
we can obtain an equivalent yet more convenient form

(3.4)
d

dt

∫
K̂

ψ̂ Ĵ t dx̂ =

∫
K̂

ψ̂ d̂iv(F̂ t ŵ) dx̂ .

This is exactly the weak form of the differential form of SCL derived by Thomas and
Lombard in [3]. They start from the Euler expansion formula in integral form and
use the metric coefficients to transform it into the form equivalent to

(3.5)
∂

∂t
Ĵ t− d̂iv(F̂ t ŵ) = 0 in Ω̂×(0, T ).

3.3. Conservative versus nonconservative weak formulations. Recall for
a moment the heat equation in the ALE frame (2.2) with the corresponding conser-
vative weak formulation (2.3)

d

dt

∫
Ω(t)

ψudx+

∫
Ω(t)

[α∇ψ · ∇u− ψw ·∇u− ψudivw−ψf ] dx = 0.

Notice that an alternative, nonconservative, weak formulation is possible to obtain
from (2.2) by keeping the temporal derivative under the integral sign:

(3.6)

∫
Ω(t)

ψ
∂

∂t

∣∣∣∣
x̂

udx+

∫
Ω(t)

[α∇ψ · ∇u− ψw ·∇u− ψf ] dx = 0.
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Ωn−1 Ωn Ωn+1

Ω̂

Ân−1 Ân Ân+1

wn−1,n wn,n+1

Fig. 1. Evolution of configurations on a time interval [tn−1, tn+1].

It was argued in [14] that the nonconservative formulation is able to represent the
constant solution independently of the numerical time integration formula used, so
it automatically satisfies the SCL. Therefore, the problem arising from discrete SCL
is not an issue in a nonconservative formulation. However, the conservative discrete
system maintains the conservation property of the original system and is therefore
often preferred ahead of the nonconservative one.

4. Formulation with vanishing discrete SCL. In this section the idea for the
ALE FEM formulation with vanishing discrete SCL is presented in detail. The main
objectives of the paper are given in this section. First, we show that independently
of the chosen scheme for the discretization of the temporal derivative, it is always
possible to satisfy the SCL. Moreover, the satisfaction of the SCL will be trivial
since the formulation is built on the differential statement of the SCL, that is the
identity (3.5) is at its core. Second, we give two different ways of calculating the grid
velocity. In most approaches the calculation of the grid velocity is in a tight relation
with its possibility to satisfy the discrete SCL and is strongly scheme dependent; we
will see that here this relation is somewhat weaker and “more decoupled” from the
discretization scheme. This is thanks to the new style of the weak formulation which
seems to give more freedom and possibilities for the grid velocity calculation.

Before getting into details, we present the notation that will be used. Consider
a setup such as that schematically shown in Figure 1. We use the index n to denote
the functions at time tn, e.g.,

Ân = Â(·, tn),

ûn = û(·, tn),

Ωn = Ω(tn).

(4.1)

Whenever we consider a function between two time instants (functions defined piece-
wise), we specifically denote both of them, e.g., for the grid velocity and displacement
on the time interval [tn, tn+1] we write

(4.2) ŵn,n+1(·, t) = ŵ(·, tn + t) , t ∈ [0, tn+1 − tn],

and

(4.3) ûn,n+1(·, t) = û(·, tn + t) , t ∈ [0, tn+1 − tn],

respectively. Note that the relation between ûn,n+1 and ŵn,n+1 is

(4.4) ûn,n+1(·, t) = ûn(·) +

∫ tn+t

0

ŵn,n+1(·, s) ds , t ∈ [0, tn+1 − tn].

As mentioned before, using the “hat” symbol or dropping it denotes which configu-
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ration a function is defined on—hat for the functions on the reference configuration
while dropping it for the functions on the physical configurations.

Now, in the spirit of the above introduced notation, we can write

Â(x̂, tn + t) = Ân,n+1(x̂, t) = x̂+ ûn,n+1(x̂, t) , t ∈ [0, tn+1 − tn].(4.5)

In the next two subsections we give two possibilities for the grid velocity calcula-
tion—the first being the classical one used in most approaches, while the second is
a bit more advanced and physically very reasonable. We also show that for these
choices the SCL identities—weak form (3.4) and differential form (3.5)—are trivially
satisfied when handled properly.

4.1. Grid velocity calculation and satisfaction of SCL. Denote the time
step between two time instants by ∆tn+1

n = tn+1 − tn. Then the most widely
used method for the grid velocity calculation states, knowing the position of the
grid node indexed by i at times tn and tn+1, i.e., the values xn

i = x̂i + ûn(x̂i) and
xn+1
i = x̂i + ûn+1(x̂i), the grid velocity can be defined as piecewise constant in time

on [tn, tn+1] by

(4.6) ŵn,n+1(x̂i, t) =
ûn+1(x̂i)− ûn(x̂i)

∆tn+1
n

, t ∈ [0,∆tn+1
n ].

In that case

(4.7) ûn,n+1(·, t) = ûn +t ŵn,n+1 , t ∈ [0,∆tn+1
n ],

and

(4.8) Ân+1(x̂) = x̂+ ûn(x̂) + (∆tn+1
n ) ŵn,n+1(x̂).

The evolution between two configurations Ωn and Ωn+1 is given by

(4.9) Ω(tn + t) = Ân,n+1(Ω̂, t) , t ∈ [0,∆tn+1
n ],

as sketched in Figure 2, where

(4.10) Ân,n+1(·, t) = x̂+ ûn(x̂) + t ŵn,n+1(x̂) , t ∈ [0,∆tn+1
n ],

i.e., Â(·, t+ tn) = Ân,n+1(·, t), t ∈ [0,∆tn+1
n ].

Now consider the differential form of SCL identity (3.5),

∂

∂t
Ĵ t− d̂iv(F̂ t ŵ) = 0 in Ω̂×(0, T ),

and let us take a more detailed look on what is happening during the temporal dis-
cretization. For the sake of notational simplicity, assume that tn+1 − tn = ∆t ∀n.

The discretized counterpart of ∂
∂t Ĵ t takes the form

∂

∂t
Ĵ t ≈

Ĵ n+1−Ĵ n

∆t

which is obtained from some integration quadrature formula. In the case of the
implicit Euler formula, for example, using the fact that F̂ t and ŵ are defined piecewise,
we have

Ĵ n+1−Ĵ n =

∫ tn+1

tn

∂

∂t
Ĵ t dt =

∫ tn+1

tn

d̂iv(F̂n,n+1(t) ŵn,n+1(t)) dt

≈ ∆t d̂iv(F̂n,n+1(tn+1) ŵn,n+1(tn+1)).

(4.11)
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Ω̂

Ωn Ωn+1

Ân

Ân+1

Fig. 2. Sketch of a configuration evolution between tn and tn+1.

Taking into account that F̂n,n+1(t) and ŵn,n+1(·, t) are polynomials variable in t, so

is the F̂n,n+1(t) ŵn,n+1(t). Then we can see that the step in approximating the time
integral in (4.11) is actually unnecessary since the integral can formally interchange

with the divergence d̂iv operator and the integral of the polynomial can be evaluated
exactly. Therefore, we can write

(4.12) Ĵ n+1−Ĵ n = d̂iv

[∫ tn+1

tn

F̂n,n+1(t) ŵn,n+1(t) dt

]
and the discrete SCL vanishes. The same procedure can be applied to the weak form
of SCL, the identity (3.4),

d

dt

∫
K̂

ψ̂ Ĵ t dx̂ =

∫
K̂

ψ̂ d̂iv(F̂ t ŵ) dx̂ .

Integrating this identity from tn to tn+1 and noticing that we can formally change

the order of integration (since reference control volumes K̂ are independent of time)

and that the test function ψ̂ is time independent (so behaving like a constant with

respect to
∫ tn+1

tn
dt) we obtain

(4.13)

∫
K̂

ψ̂(Ĵ n+1−Ĵ n) dx̂ =

∫
K̂

ψ̂ d̂iv

[∫ tn+1

tn

F̂n,n+1(t) ŵn,n+1(t) dt

]
dx̂ .

Again, since polynomials can be integrated exactly, the discrete SCL vanishes and is
trivially satisfied in this type of formulation.

4.2. Grid velocity continuous in time. Consider for a moment the following
situation: grid node x moves with velocity wn−1,n 6= 0 from its position at time tn−1

to a new position at time tn during the time step of length ∆t = tn− tn−1. Then the
new position at time tn+1 can be somehow (depending on the problem of interest)
obtained. Assume for a moment that the position at time tn+1 is equal to the position
at time tn, that is, xn+1 = xn. Using the method introduced in section 4.1, we would
find that

wn,n+1(x, t) = 0.

However, a physically more reasonable explanation would be that the time step ∆t
is too large for the numerics to “catch” the entire trajectory of node x (if the node
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stops instantly then its “trajectory momentum” is violated). Since the node traveled
to position xn with velocity wn−1,n(·, t), wn−1,n(·, tn) 6= 0 , it is reasonable to assume
that its velocity on the time interval [tn, tn+1], wn,n+1(·, t), is continuous at tn, i.e.,
6= 0. Thus, the trajectory of the node x is “a closed loop” starting and ending
at xn = xn+1. Motivated by this example, we propose an alternative approach to
calculate the grid velocity continuous in time once the positions of the nodes are
known.

Let wn−1,n(·, t) on [tn−1, tn] be known, and assume Ωn+1 has been found. Then
we define the grid velocity on interval [tn, tn+1] by

(4.14) w(·, t) = (t− tn)ωn,n+1 +w(·, tn) , t ∈ [tn, tn+1].

Its “piecewise counterpart” is then expressed as

(4.15) wn,n+1(·, t) = tωn,n+1 +w(·, tn) , t ∈ [0, tn+1 − tn],

where ωn,n+1 ∈ R2 is a constant (in time) appropriately chosen vector field (defined
below). The first consequence to notice is that the grid velocity is now continuous,
i.e.,

(4.16) wn,n+1(·, 0) = wn−1,n(·,∆tnn−1).

Next we have to determine the constant field ωn,n+1. Clearly, we have to demand

(4.17)

∫ tn+1−tn

0

wn,n+1(·, t) dt = ûn+1(·)− ûn(·).

By a straightforward calculation, it follows that

(4.18) ωn,n+1(·) =
2

(tn+1 − tn)2

[
ûn+1(·)− ûn(·)− (tn+1 − tn)w(·, tn)

]
.

Then using the relation

ûn,n+1(·, t) = ûn(·) +

∫ t

0

ŵn,n+1(·, s) ds , t ∈ [0, tn+1 − tn],

we interpolate the displacement on the entire [tn, tn+1],

(4.19) û(·, tn + t) = ûn(·) + t ŵn−1,n(·, tn) +
t2

2
ω̂n,n+1(·) , t ∈ [0, tn+1 − tn].

Now analogously as in section 4.1, we deduce that F̂n,n+1(t) ŵn,n+1(t) is piecewise
polynomial in time so the argument for vanishing discrete SCL stays the same.

5. Discretization schemes. In this section we aim to show how to properly
handle some classic discretization schemes in order for the SCL to be preserved. We
deal with the implicit Euler scheme, the Crank–Nicolson scheme, and the backward
differentiation formulas, BDF2 and BDF3. For simplicity, all of these schemes shall be
illustrated for the heat equation. Generalizations to convection-diffusion or Navier–
Stokes equations is straightforward since handling the terms with grid velocity stays
the same and only these terms play a role in the problems in the context of SCL.

D
ow

nl
oa

de
d 

12
/2

2/
19

 to
 1

40
.1

12
.2

6.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Recall the heat equation in the weak form pulled to the reference configuration:

0 =
d

dt

∫
Ω̂

ψ̂ û Ĵ t dx̂

+

∫
Ω̂

[
α

1

Ĵ t

F̂ t F̂
T

t ∇̂ ψ̂ · ∇̂ û − ψ̂ F̂ t ŵ · ∇̂ û − ψ̂ û d̂iv(F̂ t ŵ)− ψ̂ f̂ Ĵ t

]
dx̂

(5.1)

with the initial and boundary conditions

û(0) = û0 in Ω̂,

û = ûD on ∂ Ω̂×(0, T ).
(5.2)

Before getting into the details with discretization schemes, consider for a moment
the diffusion term

α
1

Ĵ t

F̂ t F̂
T

t ∇̂ ψ̂ · ∇̂ û

in the above weak formulation. Due to 1

Ĵ t
we see that rational function in t will

appear, which generally cannot be integrated exactly. Still, we can employ some
quadrature formula for integration (e.g., Simpson’s rule), but since it does not play a
significant role in SCL problems, we simply approximate it implicitly for the moment,
i.e., ∫ tn+1

tn

∫
Ω̂

α
1

Ĵ t

F̂ t F̂
T

t ∇̂ ψ̂ · ∇̂ û dx̂ dt

≈ ∆t

∫
Ω̂

α
1

Ĵ n,n+1(∆t)
F̂n,n+1(∆t) F̂

T

n,n+1(∆t) ∇̂ ψ̂ · ∇̂ ûn+1 dx̂

(5.3)

with ∆t = tn+1 − tn. We apply the same to the source term involving f̂ . For the
compact notation we denote

(5.4) dn,n+1(ûk, ψ̂) = ∆t

∫
Ω̂

α
1

Ĵ n,n+1(∆t)
F̂n,n+1(∆t) F̂

T

n,n+1(∆t) ∇̂ ψ̂ · ∇̂ ûk dx̂,

where ûk is the approximation of û(tk) after the temporal discretization, and k is
typically n or n + 1, depending on the chosen discretization schemes. Similarly, we
denote

(5.5) bn,n+1(f̂ k, ψ̂) = ∆t

∫
Ω̂

ψ̂ f̂ k Ĵ n,n+1(∆t) dx̂

with f̂ k = f̂ (tk). For terms involving grid velocity and operators related to the ALE
map, we denote

Mn,n+1(ûk, ψ̂) =

∫
Ω̂

ψ̂

[∫ ∆tn+1
n

0

F̂n,n+1(t) ŵn,n+1(t) dt

]
· ∇̂ ûk dx̂

+

∫
Ω̂

ψ̂ ûk d̂iv

[∫ ∆tn+1
n

0

F̂n,n+1(t) ŵn,n+1(t) dt

]
dx̂ .

(5.6)

The general procedure of the new approach applied to the classical schemes is to
modify the terms involving the grid velocity through theMn,n+1 operator, while the
rest remains in the spirit of the original scheme.
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Ωn−1 Ωn Ωn+1wn−1,n(t)

J n−1,n(t)J n−1 J n J n+1

wn,n+1(t)

J n,n+1(t)

un

un+1

Fig. 3. Sketch of the implicit Euler method on [tn−1, tn+1]. When calculating un+1 we see that
all the action is happening on [tn, tn+1] and test/basis functions involved in SCL “carry the same
weight” so there is no violation of SCL.

Ωn−1 Ωn Ωn+1wn−1,n(t)

J n−1,n(t)J n−1 J n J n+1

wn,n+1(t)

J n,n+1(t)

un−1

un
un+1

Fig. 4. Sketch of the Crank–Nicolson method on [tn−1, tn+1]. When calculating un+1 we see
that all the action is happening on [tn, tn+1] and test/basis functions involved in SCL carry the
same weight so there is no violating SCL.

5.1. Implicit Euler method. The implicit Euler scheme is obtained by inte-
grating (5.1) from tn to tn+1 and approximating temporal integrals implicitly, i.e.,
the unknown under the integral sign is taken at time tn+1 (see Figure 3). Thus, by
the implicit Euler scheme we obtain (in semidiscrete version)∫

Ω̂

ψ̂ ûn+1 Ĵ n+1 dx̂−
∫

Ω̂

ψ̂ ûn Ĵ n dx̂

+ dn,n+1(ûn+1, ψ̂)− bn,n+1(f̂ n+1, ψ̂)−Mn,n+1(ûn+1, ψ̂) = 0.

(5.7)

5.2. Crank–Nicolson method. The Crank–Nicolson scheme is obtained by
integrating (5.1) from tn to tn+1 and approximating temporal integrals by the trape-
zoidal rule (see Figure 4). Thus, by the Crank–Nicolson scheme we obtain (in semidis-
crete version)

∫
Ω̂

ψ̂ ûn+1 Ĵ n+1 dx̂−
∫

Ω̂

ψ̂ ûn Ĵ n dx̂

+
1

2

[
dn,n+1(ûn+1, ψ̂) + dn,n+1(ûn, ψ̂)

]
− 1

2

[
bn,n+1(f̂ n+1, ψ̂) + bn,n+1(f̂ n, ψ̂)

]
− 1

2

[
Mn,n+1(ûn+1, ψ̂) +Mn,n+1(ûn, ψ̂)

]
= 0.

(5.8)

5.3. Backward differentiation formula. With the backward differentiation
formulas, the situation is a little bit different, primarily because, in contrast to the
previous two methods, it is based on differentiation instead of integration. Consider
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Ωn−1 Ωn Ωn+1wn−1,n(t)

J n−1,n(t)J n−1 J n J n+1

wn,n+1(t)

J n,n+1(t)

un−1

un

un+1

Fig. 5. Sketch of the BDF2 method on [tn−1, tn+1]. When calculating un+1 we see that all the
action is happening on [tn−1, tn+1] so, in order not to violate the SCL, the whole evolution of the
configuration on [tn−1, tn+1] has to be taken into account.

first the BDF2 method and the ODE in the form of y′(t) = f(t, y(t)). Then the ODE
discretized by the BDF2 takes the form

(5.9)
3

2
yn+1 − 2yn +

1

2
yn−1 = ∆tf(tn+1, y

n+1).

Rearranging the left-hand side of BDF2 in the general form we can obtain

(5.10)
3

2
yn+1 − 2yn +

1

2
yn−1 =

3

2
(yn+1 − yn)− 1

2
(yn − yn−1).

In the context of the time-dependent functions defined on the time-dependent do-
mains, when we talk about a function at time t we actually have in mind the pair of
functions and its domain at time t (see Figure 5). Applying the BDF2 scheme for the
time discretization of our model problem (5.1) we obtain

3

2

(∫
Ω̂

ψ̂ ûn+1 Ĵ n+1 dx̂−
∫

Ω̂

ψ̂ ûn Ĵ n dx̂

)
− 1

2

(∫
Ω̂

ψ̂ ûn Ĵ n dx̂−
∫

Ω̂

ψ̂ ûn−1 Ĵ n−1 dx̂

)(5.11)

from which it is clear that the action is happening on [tn−1, tn] and [tn, tn+1] with
“weights” 3

2 and − 1
2 , respectively. Therefore, in order for the SCL not to be violated,

the full evolution with the respective weights has to be considered in (5.9) on the
right-hand side. So the (modified) BDF2 scheme which does not violate the SCL
states

3

2

∫
Ω̂

ψ̂ ûn+1 Ĵ n+1 dx̂− 2

∫
Ω̂

ψ̂ ûn Ĵ n dx̂+
1

2

∫
Ω̂

ψ̂ ûn−1 Ĵ n−1 dx̂

+ dn,n+1(ûn+1, ψ̂)− bn,n+1(f̂ n+1, ψ̂)

− 3

2
Mn,n+1(ûn+1, ψ̂) +

1

2
Mn−1,n(ûn+1, ψ̂) = 0.

(5.12)

The procedure for BDF3 is analogous: starting from the general form

(5.13)
11

6
yn+1 − 3yn +

3

2
yn−1 − 1

3
yn−2 = ∆tf(tn+1, y

n+1)

we can rewrite it as
(5.14)
11

6
yn+1 − 3yn +

3

2
yn−1 − 1

3
yn−2 =

11

6
(yn+1 − yn)− 7

6
(yn − yn−1) +

1

3
(yn−1 − yn−2)
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ALE FEM FORMULATION WITH VANISHING DISCRETE SCL A1565

in order to get the final (modified) BDF3 formulation∫
Ω̂

(
11

6
ψ̂ ûn+1 Ĵ n+1−3 ψ̂ ûn Ĵ n +

3

2
ψ̂ ûn−1 Ĵ n−1−

1

3
ψ̂ ûn−2 Ĵ n−2

)
dx̂

+ dn,n+1(ûn+1, ψ̂)− bn,n+1(f̂ n+1, ψ̂)

− 11

6
Mn,n+1(ûn+1, ψ̂) +

7

6
Mn−1,n(ûn+1, ψ̂)− 1

3
Mn−2,n−1(ûn+1, ψ̂)

= 0.

(5.15)

Remark 5.1. One should notice that it is not absolutely necessary to write the
whole equation with respect to the reference configuration in order to satisfy the
SCL in the above approach. Actually, it is enough to only write the terms explicitly
involving the domain velocity w with respect to the reference configuration, while the
rest of the equation can be kept on the current configuration. In this paper, however,
we stick with the whole equation pulled back to the reference configuration for two
main reasons. The first one is for the clarity of presentation of the method and to
avoid the confusion with different notations. The second one is to emphasize the
involvement of the domain evolution even in the terms in which the domain velocity
is not explicitly written down. This is obtained through the Jacobian of the ALE map
and might have greater influence on the scheme than originally thought. Although
we do not discuss it in detail in this paper, we mention our thoughts on this manner
in the conclusion.

6. Spatial discretization. For spatial discretization, the FEM has been em-
ployed. For details we refer to [20, 21] and the references therein. We mention that
a good summary on construction of the finite element spaces on time-dependent do-
mains is given in [14]. Here we only summarize a few honorable mentions on the
selection of the finite element spaces for the ALE map and the related fields naturally
arising from it (e.g., grid displacement, velocity, Jacobian of the ALE map). It is

important to notice that once the finite element space for ALE map Ât is chosen,
its selection (partially) dictates the selections of finite element spaces for the fields
derived from the ALE map.

Assume that the grid is triangularized into a finite number of triangles (two
dimensional) or tetrahedra (three dimensional) with straight edges/faces. In order to
preserve the straight edges/faces during the grid motion, the displacement has to be
chosen as piecewise (per triangle) linear polynomial in space, that is,

(6.1) Âh,t, ûh,t, ŵh,t ∈ [P1]d.

The index h denotes the discretized (in space) counterpart of the function. In that
case

F̂h,t ∈ [P0]d×d

so Ĵ h,t ∈ P0 and F̂h,t ∈ [P0]d×d. Then, since a piecewise constant function times
a piecewise first order polynomial continuous function is generally a piecewise first
order polynomial but is discontinuous, we have

F̂h,t ŵh,t ∈ [P1,dc]
d,

P1,dc denoting the space of piecewise first order polynomials that are discontinuous
over the edges/faces of elements.
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A1566 F. IVANČIĆ, T. W.-H. SHEU, AND M. SOLOVCHUK

From the above discussion it is clear that we do not have complete freedom in
choosing finite element spaces for the ALE map. If, say, we were to choose a P1 space
for all the fields mentioned above, most software does an immediate interpolation thus
producing (an additional) error in the spatial discretization. So if one is not careful,
the violation of SCL may occur even though we are dealing with the time integrals
exactly.

7. Numerical validation. In this section we perform a numerical validation
of the proposed approach. For the first and second order schemes we compare our
results with the benchmark problems setup in [15, 16]. First the stability for different
schemes is tested, and then the accuracy is assessed. For the benchmark problems in
original papers [15, 16], piecewise linear finite elements are employed and we stick to
the same selection.

7.1. Stability. The following problem is considered:

∂tu− 0.01∆u = 0 in Ω(t)× (0, T ),

u = 0 on ∂Ω(t)× (0, T ),

u(0) = 1600x(1− x)y(1− y) in Ω(0)

(7.1)

with Ω(0) = [0, 1]2. The prescribed ALE map is given below:

(7.2) Ât(x̂) = (2− cos 20πt) x̂ in Ω̂ = Ω(0).

The time interval of interest is [0, 0.4] which corresponds to four periods of oscillations
of the domain.

In [15, 16] they use the Gronwall lemma to show that the norm ‖u(t)‖L2(Ω(t))

decreases with t. Therefore, for a stable discretization, the same decreasing trend
should be expected for the discrete solution.

We have used the same arrangement for the mesh density and time step lengths
as in the original papers [15, 16]. Grid velocity is calculated according to the schemes
described in section 4. The results for stability are shown in Figures 6 and 7 for the
implicit Euler scheme (mIE, m denoting modified), Crank–Nicolson (mCN), BDF2
(mBDF2), and BDF3 (mBDF3) schemes.

The first proposed scheme with a piecewise constant in time grid velocity coincides
with the method for the velocity calculation in [16] and the numerical results are in
exquisite agreement with theirs. It can be noticed that, if the time step is chosen
sufficiently small, all schemes produce solutions with the decreasing norms as expected
in the continuous case. For the cases with (relatively) large time steps, only the
implicit Euler scheme preserves the decreasing behavior of the norm of the solution.

In the second approach for the grid velocity calculation, results follow the same
pattern. However, the difference is noticeable for higher order methods. In this
case the displacement is quadratic in time, and tests regarding stability issues were
proposed and performed in [15]. Their results seem close to the ones obtained for the
piecewise linear displacement, while ours show a more noticeable difference. Figures
6 and 7 should be compared. One can notice that for the small time steps this second
approach results in a smaller rate of drop of the solution energy (apart from the Euler
scheme). The reason for that is still unclear, but it seems that there is less numerical
diffusion generated in comparison with the first approach.

The second order schemes give rise to some wiggles for large time steps, while
for smaller time steps the solution behaves as theoretically predicted. In [16] the
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ALE FEM FORMULATION WITH VANISHING DISCRETE SCL A1567

Fig. 6. The L2(Ω(t)) norms of discrete solutions for different time steps and different meth-
ods: implicit Euler method (mIE-dc, m denoting modified), Crank–Nicolson method (mCN–dc),
BDF2 (mBDF2–dc), and BDF3(mBDF3–dc) methods. Grid velocity is piecewise constant in time
calculated by the first proposed approach (4.6) (discontinuous in time reconstruction).

Fig. 7. The L2(Ω(t)) norms of discrete solutions for different time steps and different methods:
implicit Euler method (mIE-c, m denoting modified), Crank–Nicolson method (mCN–c), BDF2
(mBDF2–c), and BDF3(mBDF3–c) methods. Grid velocity is continuous in time calculated by the
second proposed approach (4.14) (continuous in time reconstruction).
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oscillations for the Crank–Nicolson scheme are predicted on a theoretical background.
Thus, once again it is confirmed that application of a scheme not violating the SCL
alone is not sufficient to retain stability, as noticed by various authors.

BDF3 seems more unstable for large time steps than the other considered schemes.
For the cases with small time steps, the scheme stabilizes and the results are in
agreement with the expected behavior. The reason for the gained instabilities most
probably lies in the relation between the time step and the grid velocity, but the
relation is not very clear and further investigation needs to be done.

7.2. Convergence. For convergence analysis we again consider the benchmark
problem posed in [15]:

∂tu− 0.1∆u = f in Ω(t)× (0, T ),

u = 0 on ∂Ω(t)× (0, T ),

u(0) = 16x(1− x)y(1− y) in Ω(0)

(7.3)

with Ω(0) = [0, 1]2 and the prescribed ALE map

(7.4) Ât(x̂) = (2− cos 10πt) x̂ in Ω̂ = Ω(0).

The forcing term f has been chosen so that the corresponding exact solution is

(7.5) û(x̂, t) = 16

(
1 +

1

2
sin(5πt)

)
x̂ (1− x̂ ) ŷ(1− ŷ).

The problem is discretized with P2 elements.
We have taken a sequence of decreasing time steps 0.05, 0.01, 0.005, 0.001, and

computed the L2 norm of the error at time t = 0.3 over the physical domain Ω(0.3)
and plotted the error against the discrete time step taken in a log-log scale.

We observe that (see Figure 8), apart from the BDF3, all the different schemes
preserve the expected order of convergence for both selections of computations of
the grid velocity. Euler’s scheme remains linearly convergent, while Crank–Nicolson
and BDF2 schemes remain quadratically convergent. BDF3’s rate of convergence is,
however, between two and three, but closer to two even for denser grids and higher
order polynomials (we tested the case for spatial discretization with P3 elements).

7.3. Accuracy. To show that the expected accuracy is preserved on moving
grids, we consider a heat equation

(7.6) ∂tu− α∆u = f in Ω(t)× (0, T )

with α = 0.1, T = 2, Ω(t) = Ω0 = [0, 1]2 ∀t ∈ (0, T ), i.e., the domain is fixed in time.
In order to simulate the moving domain problem, we prescribe the ALE map which
deforms the grid (with Ω̂ = Ω(0)), but the domain boundary is kept unchanged. This
approach allows us to compare the results obtained on the fixed grid (for which the
accuracy of the schemes is known) with those obtained on moving grids. The source
term f and the initial condition u(0) in the above equation are chosen such that

u(x, t) = sin t cos

(
2

(
x− 1

2

)2

+ 2

(
y − 1

2

)2
)

is an exact solution. Clearly, due to grid movement, the spatial discretization changes
and possibly influences the accuracy of the numerical solution. On dense grids, the
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Fig. 8. Rates of convergence for different time stepping methods in log-log scale: implicit
Euler method (mIE-c, mIE-dc), Crank–Nicolson method (mCN–c, mCN–dc), BDF2 (mBDF2–
c, mBDF2–dc), and BDF3(mBDF3–c, mBDF3–dc) methods. m denotes modified, c continu-
ous, and dc discontinuous in time grid velocity reconstructions. x–axis represents the time step
∆t in the discretization scheme (∆t = 0.001, 0.005, 0.01, 0.05), y–axis represents the ‖un+1

h −
uh(tn+1)‖L2(Ω(tn+1)) with n + 1 such that tn+1 = 0.3. Dashed black lines denote the slopes.

difference in accuracy due to spatial discretization should be minimally affected. As
shown in section 7.1, stability might play a part as well. If the produced errors for
fixed and moving grid cases exhibit the same pattern (with possibly a small difference
due to different grids), then the accuracy is the same for both methods.
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Fig. 9. Illustration of the action of the ALE map (ÂA
top, ÂB

bottom). The initial grid is
uniform on the domain [0, 1]2.

The grid is moved according to the ALE maps given below (interpolated onto the
P1 space):

Â
A

(x̂, t) =

[
x̂ + 1

2 sin(πt) sin(π x̂ (1− x̂ )(x̂ − 1
2 ))

ŷ + 1
2 sin(πt) sin(π ŷ(1− ŷ)(ŷ − 1

2 ))

]
and

Â
B

(x̂, t) =

[
x̂ + sin(πt) x̂ (1− x̂ ) ŷ(1− ŷ)
ŷ + sin(πt) x̂ (1− x̂ ) ŷ(1− ŷ)

]
.

The above maps are constructed with the objective of changing the volume of triangles
in order to emphasize the problems rising from the violation of the SCL constraint
(see Figure 9). We also plot the results obtained for SCL-violating schemes from
which the newly proposed schemes were derived for an illustration. From Figure 10
we can observe that the classical SCL-violating schemes may produce an error that
does not follow the pattern of the one obtained in the fixed grid. The difference
is especially noticeable for the BDF2 method, although this is expected from the
theoretical discussion in 5.3. The proposed SCL-nonviolating schemes produce errors
that follow the patterns of the ones obtained in the fixed grid in very good agreement.
For the small time steps agreement is excellent, while for the larger time steps solutions
might suffer from the artificial numerical diffusion already discussed in section 7.1.
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Fig. 10. The L2 norms of errors between the exact and numerical solutions for different schemes
and time step ∆t = 0.05. In the legend fixed refers to solutions obtained on fixed grids, while mov-
wSCL and mov-nSCL stand for ones obtained on moving grids with the proposed nonviolating SCL
(wSCL, w denoting with) schemes (dc and c standing for the discontinuous and continuous in time
reconstruction of grid velocity), and the classical, SCL-violating (nSCL, n denoting no) schemes,
respectively.

8. Conclusion. A modified approach of handling PDEs on time–dependent do-
mains with the FEM has been introduced within the ALE framework. The approach
exploits the full potential of the polynomial form of grid velocity by integrating the
time integrals exactly. Consequently, the SCL identity is trivially satisfied. While
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much more work remains to be done on the question of stability, it seems that in
case when the discrete time step is sufficiently small to keep the scheme stable, the
accuracy of the scheme is maintained. From the numerical results a conclusion can be
made that for the problems on moving grids, not violating SCL alone is not enough for
stability (and convergence) of the schemes. Although it yet remains to be confirmed,
it looks like the terms that do not explicitly involve the grid velocity play a more
significant role than expected. We suspect this by considering the problem reposed
on the reference configuration. In that case the dependence of all terms on the ALE
map (and thus on the grid motion) is more emphasized than in the case when problem
is posed on current configuration. This dependence emerges in the form of Jacobians
and gradients of the ALE map. An attempt at a more theoretical analysis will be
made in the following papers.

The main advantage of the newly proposed approach is in its simplicity for the
generalization to an arbitrary temporally high order scheme without (explicitly) wor-
rying about the discrete SCL. Independently of the chosen scheme for the discretiza-
tion of the temporal derivative, it is always possible to satisfy the SCL. Moreover,
the satisfaction of SCL is trivial due to the construction of the formulation which is
based on the differential statement of SCL. Two alternative ways of grid velocity cal-
culation have been presented, and their influences on the scheme stability have been
investigated.

A quite detailed procedure on the pullback to the reference configuration has been
presented. A few of the most popular schemes have been considered and the details
on their modifications within the new approach have been given.

All of the implementation has been done with the FreeFEM++ software [22,
23]. Numerical validation showed good agreement with the benchmark problems
introduced by other authors.
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