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A new interface preserving level set method is developed in three steps to simulate bubble rising prob-
lems. In the first step of the solution algorithm, the level set function ¢ is advected by a pure advection
equation. An intermediate step is performed to obtain new level set function through an improved
smoothed Heaviside function. To keep the new level set function as a distance function and to conserve
mass bounded by the interface, in the final solution step a mass correction term is added to the re-
initialization equation. This two-phase numerical model is developed underlying the projection method
to compute the incompressible Navier-Stokes solutions in collocated grids. In the discretizations of the
level set advection equation and the re-initialization equation, the fifth-order weighted essentially
non-oscillatory scheme is applied to prevent numerical oscillations occurring around discontinuous
interface. The performance of the proposed level set method in conserving mass is compared with con-
ventional level set method applied to solve the single bubble rising problem and the bubble bursting
problem at a free surface. Merger of two bubbles is also investigated. Numerical results show that not
only the surface tension force can be accurately calculated but also the mass can be conserved excellently
using the present level set method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bubble deformation, coalescence and breakup are widely
encountered in science and in many industrial processes. Typical
examples include propeller cavitation, heat and mass transfer
between boiling liquid and bubbles, bubble formation resulting
from underwater explosion and entrainment of wave breaking.
Bubble motion in liquid fluids is strongly nonlinear, and the defor-
mation of interface can be quite severe when flow is in motion.
Therefore, numerical simulation of bubble motion becomes
increasingly concerned by researchers of different disciplines.
Investigation into bubble rising motion must take into account
mass conservation and surface tension force, which play important
roles and pose grand computational challenges [1]. In this study,
attention will be addressed on the development of incompressible
two-phase flow solver, which is applied to predict air/water inter-
face accurately with the surface tension force being considered.
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Meanwhile, this algorithm can conserve mass as well in the predic-
tion of interface movement.

Interface tracking and interface capturing methods have been
widely adopted to model two-phase flows [1]. The interface track-
ing method [2,3], implemented on a moving surface mesh, has
been well known to be very effective in modeling a small interface
deformation. However, the re-meshing procedure is computation-
ally expensive when interface undergoes a significant deformation.
Another major drawback of the interface tracking methods is that
they have difficulty to model bubble coalescence and breakup.
Therefore, it is computationally intensive and difficult to apply
these methods to study bubble and droplet dynamics [4]. The
interface capturing methods, such as the volume of fluid (VOF)
methods and the level set (LS) methods, have been developed to
simulate two-phase flows in a fixed grid since application of these
methods can capture a greater topological change.

In the VOF method, the interface is defined in cells in which the
magnitude of the volume fraction F is between zero and unity. The
advantage of VOF method is its conservative nature. Hirt and
Nichols [5] proposed an original VOF method, which belongs to
the algebraic-type of VOF methods. They employed a donor-accep-
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tor formulation with flux limit manipulations to guarantee the
boundedness of the numerical solution. Algebraic-type VOF meth-
ods always use high resolution schemes to compute volume frac-
tion so that these approaches can normally render a highly
diffusive interface and affect the accuracy of the solution. Different
from algebraic-type VOF methods, the so-called geometrical-type
VOF methods which add an extra step to identify the interface at
new position (geometrical reconstruction) are developed. The
widely used geometrical-type VOF method are the SLIC (Simple
Line Interface Calculation) [6] and the PLIC (Piecewise Linear Inter-
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face Calculation) [7-9]. A PLIC scheme is more accurate than a SLIC
scheme but it suffers a considerable algorithmic complexity.
Another disadvantage of VOF method is that it is more difficult
to calculate some geometric properties such as the unit normal
vector, curvature and surface tension force along interface from
the VOF function, which is defined as the fraction of the volume
within each cell of fluids in a discontinuous fashion. An inaccurate
calculation of these geometric properties can cause an imbalanced
surface tension force to occur and it can furthermore lead to
unphysical flow phenomena [10]. To reduce oscillatory and smear-
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Fig. 1. The predicted interfaces in 128 x 128 grids at. (a) t = 0.5; (b) t =0.5 [23]; (¢) t =1.0; (d) t = 1.0 [23]; (e) t =2.0; (f) t = 2.0 [23].
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Fig. 2. The predicted solutions of ¢ = 0 in 128 x 128 grids with/without using the intermediate step. (a) t = 1.0; (b) t = 2.0.
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Fig. 3. The contours of ¢ = 0 predicted in 100 x 100 grids at a time after one revolution.
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without mass conservation, solid line: with mass conservation) [22]. Note that re-initialization step is performed at each 128At for the presnet level set method.
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Fig. 4. The contours of ¢ = 0 predicted in 200 x 200 grids at a time after one revolution.
without mass conservation, solid line: with mass conservation) [22].

ing solutions, the algebraic-type VOF method (i.e. Tangent of
Hyperbola for INterface Capturing, THINC) which uses the
hyperbolic tangent function to compute the numerical flux for
the volume fraction [11-14]. In [15], the THINC method with

(b)

(a) Present level set method; (b) Mass conservation level set method (dashed line:

multi-dimensional reconstruction algorithms that have been
developed to suppress spurious current for drop oscillation and
bubble rising problems. Advantages of this scheme are that the
geometric reconstruction is not required, quadratic surface can
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Fig. 5. Comparison of the predicted time-evolving bubble interfaces, obtained in 200 x 400 grids, with those of in [23] for the case taking the surface tension into account. (a)

t=05; (b) t = 0.5 [23].

be constructed easily, and the derivatives and normal vectors can
be calculated directly through the continuous multi-dimensional
hyperbolic tangent function.

For the level set methods [16-21], the interface can be defined
by zero contour of a continuously signed distance function so that
the curvature of interface can be easily calculated due to the
smooth nature of the level set function across interface. As time
goes by, the level set function becomes increasingly irregular. To
retain the level set function as a signed distance function, the
re-initialization procedure is required to perform. Thus, a small
amount of mass may be lost or gained in this process. The difficulty
of maintaining a good mass conservation is now known as the
major drawback of the level set approach. Many researchers have
proposed different ways to conserve mass within the framework
of level set methods. A mass-conserving level-set (MCLS) method
is proposed to model bubble dynamics [22]. In this model, the level
set method is adopted to calculate the surface tension force, and
VOF function is used to conserve mass when interface is advected
in the flow. The modified level set method with the built-in conser-
vative property, known as the conservative level set method, is
developed to improve mass conservation [23,24]. In their modified
level set methods, in the intermediate solution step both artificial
compression and viscosity terms are added to sharpen interface
and to avoid small interface thickness, respectively. More works
of improving conservative level set methods can be found in Stru-
belj and Tiselj [25] and Ng et al. [26]. In [27,28], a global mass cor-
rection scheme for the level set method is developed to study
bubble evolution. In their studies, the third distance function is
introduced to ensure mass conservation. This method can be fur-
ther applied to predict the trajectory of a solid object entering
and exiting the water body [29].

Based on the above analysis of the VOF and LS methods, one can
take advantages of both methods to develop a method combining
the VOF method with the LS method. In [1,4,30-35], a coupled level
set and volume-of-fluid (CLSVOF) method exploiting full advan-
tages of the VOF and LS methods is developed. In this coupled

method, the interface is approximated in a piecewise linear man-
ner, which is reconstructed from the VOF approach, and the normal
vector, curvature and surface tension force of interface are calcu-
lated from the smooth level set function. This coupled method is
popular in the simulation of two-phase flows because of its poten-
tial of yielding a better mass conservation and a more accurate cal-
culation of geometric properties. As is mentioned above, LS, VOF or
CLSVOF methods are all designed to capture the moving surface.
Note that CLSVOF method can be seen as an improvement on each
individual scheme (VOF and LS), aiming to combine their merits.
CLSVOF method, unfortunately, inevitably encounters complex
interface reconstruction and may suffer a computational burden
and involve difficulties in programming. Development of a more
efficient and accurate algorithm for CLSVOF method is still needed.
Another approach proposed to ensure mass conservation is called a
coupled volume of fluid and level set (VOSET) method for the cal-
culation of incompressible two-phase flows [36]. In this method,
VOF approach is adopted to capture interfaces to conserve mass.
In addition, an iterative geometric approach is proposed to calcu-
late the level set function, which can be applied to compute more
accurately the geometric properties and to resolve the physically
sharp interface without incurring contact discontinuous oscilla-
tions. More computational examples of the interfacial flows can
be found in the relatively new and efficient VOSET method [37,38].

In the present work, the main objective is to adopt the interface
preserving level set method [39] to improve the degree of mass
conservation and to calculate surface tension force more accurately
in arbitrarily shaped interfaces which may be merged or split. We
first calculate the level set function from the new smoothed Heav-
iside function after solving the advection equation for the level set
function. Then, the re-initialization equation is modified by adding
a correction term to preserve mass conservation in a sharp inter-
face region. The outline of this paper is described as follows: In Sec-
tion 2.1, new smoothed Heaviside function will be designed to
smoothen fluid viscosity and density profiles. Section 2.2 describes
an improved interface preserving level set method. Numerical pro-
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Fig. 6. The plot of the predicted benchmark quantities against the dimensionless time for the 2D bubble rising problem described in Section 4.2.1. (a) rise velocity; (b) center

of mass; (c) circularity; (d) mass ratio.

Table 1

Comparison of the solution algorithms for the calculations performed in different
grids with/without using the intermediate step. This problem is described in
Section 4.2.1.

Grids Mass conservation CPU times (s)
Without intermediate step 50 x 100 No 58.0

100 x 200 No 471.2

200 x 400 No 3615.6
With intermediate step 50 x 100  Yes 61.6

100 x 200 Yes 489.9

200 x 400 Yes 3645.3

cedures and schemes are presented in Section 3. Section 4 investi-
gates the bubble rising motion in a container partially filled with
water, single bubble rising in a container, and two-bubble merging
problem. Finally, we will draw some conclusions in Section 5.

2. Numerical modeling
2.1. Smooth Heaviside function and delta function
The jumps of p and p across an interface need to be smoothed

in order to avoid contact discontinuities occurring in regions near
the interface. To prevent unphysical oscillations, both density

and viscosity are smoothly distributed across the interface by
employing the smoothed Heaviside function H(¢), thereby leading
to

p(P) = pe+ (P — PIH(P), (1)
() = Mg + (1 — Ho)H (), )
with ‘H being chosen as follows
0; if p <—¢
ﬁ% iflel<e
(g - | (%) 3)
1; fe¢>e

The subscripts G and L shown in Egs. (1) and (2) represent the
air and water phases, respectively. The level set function ¢ is
defined as the signed distance function from the interface. The

smoothed delta function é(¢) obtained from d’;—fp“’) is as follows
36’31_'d) ;
TN if 1o < ¢
o) =1 (1) (4)
0; otherwise.

It is noted that the width of interface region ¢ is chosen as 1.5Ax,
where Ax is the gird spacing.
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Fig. 7. The predicted results for a single bubble rising problem for the case with Re = 100, We = 200 and %f = 0.01 at different dimensionless times. (a) t = 1; (b) t = 1 [48];
(©)t=2;(d)t=2[48];(e)t=3; (f)t=3[48]; (g)t =4; (h) t =4 [48]; (i) t =5.5; (j) t = 5.5 [48]; (k) t = 6; (1) t = 6 [48].

2.2. Improved interface preserving level set method

The proposed three-step solution algorithm aiming at accu-
rately predicting interface is described below.

2.2.1. Advection step
In the adopted level set method, the level set function ¢ is ini-
tially prescribed to have the signed distance values given below

—d for xe€ Qg
0 fOT Xe l—‘interface

¢= d for xe Quaer-

()

Here, d denotes the absolute normal distance to the interface.
An interface separating air and water can be regarded as the evo-
lution of the zero level set function (i.e. ¢ = 0) governed by

¢ +u-V¢=0. (6)

It is implied that interface will be advected with the flow veloc-
ity vector u. Given the mass conservation property [H(¢)dQ,
where Q is any fixed domain, should be mass conserved all the
time (i.e. [H(¢,t =0)dQ = [H(¢,t)dQ). However, in actual com-
putation of Eq. (6), the applied scheme will introduce numerical
error that will more or less deteriorate the predicted solution of
level set function as time proceeds (i.e.



C.H. Yu et al./International Journal of Heat and Mass Transfer 103 (2016) 753-772 759

-
o
N

LA L L B LB

Present
77777777777777 Conventional level set method [16]

oo7 L v 0 b b
0 1 2 3 4 5 6

t

Fig. 8. The ratios M, defined in Eq. (38) are plotted with respect to the
dimensionless time t for a single bubble rising problem predicted at
Re =100, We = 200 and%‘[:0.0l‘

JH(p, t =0)dQ — [H(¢,t)dQ = Heror # 0). To retain the mass con-
servation property, the procedure described in the following inter-
mediate step is essential.

2.2.2. Intermediate step
For retaining the mass conservation property, we introduce
H(p, ) + ey if 0 < H(g,) < 1,
H(Onews ) = 4 H(g,0); i H(, 1) =0 or H(,1) =1, @)

where N denotes the nodal point in the smooth layer (or in the
thickness of interface). If H(¢pew.t) > 1, set H(¢pe,,t) =1; if
H(Ppew, t) < 0, set H(ppew, t) = 0. The new values of ¢,,,, can be cal-
culated from the following formulation

if 0 <H(p,t) <1,
if H(¢,t)=0o0r H(p,t) =1. (8)

_1 11‘1(7 H(d’new't)*l)g;

H(¢new:t)
Prew = o;

Note that the new level set function ¢,,, can be derived from
Eq. (3). This procedure, as a result, guarantees mass conservation
inside the thickness of interface.

2.2.3. Re-initialization step

To ensure that ¢,,, can remain as a distance function and to
conserve mass bounded by the interface, the computed solution
¢new from Eq. (8) is employed as the initial solution in solving
the following re-initialization equation:

bc = SEN(Ppew) (1 = [V ) + 26(4)[ V. 9)

In the above, 7 is a pseudo-time and sgn(¢,ey) = 2(H(¢Ppew) — 1),
and 45(¢)|V¢| is the mass correction term. Note that 2 can be
determined from the interface preserving condition given by [39]

5 [ @2 = [H@)0d0 = [ 6) 5801 - V)
+20(¢)|V$|)dQ2 = 0. (10)
The parameter / can be thus prescribed as

_ Jo9(¢)(s80(dnew) (1 — [V ]))dQ

J=
Jo ()| VeldQ

(11)

Numerical simulation of Eq. (9) has shown that ¢ can be kept as
a distance function near interface.

2.3. Coupling of Navier-Stokes equations with level set function

The incompressible two-phase flow equations for the air and
water phases are governed by

V-u=0, (12)

p() (G + V) = ~Vp V- [1(6)(Vu+ VuT)] + pl)5 + .
(13

where u=(u,v) is the velocity vector, p the pressure and
g=(0,0,—g) the gravitational acceleration. p(¢) and u(¢) shown
in Eq. (13) are the density and viscosity, respectively. In Eq. (13),
f;; is the surface tension force per an interfacial area at a point on
the interface. As pointed out in [33,40], in the level set formula-
tion, surface tension force can be written in terms of ¢ as follows
by adopting the density-scaled continuum surface force (CSF)
model:

fy = oK ($)3""™($)V o, (14)

where 5" () = 2H(¢)d(¢). In Eq. (14), o is the fluid surface ten-
sion coefficient and is assumed to be a constant, x is the local mean
curvature, and n is the unit vector normal to the water interface.
The gradient of ¢ shown in Eq. (14) can be computed by a central
difference scheme. The curvature of the interface, or x(¢), can be
derived as

= - <¢;2(¢yy - 2¢x¢y¢xy + ¢)2/¢xx + ¢;2<¢zz - 2¢x¢’z¢xz + ql’gd)xx
a2t di0y) (B4 0i ) (9

3. Numerical schemes and solution algorithm

The key to success in accurately predicting a time varying inter-
face lies in the approximation of the convection terms in the
momentum and the level set equations described respectively in
Section 3.1 and 3.2. This is followed by the presentation of the
entire solution algorithm in Section 3.3.

3.1. Momentum equation solver

The convection terms in the momentum equation are dis-
cretized using the third-order QUICK (quadratic upwind interpola-
tion for convective kinematics) scheme [41]. For example, the

convection term ’“U”y“) in the y-direction momentum equation can

be approximated as

o(vu) ViU — Vi g

= 16
o N , (16)
where the value of u;,; is evaluated as:
(=Uirj + 6Uij + 3uiy), if Vi = 0,
Wi12i = %(—Uwz.j + 6u;1j + 3uyy), if Visy2i < 0. (17)

The diffusion term is approximated by the second-order center
difference scheme.
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3.2. Level set equation solver

For capturing interface, the fifth-order Hamilton-Jocobi
weighted essentially non-oscillatory (HJ-WENO) scheme [42] is
used for the approximation of the level set and re-initialization
equations. For example, the derivative term j—f in Eq. (6) is approx-
imated as

((i);)v lfui = 07
= ! 18
(o {(zb:),», ifu <0, 1%
In Eq. (18), (¢;); and (¢;); are calculated using the nodal values
of i3 ~ ¢i3

-1 Aty At i g At Aty
¢X’f*12< Tt

AX AX AX
7¢WENO A7A+¢i—2 A7A+¢’i71 A7A+¢i A7A+¢i+1 (19)
Ax 7 A T AT Ax ’
and
1 A A4 Ao ATy
+ _ i i i i+
¢"”'712< o P T AX
7¢WENO A7A+¢i+2 A7A+¢i+1 A7A+¢i A7A+¢i71 (20)
Ax 7 A 7 AT Ax ’

where A% ¢ = i1 — b, A = ¢ — by (k=1i-3 ~i+2). Note
that $"®°(a, b, c,d) can be expressed below in terms of a, b, c,d



C.H. Yu et al./International Journal of Heat and Mass Transfer 103 (2016) 753-772 761

1.008
1.006 |-
1.004 |- :
. 1.002 |-
= i |
Py S
0.998 |-
i ——  Present
| e Conventional level set method [16]
0.996 |-
[N RN RN SRR SR ST
0 1 2 3 4 5 6
t

Fig. 10. The ratios M, defined in Eq. (38) are plotted with respect to the
dimensionless time t for a single bubble rising problem investigated at
Re =100, We = 200 and density ratio ’,’Tf =0.2.

Table 2

Comparison of the solution algorithms for the calculations performed in 60 x 60 x 80
grids with/without using the intermediate step. This problem is described in
Section 4.2.3.

Grids Mass CPU times
conservation (s)
Without intermediate 60 x 60 x 80 No 55,976
step
With intermediate step 60 x 60 x 80 Yes 56,117

3.3. Solution algorithm

An improved interface preserving level set method is developed
for getting a better interface representation. The projection method
[44] which is an effective method in solving the time-dependent
incompressible flow solutions has been performed. The advantage
of the projection method employed in this study is that the compu-
tation of velocity and pressure fields can be decoupled. The present
computational procedures are summarized as follows:

(Step 1) Set ¢, =1 in the water (outside the bubble) while
¢o = —1 in the air (inside the bubble). Initialize the level set func-
tion ¢ by solving the initialization equation

b: +580(o)(IV| - 1) = 0. (27)

Given the solution obtained at a time T = Lp, which is the lar-
gest length of the computational domain, we set the computed
value of ¢, as ¢.

(Step 2) Define the fluid density p(¢) and viscosity pu(¢) accord-
ing to the level set function ¢ shown in Egs. (1) and (2).

(Step 3) Calculate the intermediate velocity u*, which does not
necessarily satisfy the divergence-free constraint condition, from
the following momentum vector equation without taking the pres-
sure gradient term into account:

u —u”

o o, Vo 2H(@DY) ok (¢) Ve
YA S R ST Py S

where D =1 (Vu + Vu").

(Step 4) Correct the intermediate velocity to obtain the solution
at the time step n**! by taking into account the pressure gradient
term shown below

(28)

un+1 —u _ vp

$""™(@,b,c,d) = %a)o(a— 2b+0) Wl ((Dz —%) (b —2c+d).

6
(21)
The optimal weights @y and w, in Eq. (21) are defined in [41]
wO:L, w2:L7 (22)
Ol + 01 + 0 Olp + 0 + 02
with
1 6 3
To= g, U=, Op= (23)
(e+1So) (e+1S51) (e+1Sy)

Note that ¢ = 107° is chosen to prevent division by zero. The
smoothness indicators ISy, IS;,IS, designed below to detect the
presence of large discontinuities can automatically switch the
stencil to decrease the degree of oscillation in the solution

ISy = 13(a—b)* + 3(a — 3b)°,
IS; =13(b—¢)* +3(b+c)’,
IS, =13(c—d)* +3(3c —d)*.
For the approximation of the time derivative term, the explicit

total variation diminishing Runge-Kutta (TVD-RK) scheme consist-
ing of the following three solution steps is employed [43]

¢ = ¢ + AtL(¢"”), (24)
3 .1 1
¢ = l_ld)( '+ 4_1(/)(1) + ZNL((PU)% (25)
1 2 2
(+1) _ 2 p(m) 4 £ 4(2) 4 2 @)
P =307 +397 +3 AL, (26)

AP 29
The above equation holds under the constraint equation
V.-utl =0.
(Step 5) Solve Eq. (6) by the HJ-WENO scheme with the TVD-RK
time marching scheme described in Section 3.2 to obtain ¢™*'.
(Step 6) Calculate the new level set value ¢!} by Eq. (8).

(Step 7) Re-initialize the level set function ¢! by solving Eq.
(9) described in Section 2.2.3.

(Step 8) Repeat the calculations form Step 2 to Step 7 for one
time loop.

4. Numerical results

Two benchmark problems including the vortex in a box prob-
lem in Section 4.1.1 and the Zalesak’s problem in Section 4.1.2
are solved to verify the proposed improved level set method. Fur-
thermore, our numerical method is applied to solve several 2D and
3D two-phase flow problems. In Section 4.2.1, the effect of density
and the behavior of bubble splitting are addressed for a single bub-
ble rising problem. In Section 4.2.2, solutions computed from the
improved interface preserving level set method are compared with
those obtained by the algebraic VOF algorithm, which is known as
the tangent of hyperbola for interface capturing with the slope
weighting (THINC/SW) scheme [13] described in Appendix A, to
validate the abilities of the proposed scheme to accurately predict
interface of a bubble bursting at a free surface. In addition, our pur-
pose is to understand the effect of surface tension on the behavior
of bubble breakup. Three dimensional single bubble rising problem
is considered in Section 4.2.3. In Section 4.2.4, we simulate the
merge of two bubbles. In Section 4.2.5, three dimensional bubble
bursting at a free surface is also investigated.
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Fig. 11. The predicted results in 180 x 210 grids for a single bubble rising problem for the case with Re = 100,% =0.5 and %,G = 0.5 at different dimensionless times. (a)
t=1.5(LS); (b) t = 1.5 (THINC/SW); (c) t = 1.5 [48]; (d) t = 2.0 (LS); (e) t = 2.0 (THINC/SW); (f) t = 2.0 [48]; (g) t = 2.5 (LS); (h) t = 2.5 (THINC/SW); (i) t = 2.5 [48]; (j)
t = 3.0 (LS); (k) t = 3.0 (THINC/SW); (1) t = 3.0 [48]; (m) t = 3.5 (LS); (n) t = 3.5 (THINC/SW); (0) t = 3.5 [48]; (p) t = 4.0 (LS); (q) t = 4.0 (THINC/SW); (r) t = 4.0 [48].

4.1. Benchmark problems for the proposed level set method

To evaluate the proposed advection algorithm for solving the
level set equation, the results obtained from the present scheme
for the vortex in a box [1,20,23] and Zalesak’s [1,22] problems were
compared with those of other existing schemes.

4.1.1. Vortex in a box

This problem can be used to evaluate the accuracy of the pre-
dicted interface advection and deformation. The flow field was
reversed at t=T =1 so that the exact solution obtained at
t = 2T should coincide with its initial solution given by

(x - 0.5)* + (y — 0.75)* = 0.0225.

The velocity fields are given as

(30)

u = sin’(7x) sin(27y), (31)

v = —sin’(my) sin(27x). (32)

The numerical results obtained on the uniform grid size of
128 x 128 at t = 0.5,t = 1.0 and t = 2 with At = 0.01Ax are com-
pared with the existing level set method introduced by Olsson
and Kreiss [23]. In Fig. 1. the proposed level set method is seen
to be able to preserve the areas of the filaments much better than
the level set method in [23]. For showing the advantages of the
proposed improved interface level set method, the stretching pro-
cess of interface with/without performing intermediate step,
which is described in Section 2.2.2, in 128 x 128 grids is shown
in Fig. 2. It is clear that the computed solution using the scheme
involving intermediate step can sharply resolve the solution within
a thin and elongated filament.
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35

Fig. 11 (continued)

4.1.2. Zalesak’s problem

In this problem the slotted disk with a radius of 15 and a slot
width of 6 is located at (50,75) in the domain [100 x 100], within
which there is a constant angular velocity field

u:%, (33)
y:%_ (34)

Note that the disk returns to its original position for every
2007 time units. For the sake of comparison of our results with
those of Pijl et al. [22], a uniform grid of 100 x 100 and
At = 0.25Ax is employed to simulate this problem with/without
mass correction (i.e. with/without performing intermediate step).
Fig. 3 shows that the sharp corner is matched well with that of
the initial one when the intermediate step is used. We then sim-
ulate this problem in 200 x 200 grids to measure the effect with/
without performing intermediate step after one revolution. In
Fig. 4, good agreement with the exact solution is clearly
demonstrated.

05F
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Fig. 12. The mass conservation ratios M, definedin Eq. (38) are plotted with respect
to the dimensionless time t.
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Fig. 13. The predicted results in 210 x 240 grids for a bubble rising in a container partially filled with water for the case investigated at Re = 100, We = 10, 24 = 0.5 and

I water,

'35 [48]; (k) t = 4.0; (I) t = 4.0 [48].

4.2. Evaluation of two-phase flow model

To quantitatively evaluate the performance of the proposed
level set scheme in resolving the rising interface in viscous fluid,
the benchmark quantities including the center of mass, circularity,
and rise velocity are investigated [45-47]. The translation of bub-
ble can be measured by the center of mass which is defined as:

‘[Qb xdx
fnb dx’

where Q, is the region of bubble. Note that x. and y, are the coor-
dinates of the center of mass in x-direction and in y-direction,
respectively. The circularity is defined as:
P,

C=— 36

1 Pb ) ( )
where P, denotes the perimeter of the initial round bubble and P, is
the bubble perimeter. The rise velocity is defined as

X = (X, y) = (35)

Har — 0.5 at different dimensionless times. (a) t = 1.5; (b) t = 1.5 [48]; (¢) t =2.0; (d) t = 2.0 [48]; (e) t =2.5; (f) t = 2.5 [48]; (g) t = 3.0; (h) t = 3.0 [48]; /()t735 ()

fgb vdy
Jo, &V

where vis the y-direction velocity magnitude. The ratio of the initial
mass predicted at time t is defined below

ng(¢f
JoM(@,t=0

V= 37)

M, = (38)

4.2.1. Two dimensional single bubble rising problems

A circular bubble of radius 0.0025m and center (0.005 m,
0.005m) located in a computational domain [0,0.01 m]x
[0,0.02m] is considered. Taking u,=0.12 [ =0.005m,

pr_1000“]‘1g3,u,_0001 2,p,_OOOIN; and o = 00073 as
the referenced values for the respective velocity, length, den51ty,
viscosity and surface tension coefficient, three dimensionless

parameters, namely, the Reynolds number (Re), Weber number
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Fig. 14. The time-evolving interfaces for a bubble rising in a container partially filled with water predicted at different times. (a) t = 4.125; (b) t = 4.25; (c) t =4.75; (d)

t=50.

(We) and the Froude number (Fr) are 500,0.68 and 0.45, respec-
tively. The water-air density and viscosity ratios are specified
respectively as /‘)’—; =0.0013 and Z—; = 0.016. The results will be pre-

dicted in the domain containing 50 x 100,100 x 200,200 x 400
grids. Fig. 5 shows that the present result of bubble shape and
the numerical result obtained by Olsson and Kreiss [23] are
matched very well. The rise velocity, center of mass, circularity
and mass ratio are shown in Fig. 6. The reference solution is chosen
to be the one computed from the finest grid 200 x 400. The com-
puted rise velocity in Fig. 6(a) matches well with Olsson and Kreiss
in[23]. Also, in Fig. 6(d), the mass is conserved using the proposed
level set method. We also provide CPU times obtained with/with-
out performing intermediate step for the proposed level set
method in Table 1. The price paid to conserve mass through the
use of intermediate solution step is not considerable.

The effect of density for a single rising bubble problem, which
has been considered by Zhao et al. [48], is also studied. The tank
with 4D in length and 6.48D in height, where D is the diameter
of the initial circular bubble. The air bubble with the radius of
1.0D is located at a location that is 1.48D above the bottom of
the container. The Reynolds number Re, Weber number We, and
the density ratio under investigation are 100,200 and 0.01, respec-
tively. The predicted time-evolving bubble interfaces in 150 x 243

1.00004 -
e 180x210 grids
B ——— 240x280 grids

1.00002 -

0.99998 |-

0.99996 |-

Fig. 15. The ratios of M, defined in Eq. (38) are plotted with respect to the
dimensionless time ¢ for the calculations carried out in two grids.
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Fig. 16. The predicted results at different dimensionless times for the bubble bursting at a free surface. (a) t =0.8; (b) t =1.8; (c) t =2.4; (d) t = 3.6.

grids are plotted in Fig. 7. It is clearly shown that the presently pre-
dicted interface topologies agree well with those predicted by Zhao
et al. [48]. The predicted mass shown in Fig. 8 is preserved quite
well using the present level set method.

The next investigation considers three dimensionless parame-
ters for characterizing the flow motion are chosen as
Re =100, We = 200 and density ratio 0.2. The predicted time-
evolving bubble interfaces in Fig. 9, plotted at the dimensionless
timest=1,t=2,t=3,t=4,t=5.5and t = 6, are also compared
well with those given in Zhao et al. [48]. The numerical results
plotted in Fig. 7 and Fig. 9 show that the bubble rises faster because
of the decreasing density ratio. In Fig. 10, the degree of mass con-
servation in comparison with that of the conventional level set
method remains very high.

4.2.2. Two dimensional bubble bursting at a free surface

Bubble rising from rest in the incompressible flow subject to
buoyancy force has been intensively studied and has many avail-
able numerical results in the literature [48,49]. The stationary bub-
ble is centered at (1.5D, 1.5D) in a container of width 3D and height
of 3.5D, where D is the initial diameter of the bubble. The initial
water depth in the container is 2.5D. Slip conditions are specified
along the horizontal and vertical walls. The air-water density
and viscosity ratios are specified as p;/p, = 0.5 and pu;/u, =0.5,

respectively. The case without consideration of surface tension is

first investigated at the Reynolds number of Re(= %) =100,

where U(= /gD) is the characteristic velocity. Fig. 11 shows the
predicted and numerical results of Zhao et al. [48] at different
times. The shape of the bubble is deformed to a kidney shape with-
out taking the surface tension force into account. Also, we show
that the presently predicted interface topologies in Fig. 11 agree
fairly well with that predicted by the THINC/SW scheme [13]. For
simplicity, t, x,y normalized by ¥, D, D, respectively, are the dimen-
sionless variables. Conservation of mass has been demonstrated in
Fig. 12.

Since surface tension plays an ineligible role in the process of
bubble rising, we attempt to simulate this time-evolving bubble
problem by taking into account the surface tension force, which

corresponds to the Weber number We(: @) =10, at Re = 100.

In Fig. 13, the numerical results of the bubble rising problem are
plotted against time for the cases with consideration of surface
tension effect. Good agreement with the numerical result of Zhao
et al. [48] can be seen in Fig. 13. As Fig. 11 and Fig. 13 show, the
effect of surface tension force can be observed when t is greater
than 1.5. It is worthy to note that in Fig. 13(k) the interface pre-
dicted at t =4 is symmetrical using the present mathematical
model while interface is asymmetrically, shown in Fig. 13(1), by
using the mathematical model of Zhao et al.. The detailed phenom-
ena of bubble breakup are plotted in Fig. 14 in 4.1 < t < 5.0. Uni-
form grid sizes of 180 x210 and 240 x 280 are used to
investigate the effect of grid dependence on the conservative prop-
erty. The conservative property built in the present level set
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Fig. 17. The plot of the predicted benchmark quantities for the 3D bubble rising problem described in Section 4.2.3. (a) rise velocity; (b) center of mass; (c) circularity; (d)

mass ratio.

method is still well retained based on the results computed in dif-
ferent grids in Fig. 15.

4.2.3. Three dimensional single bubble rising problem

The numerical results of the three dimensional single bubble
rising problem [50] are available for making a direct comparison.
In the current calculation, the bubble has a radius R equal to 1.0
and is placed inside a 6 x 6 x 8 box. The results are predicted at
Re=98,We=76 and Fr=0.76 in the domain containing
60 x 60 x 80 grids. The predicted bubble rising process is plotted
against the dimensionless times t=0.8,t=1.6,t=2.4 and
t=3.6 in Fig. 16. Benchmark quantities against dimensionless
time are shown in Fig. 17. Good agreement with the numerical
result of rise velocity in Fig. 17(a) is clearly demonstrated. CPU
times are provided with/without performing intermediate step
for the proposed level set method in Table 2.

4.2.4. Three dimensional two-bubble merger problem

The merger of two spherical bubbles of the radius R(= 1) is sim-
ulated coaxially and obliquely in the domain of
[0,4R] x [0,4R] x [0,8R] with the Reynolds number of Re = 67.27,
Weber number of We =16, and the Froude number of Fr=1
[51]. For the coaxial bubble case, the center of the upper bubble
is at (2R,2R,2.5R) and the center of the lower bubble is at
(2R, 2R, 1R). Simulation is carried out in 80 x 80 x 160 grids. The

density and viscosity ratios are chosen to be p./p, = 0.001 and
Uc/ 1, = 0.01, respectively. Good agreement with the experimental
observation by Brereton and Korotney [52] and the numerical
results by Annaland et al. [10] can be seen in Fig. 18. The deforma-
tion and acceleration of the lower bubble in z-direction can be seen
when the lower bubble enters into the wake region of upper bub-
ble. The reason for this observation is that the drag force on lower
bubble becomes smaller than the upper bubble before the coales-
cence the two bubbles [4].

For the oblique bubble problem, the center of upper bubble is
(2R,2R,2.5R) and the center of lower bubble is (2.85R,2R, 1R).
The numerical results predicted in the 256 x 80 x 80 mesh are
plotted in Fig. 19. From Fig. 19, we know that the present level
set method has been justified owing to the good agreement
between our solutions and the solutions obtained in [52,10]. In
Fig. 20, the conservative property built in the present level set
method is still well retained for both of the coaxial and oblique
bubble rising cases.

4.2.5. Three dimensional bubble bursting at a free surface

Numerical simulation of bubble bursting at a free surface has
been investigated by Boulton-Stone and Blake [53]. However, they
only simulated the air bubble bursting phenomena just before the
pinch-off liquid jet. A spherical bubble with unit radius is initially
located at (x,y,z)=(0,0,-3.2) in the domain of
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Fig. 18. Comparison of the presently predicted bubble shapes with other numerical and experimental results (time difference between the subsequent photographs is 0.03 s).
(a)t=0.000s (LS); (b) t = 0.025 s (LS); (c) t = 0.050 s (LS); (d) t = 0.075 s (LS); (e) t = 0.100 s (LS); (f) t =0.125 s (LS); (g) t = 0.000 s [51]; (h) t =0.025 s [51]; (i) t = 0.050 s
[51]; (j) t =0.075 [51]; (k) t =0.100s [51]; (I) t = 0.125 s [51]; (m) experimental results of [52].

[-2,2] x [-2,2] x [-6, 6]. No-slip boundary conditions are specified

on the walls of the box. The dimensionless parameters are set at

Re = 50,We = 1.25 and Fr(: L) =1, where R is the radius of
N

spherical bubbles and is considered as the characteristic length.

The air-water density ratio and the viscosity ratio are taken to

be 0.001 and 0.01, respectively. The numerical results obtained

at different times in 110 x 110 x 220 grids are presented in
Fig. 21. We observe that liquid jet starts breaking up into a droplet
at t = 1.5 in Fig. 21(h) and then the second droplet is formed at
t = 1.8 in Fig. 21(i). In other words, the liquid jet pinch-off process
and the generation of liquid droplets after liquid jet break up due
to capillary instability [30] have been accurately predicted using
the present level set method.
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Fig. 19. Comparison of the presently predicted bubble shapes with other numerical and experimental results (time difference between the subsequent photographs is 0.03 s).
(a)t =0.060 s (LS); (b) t = 0.085 s (LS); (c) t = 0.110 s (LS); (d) t = 0.135 s (LS); (e) t = 0.160 s (LS); (f) t = 0.185 s (LS); (g) t = 0.050 s [51]; (h) t =.075s [51]; (i) t = 0.100 s
[51]; ) t=0.125s [51]; (K) t =0.150s [51]; (1) t = 0.175s [51]; (m) experimental results of [52].

5. Concluding remarks advection of level set function ¢, which is split into three solution
steps. First, ¢ is computed using the TVD Runge-Katta temporal

This paper presents an improved interface preserving level set scheme and the spatial WENO scheme is applied to capture inter-
method for investigating the 2D and 3D bubble flow dynamics face excellently. Secondly, the level set function ¢,,, is evaluated
on fixed Cartesian grids. The interface is moved implicitly by the from the new smoothed Heaviside function. Finally, the correction
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Fig. 20. The ratios M, defined in Eq. (38) are plotted with respect to the
dimensionless time t for the problem of two merging bubbles.

term is added to the re-initialization equation to keep ¢,,,, as a dis-
tance function and to conserve mass in the sharp interface region.
Numerical results show that this improved method can be used to
tackle problems with large density ratio, calculate the curvature of
bubble surface accurately and can, more importantly, guarantee

(b)

() (€9

mass conservation. For the prediction of bubble bursting at a free
surface, this method can capture a large topological change such
as the splitting and merging of bubbles. In addition, we apply the
proposed method with the algebraic VOF algorithm (THINC/SW
scheme) to simulate bubble motion without considering surface
tension force. Numerical results show that both approaches can
conserve mass well, in addition to the prevention of spurious oscil-
lations generated from the moving interface. For the single bubble
rising problem, two density ratios p,;, = 0.2 and 0.01 are investi-
gated. Bubble rises faster at the high density ratio p,,;, = 0.01
since the effect of buoyancy influences the motion of a single bub-
ble. Good mass conservation feature is also demonstrated. The
interaction of two equal sized rising spherical bubbles under the
influence of buoyancy force is investigated. Simulations revealed
the coalescence behaviors which are similar to the experimental
observation. Numerical results of the final case show that the pro-
posed improved level set method can be easily extended to simu-
late the three-dimensional problem. Also, bubble deformation can
be accurately predicted using the proposed level set method.
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Fig. 21. The predicted results at different dimensionless times for the bubble bursting at a free surface. (a) t = 0; (b) t = 0.2727; (c) t = 0.3818; (d) t = 0.49; (e) t = 0.6; (f)
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Appendix A. Introduction to VOF type THINC/SW scheme

The THINC/SW [13] scheme is an algebraic VOF type algorithm
developed from the THINC scheme [11]. A variable steepness
parameter is adopted instead of the constant steepness parameter
used in the original THINC scheme. Inclusion of this variable
parameter helps maintaining the thickness of the jump transition
layer. The THINC/SW scheme is extremely simple but highly accu-
rate in comparison with other conventional VOF schemes. The 1-D
advection of the VOF function F is written in a conservation form as
follows:

OF ou
a—s—V(uF) _Fﬁ' (39)

Given the cell averaged value F? in a cell X;_1 2, X;1/2 at the time
step t = t", the solution of F at the (n + 1)th time step can be com-
puted by
F*' = Ff +Aixi (gi+1/2 _gi—1/2> +AAX7tiF? (u:‘1+1/2 - uzn—l/z)‘ (40)
In the above, AX; = Xi.1/2 — Xi_1/2,8is1/2 = f:ﬂ (UF), dt is the
flux across the cell boundary x = x;.1,,. A reconstruction interpola-
tion function is used in calculating the flux which is expressed as a
piecewise hyperbolic tangent function

()

The parameters o and y shown above are specified as

L :%{1 + ytanh

o= Em if Fisa %Fi-l 7 42)
F;_; otherwise

1 ifFi1 > Fiy

. (43)
—1 otherwise

The parameter ¢ is used to determine the jump center of the
hyperbolic tangent function, which is calculated by solving the fol-
lowing equation:

L[ xdx = B 44
— (x)dx = F.
i [, Hwds=F, (44)
The parameter B is introduced to control the slope and thick-
ness of the jump. In the original THINC scheme, a constant value
of p=3.5 is usually used. In THINC/SW scheme, the value of j is
adaptively adopted according to the orientation of the interface,
thereby improving the ruffling problem involved in the original

THINC scheme. For the two dimensional case, 8 is chosen as

By = 2.3|n,| +0.01

B, = 2.3|n,| +0.01. (43)

The normal vector n = (ny,n,) is determined by differencing the
VOF function F. After calculating y;, the flux g;,, , at the cell bound-

ary can be obtained. Then, the cell integrated value F?*! is calcu-
lated by Eq. (40).
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