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This paper is the continuation of our study of flow development from a motionless conductive state in a
thermally driven cavity. A series of complex nonlinear bifurcations was addressed in a three-dimensional
partially heated rectangular cavity. Prior to chaos, the dynamic phenomena in the investigated nonlinear
system include pitchfork bifurcation, Hopf bifurcation, periodic ultraharmonics, and quasi-periodic
bifurcation. In this study the formation of different cellular flow structures and the scenario of pitchfork
bifurcation are addressed. The solutions for the incompressible fluid flow investigated at different
Rayleigh numbers are computed from the divergence-free compensated solution algorithm and the
wavenumber-optimized upwinding scheme for accurately approximating the convection terms. The
three-dimensional cellular flow details and the physically meaningful vortical flow insight are extracted
to improve our understanding of the change of three-dimensional vortical and cellular flow features with
respect to the Rayleigh number in the thermal driven cavity.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Free convection resulting from a thermally driven buoyancy
force may strongly affect product quality in many material pro-
cessing industries. In the Bénard convection experiment, fluid flow
transition from a state of conduction to a state of complex cellular
flow has been revealed. In 1916, Lord Rayleigh (1916) [1] inter-
preted the phenomena found in Bénard experiment by making
Boussinesq assumption along the gravitational direction.
Application of this assumption amounts to introducing a buoyancy
force to the equations of motion along the direction of gravity. He
also showed that flow bifurcations of different types set in as the
dimensionless Rayleigh numbers exceed their corresponding
critical values. After this pioneering work, numerous studies have
been performed to investigate this problem; see among others
Chandrasekhar [2] and Drazin & Reid [3] for the linear theories,
and Kirchgässner [4] and Yudovich [5], and the references therein
for the nonlinear theories. Such a buoyancy induced flowfield has
also been known to affect semiconductor fabrication in molten
materials during crystal growth.

As the characteristic Rayleigh number Ra or Grashof number Gr
exceeds their respective critical respective value, thermal driven
flow will undergo different bifurcations such as the Hopf, pitchfork,
and turning-point bifurcations. Due to the inevitable flow destabi-
lization and possible solution multiplicity present in the nonlinear
flow system, many experimental studies of these two issues have
been conducted with the aim to improve design reliability, in addi-
tion to cost reduction, for some practical crystal growth processes.

Our objective of analyzing the three-dimensional flow motion
due to thermal effect (free convection) is to improve our under-
standing of the cellular vortex structure and pitchfork bifurcation.
This article is organized as follows. In Section 2 the working equa-
tions for simulating natural convection flow are presented together
with the well-posed initial and boundary conditions. We then
apply in Section 3 the computationally effective upwind scheme
and the continuity-preserving discretization scheme employed to
solve the elliptic–parabolic set of incompressible viscous flow
equations in non-staggered grids. Description of the problem and
discussion of the results are then given in Section 4. Evolution of
a cellular flow with the increase of Rayleigh number in laterally
heated cube has been discussed in the result section. We also
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aim to show that as the Rayleigh number Ra becomes larger than
the critical value, the solution of the investigated nonlinear equa-
tions will be bifurcated from a symmetric flow to its unsymmetric
counterpart flow. For the sake of completeness, the route towards
chaos from a flow initially at rest is summarized. The concluding
remarks are drawn in the final Section 5.
2. Working equations

Flow transition from a steady state to an oscillatory state
depends strongly on the Prandtl number of the fluid and the aspect
ratio of the cavity [6]. In this study we investigate both of the vor-
tex flow structure and flow bifurcation in a cubic cavity, within
which the fluid has a Prandtl number of 0.71. Under the constant
thermal diffusivity condition, laminar flow of an incompressible
and Newtonian fluid has been investigated along with the
Boussinesq approximation applied to the time-dependent equa-
tions of motion along the direction of gravity. The resulting differ-
ential equations to be solved in the gravity field ~g ¼ ð0;�g;0Þ are
given below as [7–9]

r �~v ¼ 0; ð1Þ
@~v
@t
þ ~v � rð Þ~v ¼ �rpþ Prr2~v þ~F; ð2Þ

@T
@t
þ ~v � rð ÞT ¼ r2T: ð3Þ

The force vector ~Fð� RaPr T~eyÞ represents the buoyancy force along
the gravity direction ~ey. In the above, Rað� gb Th � Tcð ÞL3=amÞ and
Prð� m=aÞ are known respectively as the Rayleigh and Prandtl
numbers.
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Fig. 1. Schematic of the investigated thermally driven cavity.
3. Numerical method

According to the Helmholtz–Hodge decomposition theorem

[10], any vector field ~W can be decomposed into a solenoidal field
without the normal component along the boundary and a gradient
of one scalar function. By choosing the scalar function as p and the

divergence-free vector as ~v , one can write ~v ¼ ~W �rp based on
the underlying decomposition theorem. A projection operator P,

which maps the vector ~Wð� ~v þrpÞ onto its divergence-free vec-
tor field ~v , is defined first. It is then applied to the equation
~v ¼ ~W �rp to get P ~W ¼ P~v þ P rpð Þ. Thanks to the definition of

P, the equation P ~W ¼ P~v ¼ ~v and, in turn, the equation
P rpð Þ ¼ 0 are resulted. This is followed by applying the above cho-
sen operator P to both hand sides of the Eq. (2) to get

P @~v
@t ¼ P ½�ð~v � rÞ~v �rpþ Prr2~v þ~F �. Since ~v is a divergence-free

vector, we are led to get P ð@~v
@tÞ ¼ @~v

@t or @~v
@t ¼ P �ð~v � rÞ~vð

�rpþ Prr2~v þ~FÞ.
Following the concept of the orthogonal splitting of the equa-

tions described above, the vector field can be decomposed into
the zero curl and the zero divergence parts. The intermediate
velocity ~vnþ1

2 for solving the problem subjected to the prescribed
no-slip velocity can then be calculated from the following fully
implicit equation, with the pressure variable being eliminated from
the momentum equations

~vnþ1
2 �~vn

Dt
¼ � ~vnþ1

2 � r
� �

~vnþ1
2 þ Prr2~vnþ1

2 þ~Fnþ1
2: ð4Þ

The vector ~vnþ1
2 can be further calculated sequentially from the

advection and diffusion steps based on the Marchuk–Yanenko frac-
tional-step method [11]. Use of this method enables us to separate
the nonlinear convective term from the viscous term. The advec-

tion step given by ~v
nþ1

2
a �~vn

Dt þ ð~vn � rÞ~vn ¼ 0 and the diffusion step

given by ~vnþ1
2�~v

nþ1
2

a
Dt ¼ Prr2~vnþ1

2 þ~Fnþ1
2 are resulted.

Note that the intermediate velocity solution ~vnþ1
2 calculated

from the above two steps does not necessarily satisfy the diver-
gence-free constraint condition. As a result, the intermediate

velocity ~vnþ1
2 needs to be decomposed into the sum of the solenoi-

dal velocity field ~vnþ1 and the gradient of the currently chosen sca-
lar function, which is proportional to Dtrpnþ1. Our motivation of

employing the projection step given by ~vnþ1�~vnþ1
2

Dt ¼ �rpnþ1 and
r �~vnþ1 ¼ 0 becomes enlightened. Calculation of the solution for
~vnþ1 needs a pressure solution. The Poisson equation

r2p ¼ r �~vnþ1
2 for the pressure can be therefore derived by virtue

of r �~vnþ1 ¼ 0.
Based on the regularization method, the equation

~vnþ1�~vnþ1
2

Dt þrpnþ1 ¼ 0 is substituted into the semi-discrete momen-
tum equation to get

~vnþ1 �~vn

Dt
þ ~vnþ1

2 � r
� �

~vnþ1
2 � Prr2~vnþ1

2 þrpnþ1

¼ M1 þM2 þ~Fnþ1; ð5Þ

where M1 ¼ ~vnþ1
2 � r

� �
rpnþ1 þ ðrpnþ1 � rÞ~vnþ1

2 � Prr2ðrpnþ1Þ
h i

Dt

and M2 ¼ �½ðrpnþ1 � rÞrpnþ1�Dt2. Let pnþ1 ¼ p� þ p0, the pressure-

gradient step is decomposed into ~v��~vnþ1
2

Dt ¼ �rp� and
~vnþ1�~v�

Dt ¼ �rp0, where p� denotes the intermediately predicted pres-
sure. Eq. (5) can be therefore reformulated as

~vnþ1 �~vn

Dt
þ ~v� � rð Þ~v� � Prr2~v� þ rp�

¼ �rp0 þM3 þM4 þ~Fnþ1: ð6Þ

In the above, M3 ¼ ~v� � rð Þrp0 þ rp0 � rð Þ~v�½ �Dt � Prr r �~v�ð Þ and
M4 ¼ � rp0 � rð Þrp0½ �Dt2. Given the predicted values for ~v�0 and p00,
the employed algorithm is summarized below for completeness.

For s ¼ 1;2; . . .



(a) single cell flow structure (2.8 × 104) (b) double fork-type cell flow structure (2.9 ×
104)

(c) 2-cell flow structure (5.4 × 104) (d) 3-cell flow structure (2.9 × 105)

1 × 105) (f) 3-cell flow structure (7.(e) 5-cell flow structure (6. 3 × 105)

Fig. 2. The predicted time-evolving flow structures which are exhibited by the plotted vortical corelines and the limiting streamlines on the two half planes (x ¼ 0:001),
(y ¼ 0:001), and the streamlines on the center plane z ¼ 0:5.
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(g) 5-cell flow structure (1.2 × 106) (h) 6-cell flow structure (1.5 × 106)

(i) 7-cell flow structure (6.5 × 106) (j) 8-cell flow structure (1.3 × 107)

× 107) (l) 6-cell flow structure (5.(k) 7-cell flow structure (3 4 × 107)

Fig. 2 (continued)
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(j) 1.3 × 107 (k) 3.1 × 107 (l) 5.4 × 107
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Fig. 3. Plots of the zero streamline contours and the simulated nodes N and saddles S on the plane of symmetry z ¼ 0:5 for the cases investigated at different Rayleigh
numbers shown in Fig. 2.
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cell flow interior around Rayleigh Figure
number the corner number number

1 N 2.8 × 104 2(a)
2* N 2.9 × 104 2(b)
2 N-S-N 5.4 × 104 2(c)
3 N-S-N-S-N 2.9 × 105 2(d)
5* N-S-N-S-N S-N, S-N 6.1 × 105 2(e)
3* N-S-N-S-N 7.3 × 105 2(f)
5 N-S-N-S-N S-N, S-N 1.2 × 106 2(g)
6 N-S-N-S-N-S-N S-N, S-N 1.5 × 106 2(h)
7 N-S-N-S-N-S-N-S-N S-N, S-N 6.5 × 106 2(i)
8 N-S-N-S-N-S-N-S-N-S-N S-N, S-N 1.3 × 107 2(j)
7* N-S-N-S-N-S-N-S-N S-N, S-N 3.1 × 107 2(k)
6 N-S-N-S-N-S-N S-N, S-N 5.4 × 107 2(l)

(a)

(b)
Fig. 4. Classification of the predicted time-evolving cellular flow structures. (a) saddle-node pairs; (b) formation sequence of the critical points.
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~vnþ1
s �~vn

Dt
þ~v�s � r~v�s � Prr2~v�s þrp�s�1 ¼ �rp0s�1 þ~Fnþ1; ð7Þ

p�s ¼ p�s�1 þ p0s; ð8Þ
~v�sþ1 ¼ ~vnþ1

s � Dtrp0s: ð9Þ

The equation for p0 is derived by performing the divergence
operator on ~vnþ1�~v�

Dt ¼ �rp� to get r2p0 ¼ r�~v�Dt . At an interior point
ði; jÞ, the following centered scheme is applied to approximate
the Poisson equation for p0, thereby yielding the following equation
for p0i;j

2
1

Dx2þ
1

Dy2

� �
p0i;j¼

r�~v�
Dt
� 1

Dx2 p0i�1;jþp0iþ1;j

� �
� 1

Dy2 p0i;j�1þp0i;jþ1

� �
:

ð10Þ
By omitting the term 1
Dx2 ðp0i�1;j þ p0iþ1;jÞ þ 1

Dy2 ðp0i;j�1 þ p0i;jþ1Þ, the equa-
tion for the pressure correction can be derived as

p0i;j ¼ �
Dx2Dy2

2ðDx2 þ Dy2ÞDt
r �~v�: ð11Þ

The above derived pressure correction equation may over-deter-
mine the pressure solution due to the omitted term. To compensate
for this omission, Eq. (11) is employed to calculate the pressure cor-
rection term p0�. This is followed by calculating p0 from p0� as

p0i;j ¼p0�i;jþ
Dy2

2ðDx2þDy2Þ p0�i�1;jþp0�iþ1;j

� �
þ Dx2

2ðDx2þDy2Þ p0�i;j�1þp0�i;jþ1

� �
:

ð12Þ



Fig. 5. Illustration of the simulated lines of separation/reattachment in the cavity corner near the vertical heated wall.
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While even–odd pressure oscillations can be well eliminated by
the method formulated in staggered grids, in this study the gradi-
ent term for the pressure ðor rpÞ is approximated in a program-
mingly more simple non-staggered (or collocated) mesh to avoid
spurious pressure oscillations. Taking the nodal value of pj at an
interior node j as an example, the approximated value of px (or
Fj ð� h pxjjÞ) can be calculated from the following implicit equation

c1 Fjþ1 þ c2 Fj þ c3 Fj�1 ¼ c1 pjþ2 � pjþ1

� �
þ c2 pjþ1 � pj

� �
þ c3 pj � pj�1

� �
þ c4 pj�1 � pj�2

� �
: ð13Þ

Note that h denotes the constant grid spacing. The readers can refer
to Sheu & Lin [12] for the determination of c1 to c3 and c1 to c5.

When simulating high Reynolds number flows, it is essential to
apply a dispersively more accurate advection scheme. The same
upwinding scheme proposed in [13] is applied to get the advection
scheme with the optimized modified wavenumber for the advec-
tive terms @~u

@~x, where ~u ¼ ðu;v ;wÞ and ~x ¼ ðx; y; zÞ. This scheme is
derived by applying the modified equation analysis and the
method of minimizing the difference between the exact and
numerical modified wavenumbers.

The grid-independent velocity profiles u x; 1
2 ; z

� �
;v 1

2 ; y; z
� �

and
T 1

2 ; y; z
� �

predicted at Ra ¼ 106 and Pr ¼ 0:71 have been compared
with other available numerical results with good agreement in the
currently investigated cube [13]. The dimensionless Nusselt num-
bers have also been compared with good agreement with those in
the above paper.
4. Numerical results

A Boussinesq fluid flow is investigated at the Prandtl number Pr
(=0.71) in a cube ð0 6 x; y; z 6 1Þ. In the current simulation, all the
six wall boundaries schematic as shown in Fig. 1 are prescribed by
the no-slip condition for u ðor u ¼ 0Þ while solving the Eqs. (1) and
(2). For the closure of the energy Eq. (3), these cavity walls are
assumed to be thermally insulated or @T

@~n ¼ 0 at ðx; y ¼ 0;1; zÞ and
ðx; y; z ¼ 0;1Þ, where ~n is the unit normal derivative, except at the
two isothermal vertical walls. The left vertical wall located at
x ¼ 0 is a heated wall Th ¼ 1

2

� �
and the right one at x ¼ 1 is a cold

wall Tc ¼ � 1
2

� �
.

4.1. Evolution of different cellular flow patterns

At the Rayleigh number Ra ¼ 2:8� 104, a single-cell flow pat-
tern was stationarily developed in the cavity. Such a flowfield is
featured to have one spiraling node ‘‘N’’ shown in Fig. 2(a), which
plots the streamlines at the central plane. A span of these spiraling
nodes at each cutting plane along x direction yields the so-called
vortical coreline, thus illustrating the signature of the vortical
flowfield.

By increasing the Rayleigh number to 2:9� 104, the above men-
tioned one-cell flowfield can no longer be retained because of the
increased nonlinearity. The thermally driven cavity flow becomes
exhibiting a double fork-type vortical flow pattern and the result-
ing vortical flowfield has been divided into two main regions. One
region has a single vortical flow pattern and the other region con-
tains two counter-rotating vortical flows shown in Fig. 2(b). As the
Rayleigh number keeps increasing to Ra ¼ 5:4� 104, the single cel-
lular flow pattern formerly existing in the cavity disappears and
the flow has been split into two cells with the birth of a new saddle
point ‘‘S’’ located between the two spiraling nodes ‘‘N’’ schematic
as shown in Fig. 2(c). With a continuous increase of the value of
Ra to 2:9� 105, the flowfield with two apparent vortical corelines
evolves to exhibit a new flow pattern marked by the three vorti-
cal-corelines shown in Fig. 2(d). Such a three-coreline vortical flow
is accompanied with the formation of a new set of ‘‘N’’ and ‘‘S’’
topological points, thereby leading to a N-S-N-S-N critical-point
pattern. As the Rayleigh number becomes as large as 6:1� 105,
two additional spiraling nodes plotted in Fig. 2(e) make their first
appearance near the cavity corner.

The critical points displayed in a N-S-N-S-N-S-N-S-N form with
the N-S and S-N pairs in the cavity corners is a direct consequence
of the increased Rayleigh number. It is interesting to find from
Fig. 2(f) that the number of critical points in the form of N-S-N-S-N
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Fig. 6. Plots of the zero vorticity lines, which are the lines between the positive-valued vorticity (marked with red-colored region) and the negative-valued vorticity (marked
with blue-colored region) for the cases investigated at different Rayleigh numbers. Note that vorticity is defined by x ¼ r� u. (For interpretation of the references to colour
in this figure caption, the reader is referred to the web version of this article.)
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is surprisingly reduced as the Rayleigh number is increased to
Ra ¼ 7:3� 105. With a further increment in Ra to 1:2� 106, the cav-
ity flow with three vortical corelines is found to increase again the
number of corelines by two. The five predicted corelines are shown
in Fig. 2(g), with the four saddles ‘‘S’’ lying between the two adjacent
nodes ‘‘N’’. At Re ¼ 1:5� 106, one extra saddle-node pair shown in
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Fig. 7. A complete bifurcation diagram and the predicted critical Ra values. The solid and dashed lines denote the symmetric and asymmetric flow behaviors, respectively.
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Fig. 2(h) constitutes the flow having a total number of six vortical
corelines. The number of vortical corelines will keep increasing
respectively to seven and eight, as shown in Figs. 2(i) and (j), respec-
tively, at Ra ¼ 6:5� 106 and 1:3� 107.

For the sake of clearness, the topologically singular points
(nodes N and saddles S) are plotted in the plane of symmetry at
z = 0, on which the streamline contours of zero magnitude are plot-
ted in Fig. 3 for the cases considered at different Rayleigh numbers.
The number of the predicted vortical corelines and their corre-
sponding critical points are summarized as shown in Fig. 4 for
the flow investigated in the range of Ra 6 6� 106.

When increasing the value of Ra, it is interesting to find that the
reduction of the number of vortical corelines at Ra ¼ 1:18� 108 is
in accompany with the formation of two pairs of the separation-
and-reattachment lines, as shown in Fig. 5, on the walls z ¼ 0
and y ¼ 0. We also plot the zero vorticity contour lines, between
the positive vorticity region (marked by red color) and the negative
vorticity region (marked by blue color) in Fig. 6, on the symmetry
plane z = 0. These contour plots reveal the link between the pre-
dicted topologically singular points (nodes and saddles) and the
vortical flow directions.

4.2. Pitchfork bifurcation

Bifurcation types frequently found in nonlinear dynamical
systems include the pitchfork (symmetry-breaking), transcritical,
saddle-node (or tangent, or blue sky), Hopf, flip, Niemark (or sec-
ondary Hopf), homoclinic, period-doubling, and catastrophic bifur-
cations. Our attention of this study is paid exclusively to the
formation of pitchfork bifurcation in the buoyancy driven flow.
Hopf and pseudo-periodic bifurcations predicted in the currently
investigated cavity have been discussed in detail in our previous
paper [13]. They will be briefly summarized again in Section 4.3
for the sake of completeness.

For a nonlinear system subjected to a perturbation in the inves-
tigated geometrically symmetric cavity, pitchfork bifurcation will
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Fig. 10. The power spectrum of the predicted u-velocity component at the chosen point ðx; y; zÞ ¼ ð0:9;0:9;0:9Þ, where f 1 � 0:430 Hz,
f 2 ¼ 2f 1; f 3 ¼ f 1 þ f 2; f 4 ¼ 2f 2; f 5 � 0:108 Hz, f 6 ¼ 2f 5 � 0:216 Hz, f 7 ¼ f 1 � f 5 and f 8 ¼ f 1 þ f 5, for the case investigated at Ra ¼ 1:3� 108. (a) Time-evolving x-component
velocity u; (b) FFT plot; (c) limit cycle.

Table 1
The predicted route to chaos.

Route to chaos Periodic (P) Periodic
ðPD1Þ

Periodic
ðPD2Þ

Periodic
ðFD3Þ

Quasi periodic
ðQP1Þ

Quasi periodic
ðQP2Þ

Quasi periodic
ðQP3Þ

Chaotic
(C)

Critical Ra 1:233� 108 1:235� 108 1:236� 108 1:238� 108 1:278� 108 1:279� 108 1:28� 108 1:5� 108

Number of peak
frequencies

1 2 3 4 4 5 8 –
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occur as the control parameter Ra exceeds its critical value. As the
solution bifurcates, its corresponding eigenvalue of the fixed point
reaches 1. The resulting geometrically symmetric flow becomes
destabilized with the breaking of flow symmetry. Hence pitchfork
bifurcation solution is also called as the symmetry-breaking solu-
tion. When pitchfork bifurcation sets in, the solution in the stable
branch becomes unstable with the formation of two newly born
stable branches.

The L2-error norms for ð~v ; pÞ and the heat flux were calculated
in the regions with the plane of symmetry versus the values of
Ra to clearly illustrate the evolution of pitchfork bifurcation along
the y ¼ 0:5 plane in the range of 103

6 Ra 	 1:5� 108. Initially, for
Ra 6 103 the L2-error norm was very close to zero. This implies that
the flow was symmetric with respect to the plane y = 0.5 for
Ra 	 1:29� 108, which is the first critical pitchfork bifurcation
value RaðRaCP1 Þ. As Ra is increased beyond this critical value, the
L2-error norms were seen to become larger than zero, implying
the initiation of pitchfork bifurcation. When the value of Ra was
increased further to 1:3� 108, the predicted L2-error norms were
found to be very close to zero again and the flow becomes symmet-
ric. When the Rayleigh number is increased by a small amount to
Ra ¼ 1:42� 108, the flow is seen to switch from the symmetric
steady-state to the asymmetric steady-state. The exhibited asym-
metric solution indicates the presence of the second pitchfork
bifurcation. As Ra becomes larger than 1:43� 108, the buoyancy
driven flow no longer shows the unsymmetric nature.

A complete evolution of the solution branches is shown sche-
matically by presenting the global pitchfork bifurcation diagram
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(Fig. 7) with respect to the Rayleigh numbers at y ¼ 0:5 plane. The
first bifurcation occurring at Ra ¼ 1:29� 108 is responsible for the
flow transition from the symmetric steady-state solution to its
unsymmetric counterpart. The other two critical values, namely,
RaCP2 ¼ 1:42� 108, lead respectively to the second pitchfork
bifurcation.

4.3. Other bifurcations predicted in the nonlinear system

In Fig. 8, the predicted phase portrait and power spectrum,
which displays the power versus the frequency, show that the flow
is strictly periodic with the fundamental frequency
f 1 ¼ 0:42998394 at Ra ¼ 1:233� 108. By increasing the Rayleigh
number from 1:233� 108 by a small amount to 1:235� 108, in
Fig. 9(a) an additional extraharmonics with the frequency that
doubles the fundamental frequency can be observed. This bifurca-
tion is called as the frequency-doubling bifurcation ðFD1Þ because
of the existence of two commensurate frequencies, namely,
f 1 ¼ 0:42998394 and f 2 ¼ 2f 1 ¼ 0:85996789. Many other com-
mensurate frequencies with much smaller values of the power
can be found in Figs. 9(b) and (c) as the Rayleigh numbers are
slightly increased. Note that the interval of Ra becomes shorter
and shorter with the increased peak frequency in the sense that
the second and third additional ultraharmonic frequencies, which
are defined as mf1/n for n ¼ 1 and m ¼ 1;2;3. . .[14], were found
respectively at Ra ¼ 1:236� 108 (for m ¼ 3) and 1:238� 108 (for
m ¼ 4). Note that all the predicted ultraharmonic frequencies are
integer multiplies of the fundamental harmonic frequency f 1.

As the value of Ra was increased to 1:278� 108, one can see in
Fig. 9(d) a secondary frequency f 5ð¼ 0:108 Hz). This implies that
the thermally-driven flow system has been split into two families
of the frequencies f 1 and f 5 as shown in Fig. 9(e) and (f). The second
frequency f 5 is referred to as the subharmonic frequency. At this
moment, flow becomes quasi-periodic with two fundamental fre-
quencies f 1 and f 5 that are incommensurate to each other. In the
eight predicted peak frequencies, they are related to each other
arithmetically ðf 1 ¼ 0:42998394; f 2 ¼ 2f 1; f 3 ¼ f 1 þ f 2; f 4 ¼ 2f 2

and f 5 � 0:108; f 6 ¼ 2f 5; f 7 ¼ f 1 � f 5 and f 8 ¼ f 1 þ f 5Þ. Although
other frequencies may appear as well in the power spectrum, their
amplitudes were several orders smaller than the amplitude of the
primary frequency f 1. In the presence of the predicted frequency f 5,
which is incommensurate to frequencies f 1 to f 4, the flow is no
longer periodic. The investigated nonlinear dynamical system has
proceeded a quasi-periodic route to chaos.

By continuously increasing the Rayleigh number, more and
more fundamental frequencies are observed. The path of the solu-
tion can no longer be repeated and chaos sets in. Fig. 10 shows the
onset of chaotic flow at the Ra ¼ 1:3� 108. The power spectrum for
the disorganized solutions has a rich spectral structure. Such a
broad-band power spectrum hints the existence of a continuous
frequency pattern. The route to chaos is summarized in Table 1.

5. Conclusions

Nonlinear, natural convective, thermally driven flow inside a
cube with the high and low temperatures prescribed at two oppos-
ing vertical walls is studied here numerically. Through this 3D
numerical study, prior to Ra ¼ 2:8� 104 the thermally driven flow
in the cube is known to remain steady with a single vortical core-
line of a symmetric vortex type. At Ra ¼ 2:9� 104, the single-cell
flowfield is evolved to exhibit a double fork-type vortical flow pat-
tern. Saddle point appears in the core of the cavity between two
symmetric topological nodes at Ra ¼ 5:4� 104, thereby forming a
pair of counter-rotating cellular flow field. With the increase of
Rayleigh number, the formation of two new sets of the
node-and-saddle pair yields the N-S-N-S-N and, then, the N-S-N-
S-N-SN-SN patterns of the critical points. It is surprising to find
the reduced number of the interior critical points to five and three
as the value of Ra has been increased to 7:3� 105 and 1:2� 106,
respectively. Afterwards, the numbers of vortical corelines increase
to seven and eight at Ra ¼ 6:5� 108 and 1:3� 107, respectively.
Flow was predicted to lose stability by firstly exhibiting flow asym-
metry at Ra ¼ 1:29� 108. This is followed to form the other pitch-
fork bifurcation at Ra ¼ 1:42� 108. The solution predicted at
RaCH1 ¼ 1:233� 108 was seen to transit from the stationary to
the time-periodic states. As the value of Ra exceeds 1:233� 108,
the growth of 3-D nonlinear effects in the flow could generate
more ultraharmonic frequencies. The secondary Hopf bifurcation
was seen to appear approximately at Ra ¼ 1:278� 108. The
appearance of such a subharmonic frequency, which is incommen-
surate to the primary harmonic frequency, and its ultraharmonic
frequencies leads altogether to the quasi-periodic flow. At higher
values of Ra, eight arithmetically related fundamental frequencies
are seen in the two fundamental frequency families and, then, the
sequence of infinite frequencies was observed. Ultimately, the
thermally driven flow was evolved to show corrugated torus and
strange attractor. The chaotic flow was then observed at
Ra ¼ 1:6� 108.
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