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Abstract 

The aim of this study was to conduct a detailed numerical analysis of steady-state Navier-Stokes equations to broaden 
our knowledge of the vortical flow structure in the channel. The problem considered is that of the laminar flow of an 
incompressible fluid through a straight channel with a backward-facing step. This step is configured as having an expansion 
ratio of γ = 1.9423 in channels with different channel widths of B. Finite volume solutions for this backward-facing step 
problem were obtained on the basis of different span ratios, B/h = 2, 4, 6, 10, and Reynolds numbers, Re = 100, 389, and 
800. In this study, we elaborate on the case of Re = 389 due to lack of space. Inspired by the success of Lighthill who 
proposed a method with a rigorous mathematical foundation for studying kinematically possible flows, we apply the 
topology theory to analyze the computed three-dimensional vector field. The inferred 'oil-flow' streamlines improve 
visualization of the flow field and help sketch the complicated flow patterns by clarifying the three-dimensional flow 
separation just behind the step, the formation of secondary eddies in the transverse plane, and recirculating bubbles 
attached to the roof of the channel. Notably addressed is the separation-reattachment phenomenon that emanates only from 
the roof near the two end walls. 

Nomenclature 

Ut velocity component along the /-direction 
ρ pressure 
xm coordinate along the /«-direction 
Re Reynolds number 
t time 
ν kinematic viscosity 
"mean inlet mean velocity 
h height of the upstream channel 
Η height of the downstream channel 
Β width of the channel 
γ expansion rating (= H/h) 
S non-dimensional step height (= γ -1) 
χι reattachment length, as measured from the 

step, of the primary eddy 
x4 separation length, as measured from the step, 

of the roof eddy 
x5 reattachment length, as measured from the 

step, of the roof eddy 
Nx number of grid points in the streamwise 

direction 

1. Introduction 

In many situations in nature as well as in 
science and industry, fluid flows characterized as 
having separation are encountered. Examples 
include flows around buildings, microelectronic 
circuit boards, conjugated heat exchangers, and 
those in ducts for industrial use. A better 
understanding of the mechanism leading to flow 
reversal would yield better understanding of the 
impact of the separation-reattachment flow structure 
on the evolving flow passage. To achieve this goal, 
problems of this class which accommodate simple 
geometry are most suitable for study. 

Channel flows with a backward-facing step have 
been the focus cf intensive study over the last few 
decades and have been the subject of an inter-
national workshop III. Specific to this flow is that it 
is one of a few simple examples which 
accommodate rather complex flow physics in a 
channel having a simple configuration. There are 
two reasons why this problem has received con-
siderable attention. Firstly, this flow is rich in 
physics and is, thus, physically as well as practically 
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important. Within the channel, there exists a shear 
layer separated from the step edge, a recirculating 
flow region just behind the step, followed by a 
region with a recirculating separation-reattachment 
flow attached to the roof of the channel, and gradual 
development of the channel flow further down-
stream. Gaining an understanding of this expansion 
flow is, thus, of importance to better understand 
shear stresses and heat transfer rates which serve as 
controlling factors in designing many industrial 
flow devices. We will also consider this problem 
computationally important since this problem is re-
garded as a prototype for assessment of numerical 
models on incompressible viscous flows. 

Physical importance has stimulated a number of 
experimental calibrations 12-91, among which the 
experimental data obtained by Armaly et al. Ill are 
most frequently referenced. This wealth of ex-
perimental data has permitted a very detailed 
comparison to be performed. In the past, the focus 
was on the two-dimensional context /l , 10/, and 
comparatively few studies focused on three-dimen-
sional simulations /2,11-18/. It is this scarcity of 
three-dimensional numerical studies which moti-
vated us to conduct this study. While previous 
efforts have shed light on some fundamental 
features of the backward-facing step flow, questions 
still remain unanswered, such as the broad pattern 
of the recirculating flow structure behind the step. 
The present work was directed towards revealing 
the detailed three-dimensional flow structure 
evolving in the flow passage. To achieve this goal, 
we adopted a topological theory in studying the 
computed three-dimensional vector field. 

The remaining sections of this paper are 
organized as follows. Section 2 gives a brief 
description of the working equations, problem 
specifications, and the segregated type algorithm 
which is used to solve the finite volume dis-
cretization equations iteratively. To present a clear 
picture of the vortical flow structure, we exploit the 
theory of topology, as given in Section 3, to study 
the limiting streamlines or skin-friction lines. The 
justification for using this analysis code is presented 
first in Section 4.1 in order to give readers a better 
idea of the solution quality this code can offer. 
Numerical results and conclusions are presented in 

Section 4, which provides insight into the evolution 
of vortical flows as the Reynolds number and width 
of the channel vary. In Section 5, we present a 
conclusion. 

2. Theoretical Formulation 

In the absence of a body force, a Newtonian fluid 
characterized as having constant kinematic viscosity 
ν was chosen as the working media. The governing 
equations were Navier-Stokes equations which are 
constrained by flow incompressibility. This 
demands the use of a continuity equation. For this 
study, numerical modelling was performed under 
conditions pertaining to the steady and laminar 
assumptions. The following working equations are 
thus the consequence: 

d , dp 1 d2Ui 

A plausible reason for choosing the velocity-
pressure formulation is that this setting can offer 
well-posed closure boundary conditions /19/. In the 
above dimensionless primitive-variable equations, 
we denote working variables uu as the velocity com-
ponents (/' = 1 ~ 3), and ρ as the isotropic pressure. 
In what follows, the Reynolds number is defined to 
be Re = umean · 2A/v, where A denotes the height of 
the upstream channel. In equations (1-2), lengths 
are normalized with A while velocities are 
normalized by the inlet mean velocity, wmean, which 
is the result of an entry flow in a straight 
rectangular channel with a cross-sectional area of A 
χ B. 

We of necessity transform working equations 
into their algebraic counterparts so that they are 
amenable to computer simulation. To alleviate the 
well-known even-odd pressure oscillations for the 
incompressible fluid flow, we advocate the use of 
staggered grids. According to the findings of 
Harlow and Welch /20/, the grid used offsets the 
velocities with half a mesh size in their respective 
coordinate directions from the pressure. While 
staggered mesh adds considerably to the pro-
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gramming, this grid setting is widely used for 
incompressible analyses because enforcement of the 
compatibility condition which is required to 
suppress pressure oscillations is avoided. 

Use of primitive variables to simulate 
incompressible Navier-Stokes equations may 
considerably complicate the analysis because of the 
absence of pressure unknowns in the continuity 
equation. Not only will this absence tend to increase 
the condition number for the discrete system, but it 
will also yield more zero diagonals, thus causing the 
diagonal dominance to deteriorate. This presents a 
challenging task of solving algebraic equations in a 
strongly completed manner. As a compensation for 
the mixed formulation, segregated solution algo-
rithms have been exploited by many researchers. 
The algorithmic idea of this class of approaches is 
to enforce satisfaction of the divergence-free 
constraint condition through pressure correction, 
which is cast in the form of a Poisson equation. By 
doing so, the continuity equation is asymptotically 
ensured. This equation provides a mechanism for 
incorporating the incompressibility constraint into 
the formulation through multiply-stage equations. 
In general, use of this pressure correction algorithm 
can considerably reduce the storage demand for the 
matrix equations encountered. Without loss of 
stability, the semi-implicit scheme of SIMPLE /21/, 
as applied in the present study, provides the same 
steady-state solution with less computational cost 
compared to the equivalent explicit scheme. 

False diffusion errors are well known as another 
class of numerical difficulties for the solutions of 
(1-2). Under conditions where grid lines are 
increasingly skewed with respect to streamlines, the 
quality of the computed solution deteriorates due to 
the introduction of false difiusion errors, grossly 
polluting the flow physics over the entire domain. 
Deterioration in accuracy is particularly severe 
under high Reynolds number circumstances. To 
remedy this defect, we apply here the upwind 
scheme of Leonard 1221 to model nonlinear terms 
defined in a domain which is non-uniformly dis-
cretized. As was the case with the elliptic problem, 
both diffusive fluxes and pressure gradients are 
approximated by a second-order centered scheme. 
Also, discretization errors arising from curvilinear 

coordinate transformation are generally consider-
able and hard to resolve for configurations 
involving an abrupt change or for curvilinear lines 
having a marked change of curvature. As a 
consequence, we conduct analysis here in a 
Cartesian coordinate system in the hope of 
obtaining the detailed flow physics. 

3. Topological Study on Three-Dimensional 
Vector Field 

With the ever-increasing speed of computers and 
cost effective computations, three-dimensional cal-
culations have become feasible. This adds renewed 
interest to visualization of flow complexities 
because three-dimensional data are considerable, 
and it is difficult to visualize vector fields using 
conventional methods. This difficulty has prompted 
numerous researchers to develop new methodo-
logies in the hope of easily providing a description 
of the pertinent flow structure from the computed 
solutions. There are several methods to choose 
from. Among them, the use of graphical represen-
tations of the flow field underlying the helicity /23/ 
and the topology theory of continuous vector fields 
/24,25/ have been shown to achieve this goal and 
have gained wide acceptance. For a historical 
survey of this subject, see Yates and Chapman /26/ 
for greater detail. 

Guided by the findings of Poincare /27/, we 
explored the kinematics of a fluid flow. The idea of 
relating the differential equations to the topology of 
vector fields is to expand a given vector, f, with 
respect to a specific point £ known as the singular 
point. By definition, singular points are those which 
accommodate the property of / / | ο = 0. Bearing 

this definition in mind, the Taylor series expansion 
of f about x^ is as follows: 

fi = ( x j - x ° j ) ^ : + h.o.t. (3) 

Provided that the vector field f is sufficiently 
smooth to allow a continuous differentiation, 
eigenvalues and the associated eigenvectors of the 

matrix determine the behavior of f around the 
Sx 
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singular point x°. A brief introduction to classifica-
tion of singular points will be given later in this 
section. 

Lighthill 1251 was among the first researchers to 
apply the qualitative theory of differential equations 
in the field of fluid dynamics. He chose skin-friction 
lines as the targeted vector field. Parallel to the 
work of Lighthill, Legendre /24/ took streamlines 
into consideration in his topological study. These 
two classes of topological studies have been 
frequently used to explore flow dynamics because of 
the existence of the mathematically rigorous foun-
dation. The flow topology rendered from skin-
friction lines corresponds to the experimental oil 
streak on the surface. In view of the fact that 
limiting streamlines are equivalent to skin-friction 
lines, we can conduct topological study through the 
use of limiting streamlines. As pointed out earlier, 
three-dimensional flows can also be sketched by 
conducting graphical visualization of the scalar 
quantity. The density of the helicity or the normal-
ized helicity is frequently used in this regard /23/. 
Due to space considerations, we will concentrate in 
this paper only on topological study of skin-friction 
lines for the surface topology and on streamlines in 
regions sufficiently distant from the surfaces. 

We will examine the flow topology in two areas. 
In the surface topology context, singular points can 
be classified as saddles and nodes. Saddle points are 
defined as singular points which have two real 
eigenvalues of different signs. The skin-friction line 
field approaches the saddle point along the negative 
eigendirection while it recedes along the positive 
eigendirection. Nodal points can be further divided 
into two groups. Nodes (or regular nodal points) are 
those with real eigenvalues having the same sign. 
Attracting nodes are associated with the negative 
real eigenvalue. As to repelling nodes, the situation 
is reversed. Foci are also labeled as singular points, 
whose eigenvalues are, on the other hand, conjugate 
complex. Depending on the sign of the real part of 
the eigenvalue, flows spiral either in or out of the 
singular point. 

In three dimensions, streamlines approach 
(recede from) a three-dimensional saddle along a 
plane spanned by two eigenfimctions having the 
same sign, and recede (approach) from a line 

having the same direction as the third eigenfunction 
122,1. Similar to two-dimensional classification of 
critical points, three-dimensional nodes are those 
defined as having three reals while irregular nodes 
(or spiral saddles) accommodate a pair of conjugate 
complex eigenvalues and a real eigenvalue. We can 
follow the same rule to classify critical points either 
to repel or attract nodes and spirals. The topological 
results presented in the result section are rooted in 
some fundamentals discussed in this section. 

4. Computed Results 

4.1. Validation of analysis code 

In attempting to accurately explore the flow 
physics, the first step is to validate the analysis code 
employed. In this regard, we consider here the geo-
metrically simple problem 1291. In a cubic Ω (-1 
χ,γ,ζ <, 1), boundary values are specified according 
to the following divergence-free velocities: 

u = — a[eax sin(ay ± dz) + eaz sin(az ± dy)}< 

ν = — a[eay sin(az ±dx) + eo xsin(ay ± dz)], (4) 

w = — a[eaz sin(ai ± dy) + eay sin(a2 ± dx)}. 

In this study, we consider a = y = and Re = 

1000. The employed QUICK-type upwind 
discretization scheme and semi-implicit solution 
algorithm are assessed by examining nodal errors 
which are cast in an L2-norm form. With continuous 
refinement of grid spacings, we can compute the 
rate of convergence. According to the errors 
computed against the grid spacings, namely h = 1, 
1/3, 1/9, 1/27, the rate of convergence can be 
derived and is clearly seen in Fig. 1. Through this 
test, taking finite volume solutions computed on the 
basis of h = 1/27 as exact, the validity of the 
analysis code is confirmed. This provides us with 
sufficient confidence to proceed with the analysis of 
the three-dimensional expansion flow over a step. 
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ο 

Fig. 1: Grid convergence test for the steady 
Navier-Stokes equations presented in 
Section 4.1. 

4.2. Three-dimensional backward-facing step 
problem 

The problem we will deal with is the flow 
expansion in a water-filled rectangular channel 
The channel under investigation is configured as 
having a backward-facing step with height S = 
0.9423, as shown in Fig. 2. Upstream of this step, 
there is a straight channel with a height of h = 1 
and a channel with a larger height Η = 1.9432 
downstream of the step. In our three-dimensional 
analysis, we prescribe at the inlet a discrete fully 
developed velocity profile. Experimental study has 
revealed that the downstream flow evolution is in-
sensitive to this parabolic assumption of the inlet 
flow specification for cases where the Reynolds 
number becomes larger than 200 111. No-slip boun-
dary conditions for velocities u{ are specified at the 
two end walls, roof and floor of the channel. As is 
usual in dealing with inflow-outflow internal flow 
problems, we impose a floating outflow boundary 
condition at the synthetic plane. Depending on the 
Reynolds numbers investigated, an attempt to obtain 
an accurate prediction demands that synthetic 

Fig. 2: Geometric definition and physical description of the flow feature. 
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planes be truncated at different locations that are 
sufficiently far away from the step. 

On physical grounds, we stretch mesh points 
near the two end walls and the step plane to resolve 
high gradient velocity profiles. Within half of the 
channel, the domain is covered with Nx χ 17 χ 40 
mesh points in the narrow case of Β = 2 and Nx χ 37 
χ 40 points in the wider case of Β = 10. In our 
study, the values of Nx are, respectively, chosen as 
60, 80, and 100 for the Reynolds numbers 100, 389, 
and 800. As experimental evidence has revealed /3/, 
the investigated backward-facing problem remains 
laminar for Reynolds numbers below 1200, so the 
present analysis avoids invoking turbulence 
modelings and, thus, simplifies the analysis. 

4.2.1. Flow patterns in the channel 

Figs. 3-5 plot the streamwise velocity profiles at 
the symmetry plane, starting from the step and 
continuously extending to the truncated outlet. On 
increasing the width of the channel, the velocity 
profiles progressively develop into those computed 
on the basis of two-dimensional analysis or 
calibrated by Armaly et al. /3/. Agreement is quite 
good except in regions which range roughly 
between x4 and x5. This finding suggests that the 
span of the channel has a marked influence on the 
downstream flow development. For the sake of com-
parison, we also summarize in Fig. 6 some two-
dimensional numerical results; also included are the 
experimental data of Armaly et al. 131 for the same 
step geometry with an expansion ratio of γ = 
1.9423. Irrespective of the numerical approach 
followed, there exists consistent underestimation of 
the recirculation length x\ when the value of the 
Reynolds number is above 600. As the Reynolds 
number is beyond the characteristic value, we doubt 
the bifurcation of the steady, two-dimensional 
laminar flow into a three-dimensional flow is the 
primary source that leads to the discrepancy 
between the two-dimensional numerical solutions 
and experimental data. 

Another way to elucidate a complex three-
dimensional flow structure is to trace particles. Fig. 
7 shows several computed stream-ribbons released 
from selected locations in the channel. Viewed from 

the span direction, particle tracers seeded near the 
end wall spiral, with an increasingly larger radius, 
towards the symmetry plane. As the symmetry plane 
is approached, the spiraling particle is lifted up, 
followed by a nearly two-dimensional plane motion. 
Other seeded particles proceed downstream in a 
much simpler fashion. 

As Fig. 8 reveals, as fluids flow over the roof 
eddy, which is attached only to the end wall, an end 
wall running velocity component is induced near 
the bottom wall while a symmetry plane running 
velocity component is induced near the roof of the 
channel. This suggests the formation of a secondary 
flow structure at the transverse plane, say at χ = 8. It 
is the presence of a roof eddy which explains why 
the topology of the oil-pattern at the end wall is as 
that plotted in Fig. 8. Also important to note is that 
the primary eddy structure behind the step and the 
previously mentioned upward oil-pattern, arising 
from the roof eddy, constitute the possible formation 
of a saddle point. The presence of a secondary flow 
near the end wall also explains why a repelling-
spiral appears. In some regions in the downstream 
channel, a pair of counter-rotating vortices, one 
stretched near the roof of the channel and the other 
confined to the region near the end wall, are clearly 
seen at the streamwise plane χ = 10. This is fol-
lowed by larger extension of vortices but with de-
creasing intensity. We also plot streamlines in Fig. 
9 to show that the presence of counter-rotating 
vortices is closely related to the separation-reattach-
ment bubble at the roof of the channel. In contrast 
with two-dimensional areas, these lines are not 
closed due to the presence of a spanwise velocity 
component. As shown in Fig. 10, which plots the 
pressure distribution on the channel walls, this is 
strongly indicative of the presence of flow reversals 
in the channel. 

4.2.2. Exploration of flow structure - a topological 
study 

To give a global picture of the expansion flow 
over a step, we begin by plotting limiting stream-
lines, at planes ζ = 0.9999, ζ = -0.9423, y = 4.9999, 
and χ = 10", for the case of Re = 389. As Fig. 11 
indicates, in the channel with Β = 10, a singular 
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Num, present 
2D; 3D,B=6; 

• Exp(3D,B=35),Armaly,etal.,1983 3D,B=2; 3D,B=10. 

Fig. 3: Comparison study of streamwise-velocity profiles with those of Armaly et al. at the symmetry plane 
for the case conditions of Re = 100 and Β = 2, 4, 6, 10, and °o (or 2D analysis). 

x / S locations 

Fig. 4: Comparison study of streamwise-velocity profiles with those of Armaly et al. at the symmetry plane 
for the case conditions of Re = 389 and Β = 2,4, 6, 10, and oo (or 2D analysis). 

x / S locations 

Fig. 5: Comparison study of streamwise-velocity profiles at the symmetry plane for the case conditions of Re 
= 800 and Β = 2, 4, 6, 10, and oo (or 2D analysis). 
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ο xl Exp(3D,B= 35), Armaly.etal . ,1983 
Δ χ4 Exp(3D,B= 35), Armaly,etal . ,1983 
V χ5 Exp(3D,B= 35), Armaly.etal . , 1983 
Φ x l Num(2D), Kim and Moin.1985 
0 x l Num(2D), Kaiktsis ,etal . ,1991 
χ x l Num(2D), Bar ton, 1995 > / * 

— xl Num(2D), p r e s e n t / 
— - x4 Num(2D), p r e s e n t / 

x5 Num(2D), p r e s e n t / V 
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Fig. 6: A comparison study on the computed two-dimensional reattachment lengths and xs and the 
separation length x4. 
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Fig. 8: The formation of the secondary flow structure at the transverse plane near the end-wall (for the case 
Re = 389 and Β = 10). 

point, classified as the saddle, is shown on a plane 
adjacent to the end wall. On planes in the direction 
normal to the end wall, we plot streamlines at dif-
ferent >> planes, from which saddles are collected, as 
shown in Fig. 12. This line extends from the end 
wall and shows its presence within a limited range. 
Lines passing through saddle points are only 
referred to as attachment and separation lines. 
These two lines appear to act as barriers in the field. 
Along either one of these two critical lines, the 
direction of the flow changes sign. Both directions 
point towards the saddle and point away from the 

saddle on the other. As shown in Fig. 12, there 
exists a repelling focus which is situated above the 
saddle. This line is known as the vortical core line, 
which serves as a mechanism leading possibly to the 
global flow separation. There exists another more 
apparent vortical core line, which is the 
combination of the vortex centers of the primary 
eddy. Unlike the vortical core line just above the 
line of saddle points, this line extends over the 
whole span as Fig. 12 shows. 

It is well accepted that a marked change, either 
in the shear stress distribution or in the heat transfer 
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(c) y=0.45B 

(d) y=0.425B 

(e) y=0.4B 

(f) y=0.2B 

Fig. 9: The computed streamlines at χ - ζ planes for the case of Re = 389 and 5 = 10. 
(a) y = 0.495; (d) y = 0.4255; 
(b) y = 0.475; (e) y = 0.45; 
(c) y = 0.455; ( f )y = 0.25; 
(g)y = o. 
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10: Computed pressure contours on the symmetry plane, roof, floor, step-wall, and the end-wall for the 
case of Re = 389, Β = 10. 

11: A perspective view of streamlines on the symmetry plane and limiting streamlines at roof, floor, step-
wall, and end-wall for the case of Re = 389, Β = 10. 
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a co l l ec t i on of 
repe l l ing focua 

a co l l ec t i on of 
saddle po ints 

Fig. 12: A three-dimensional plot in illustration of saddle points and repelling focus for the case of Re = 389, 
Β - 10. 

rate, is a consequence of the presence of a reversal 
flow. Detecting the reattachment location is, thus, 
important for identification of the range of flow 
reversals. To allow for determination of three-
dimensional flow separation and reattachment, we 
label the line of separation as the one to which 
streamlines converge. On the other hand, from 
either side of a line of attachment, streamlines tend 
to diverge. According to this definition, flow 
reattachment to the floor is seen within the half 
span (Fig. 13). We plot the reattachment length, xu 

as measured from the step, against spans in Fig. 14 
for Reynolds numbers 100, 389, and 800. To allow 
for comparison with X\ which is obtained from two-
dimensional analysis, we also plot the lengths of 
In the presence of a primary recirculation eddy 
behind the step, curved streamlines in a convex 
form engender flow separation from the roof in the 
streamwise location where the separated flow 
reattaches to the floor. The presence of a secondary 

separation zone near the roof is the direct conse-
quence of an adverse pressure gradient exerted by 
the sudden expansion at the step edge. The fact that 
the flow recovers downstream and reattaches to the 
upper wall is clearly from the flow separation-
reattachment shown in Fig. 15. Exploiting the 
topological theory, we can also plot the separation 
length x4 and the reattachment length x5 as shown 
in Fig. 16. As with the plot of x\, the lengths x4 and 
x5 are also measured from the step. These values are 
plotted against the spans for the three investigated 
Reynolds numbers. Beyond a small Reynolds 
number, say Re = 100, the separation-reattachment 
phenomenon is evident on the roof, as shown in Fig. 
15. This clearly reveals the development of a three-
dimensional flow, which contrasts with the two-
dimensional results in that the presence of a 
secondary eddy is reported at Reynolds numbers as 
high as 450, as seen in Fig. 6. 

The topological map of inferred flow patterns for 
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ο χ axis 7 0 χ axis 15 ο x axis 
(a ) Re=100 (b ) Re=389 ( c ) Re=800 

Fig. 13: The computed limiting streamlines on the floor for the case of Β = 10. 

(a) Re = 100; 
(b) Re = 389; 
(c) Re = 800. 

( a ) Re=100 

ψ a-D 
B=2 
B=4 
B=6 

---B=10 

( c ) Re=800 

4· 2-0 
— B=a 
--- B=4 

B=e 
---B=10 <f. ι • 

χ axis 

( b ) Re=389 

XI length 
( f o r B=10) 

Fig. 14: The computed reattachment length χλ against .y for spans Β = 2, 4, 6, 10. 
(a) Re = 100; 
(b) Re = 389; 
(c) Re = 800. 

each case considered reveals that separation-
reattachment comes into play only in flow regions 
near the end wall. Even for Reynolds numbers as 
high as 800, there is no tendency of separation-
reattachment formation on the symmetry plane over 
the range of investigated spans. Downstream of the 
roof eddy, there is gradual flow development into a 
parabolic profile. In recirculating flows, flow 
reversal or recirculation frequently involves the co-
existence of several singular points. For example, 

one can clearly singular see points in the close-up 
plots. As Fig. 17 indicates, singular points of 
different classes are visible. 

5. Concluding Remarks 

This paper has presented some three-dimensional 
basic flow structures pertinent to the backward-
facing step problem. The numerical method 
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employed here has been verified and further 
assessed by conducting a rate of convergence test. In 
an attempt to better understand the inherent three-
dimensional kinematically possible flow, we have 
adopted a method which accommodates a sound 
theoretical foundation. By appealing to the 
topological theory in examining continuous vector 
three-dimensional fields, we can identify not only 
saddle points, but also vortical core lines inside the 
channel. These findings help to show that the flow 
unsteadiness is due naturally to the formation of a 

global line of separation. Also, the separation line 
on the bottom wall and the separation proceeding 
continuously with the attachment line on the upper 
wall of the channel can be precisely determined. To 
extend our understanding of the flow reversal inside 
a channel having a backward-facing step, we have 
carried out a parametric study based on Reynolds 
numbers not greater than 800, and spans with 
maximum values as high as 10. Two conclusions 
can be drawn from this parametric study. For the 
Reynolds numbers investigated, the flow tends to 

χ axis 
(c) R e = 8 0 0 

χ axis ι 
(b) R e = 3 8 9 

d 
0 χ axis 7 

( a ) R e = 1 0 0 

Fig. 15: The computed limiting streamlines on the roof for the case of Β = 10. 
(a) Re = 100; 
(b) Re = 389; 
(c) Re = 800. 

-- - B=4 

--B=10 
ο χ axis V 
( a ) Re=100 

χ axis 
(b) Re=389 

X axis 
(c) R e = 8 0 0 

B=Z 

- -B=4 
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- - - B=10 
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---B=4 " 

B=6 
B= 10 

( for B= 10) 
X5 l eng th 

Fig. 16: The computed separation length xA and reattachment length x5 against .y for spans Β = 2, 4, 6, 10. 
(a) Re = 100; 
(b) Re = 389; 
(c) Re = 800. 
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Singular Points: P( Type, Sk in -Fr ic t ion-Type ) 
Type S k i n - F r i c t i o n - T y p e 
1: R e p e l l i n g - N o d e - S a d d l e 
2: A t t r a c t i n g - N o d e - S a d d l e 
3: R e p e l l i n g - S p i r a l - S a d d l e 
4: A t t r a c t i n g - S p i r a l - S a d d l e 

1: O n - M u l t i p l e - N o - S l i p 
2: A t t r ac t ing—Node2d 
3: R e p e l l i n g - N o d e 2 d 
4: A t t r a c t i n g - S p i r a l 2 d 
5: R e p e l l i n g - S p i r a l 2 d 
6: S a d d l e 

0 -s 
ζ axis 

F i g . 1 7 

Fig. 17: Illustration of the computed singular points from the limiting streamlines for the case of Re = 389 
and Β = 10. 

show a two-dimensional flow feature with an 
increase of the span of the channel. Secondly, a 
three-dimensional flow structure is manifested by a 
spanwise spiraling flow behind the step. It is 
notable that particles spiral toward the symmetry 
plane with increasing radius. Particles of this kind 
are located only near the two end walls. 
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