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a b s t r a c t

The paper presents a sixth-order numerical algorithm for studying the completely
integrable Camassa–Holm (CH) equation. The proposed sixth-order accurate method
preserves both the dispersion relation and the Hamiltonians of the CH equation. The
CH equation in this study is written as an evolution equation, involving only the first-
order spatial derivatives, coupled with the Helmholtz equation. We propose a two-step
method that first solves the evolution equation by a sixth-order symplectic Runge–Kutta
method and then solves the Helmholtz equation using a three-point sixth-order compact
scheme. The first-order derivative terms in the first step are approximated by a sixth-order
dispersion-relation-preserving scheme that preserves the physically inherent dispersive
nature. The compact Helmholtz solver, on the other hand, allows us to use relatively
few nodal points in a stencil, while achieving a higher-order accuracy. The sixth-order
symplectic Runge–Kutta time integrator is preferable for an equation that possesses a
Hamiltonian structure. We illustrate the ability of the proposed scheme by examining
examples involving peakon or peakon-like solutions. We compare the computed solutions
with exact solutions or asymptotic predictions. We also demonstrate the ability of the
symplectic time integrator to preserve the Hamiltonians. Finally, via a smooth travelling
wave problem,we compare the accuracy, elapsed computing time, and rate of convergence
among the proposed method, a second-order two-step algorithm, and a completely
integrable particle method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Camassa–Holm (CH) equation [1],

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx, (1.1)

results from an asymptotic expansion of the Euler equations governing the motion of an inviscid fluid whose free surface
can exhibit gravity-driven wave motion [2,3]. The small parameters used to carry out the expansion are the aspect ratio,
whereby the depth of the fluid is assumed to bemuch smaller than the typical wavelength of themotion, and the amplitude
ratio, or ratio between a typical amplitude ofwavemotion and the average depth of the fluid. Thus, the equation is amember
of the class of weakly nonlinear (due to the smallness assumption on the amplitude parameter) and weakly dispersive (due
to the longwave assumption parameter) models for water wave propagation. However, at variance with its celebrated close
relatives in this class, such as the Korteweg–de Vries (KdV) and Benjamin–Bona–Mahony (BBM) equations, these small
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parameters are assumed to be linked only by a relative ordering, rather than by a power-law relation. This allows us to
retain terms on the right-hand side that would be of higher order with respect to both the KdV and BBM expansions, and,
in principle, to consider dynamical regimes in which nonlinearity is somewhat dominant with respect to wave dispersion.
This equation possesses the remarkable property of complete integrability, as evidenced by its Lax-pair representation, and
permits an infinite number of nonlocal conserved properties [1,4]. When κ = 0 in Eq. (1.1), the equation becomes a non-
dispersive equation that admits peakon solutions.
There is extensive literature on numerical analysis and implementation for the KdV type of equations; however,

numerical algorithms for the CH equation have only received attention recently. While no attempt will be made here to
provide a detailed reference list, the following are examples of recent algorithms developed for the CH equation. In [5–9],
a completely integrable particle method is introduced that solves the equation in infinite domains, semi-infinite domains
with the zero boundary condition on one side, periodic domains, and homogeneous finite domains. The particle method
is based on the Hamiltonian structure of the equation, an algorithm corresponding to a completely integrable particle
lattice. Each particle in this method travels along a characteristic curve of the shallow-water wave model, determined by
solving a system of nonlinear integro-differential equations. This system of nonlinear integro-differential equations can
be viewed as particle interaction through a long-range potential (here position and momentum dependent). Besides the
particle method, a method based on multipeakons is developed in [10] for Eq. (1.1). The convergence proof of this method
is given in [11]. A pseudo-spectral method is developed in [12] for the travelling wave solution of Eq. (1.1). Similar methods,
a semi-discretization Fourier–Galerkin method and a Fourier-collocation method, are developed in [13]. A finite volume
method, within the adaptive upwinding context, is developed for the peakon solution of Eq. (1.1) [14]. A local discontinuous
Galerkin finite element method is developed in [15].
Eq. (1.1) involves two third-order derivative terms, uuxxx and uxxt . For most numerical schemes, except the particle

method and the related methods, certain care is required to discretize those terms in order to achieve a higher-order
accuracy while preserving the physically inherent dispersive nature of the equation. In the study, however, we avoid
discretizing both of the third-order derivative terms by applying the Helmholtz operator to u

m(x, t) ≡ (1− ∂2x ) u(x, t), (1.2)

and rewrite the Eq. (1.1) into an equivalent formulation

mt = −2(m+ κ) ux − umx. (1.3)

We call Eqs. (1.2) and (1.3) them-formulation of the CH equation. Note that Eq. (1.3) involves only the first-order derivative
terms. As a result of the new formulation, we develop a sixth-order two-step iterative numerical algorithm that first solves
the evolution Eq. (1.3) by a sixth-order symplectic Runge–Kuttamethod and then solves the Helmholtz equation (1.2) with a
three-point sixth-order compact scheme. The first-order derivative terms in the first step are approximated by a sixth-order
dispersion-relation-preserving scheme that preserves the physically inherent dispersive nature. The compact Helmholtz
solver, on the other hand, allows us to use relatively few nodal points in a stencil, while achieving a higher-order accuracy.
The sixth-order symplectic Runge–Kutta time integrator preserves the Hamiltonians of the equation. The principle of the
two-step iterative algorithm is to solve the first-order equation and then to solve the Helmholtz equation, repeating the
process until the convergence criterions are satisfied. A second-order accurate scheme based on the same principle for
solving the CH equation and a class of partial differential equations involving theHelmholtz equation is developed in [16,17].

2. Two-step iterative algorithm

The evolution equation (1.3) can be solved by a standard method of lines (MOL). Letmn = m(tn, x) andmn+1 = m(tn +
1t, x) be the semi-discretizedm values at time level n and n+ 1, respectively. Letting F(m, u) = (−2κux − umx − 2uxm),
Eq. (1.3) becomes

mt = F (m, u) . (2.1)

A sixth-order accurate symplectic Runge–Kutta scheme, developed in [18], is employed in the MOL for solving Eq. (2.1):

m(1) = mn +1t
[
5
36
F (1) +

(
2
9
+
2c̃
3

)
F (2) +

(
5
36
+
c̃
3

)
F (3)

]
, (2.2)

m(2) = mn +1t
[(
5
36
−
5c̃
12

)
F (1) +

(
2
9

)
F (2) +

(
5
36
+
5c̃
12

)
F (3)

]
, (2.3)

m(3) = mn +1t
[(
5
36
−
c̃
3

)
F (1) +

(
2
9
−
2c̃
3

)
F (2) +

5
36
F (3)

]
, (2.4)

mn+1 = mn +1t
[
5
18
F (1) +

4
9
F (2) +

5
18
F (3)

]
(2.5)
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where c̃ = 1
2

√
3
5 and F

(i)
= F(m(i), u(i)), i = 1, 2, 3. In this symplectic Runge–Kutta method, in order to obtain mn+1 from

Eq. (2.5), we need to solve Eqs. (2.2)–(2.4) simultaneously for obtainingm(1),m(2), andm(3). After obtainingmn+1, we solve
the Helmholtz equation to obtain un+1. However, since the evolution equation (2.1) is coupled with the Helmholtz equation
(1.2), in order to obtain mn+1 and un+1 from mn and un, it is necessary to introduce an iterative scheme. Therefore, instead
of forming a linear system and solving Eqs. (2.2)–(2.4) simultaneously, we incorporate the three equations into an iterative
scheme. The iterative scheme solves Eq. (2.1) and the Helmholtz equation alternately until the convergence criterions are
satisfied. The iterative steps are described as follows:

• Step 1:mn and un are known. We perform the fixed-point iteration on Eqs. (2.2)–(2.4) to obtainm(i):
(I) Given an initial guess for m(i) and u(i), denoted m[0],(i) and u[0],(i), respectively, i = 1, 2, 3 from mn and un. Solve
Eqs. (2.2)–(2.4) to obtainm[1],(i), i = 1, 2, 3.

(II) Using m[1],(i) and the three-point sixth-order compact scheme, we solve the Helmholtz equation (1.2) to obtain
u[1],(i), i = 1, 2, 3.

(III) Repeat (I) with u[k],(i) andm[k],(i) and (II) for the next iteration until the (k+ 1)th iteration, for which the residuals,
in the maximum norm, of Eqs. (2.2)–(2.4) and the Helmholtz equation (1.2) satisfy our convergence criterions:

max
xj,j=1,N

∣∣∣∣m[k+1],(i) −mn1t
− F

(
m[k+1],(i), u[k+1],(i)

)∣∣∣∣ ≤ ε,
max
xj,j=1,N

∣∣m[k+1],(i) − (u[k+1],(i) − u[k+1],(i)xx

)∣∣ ≤ ε, (2.6)

where N is the number of grid points and i = 1, 2, 3. The value for the threshold error ε is typically chosen to be
10−12 throughout our computations. Our numerical experiments indicate that typically the number of iterations
needed for convergence is less than 20 (i.e. k+ 1 ≤ 20).

• Step 2: Use Eq. (2.5) to updatemn+1.
• Step 3: Solve Eq. (1.2) to obtain un+1. Return to Step 1.

3. Dispersion-relation-preserving scheme

The spacial accuracy of the proposed scheme depends on how accurately we can approximate the first-order derivative
terms. In particular, if the equation of interest is a dispersive equation, such as the CH equation, a dispersion-relation-
preserving scheme is necessary to ensure the accuracy of numerical solutions. In this section, we develop a dispersion-
relation-preserving scheme for the first-order derivative terms.
Suppose that the first derivative term at the grid point i is approximated by the following algebraic equation:

∂m
∂x

∣∣∣∣
i
=
1
h
(c1mi−5 + c2mi−4 + c3mi−3 + c4mi−2 + c5mi−1 + c6mi + c7mi+1 + c8mi+2 + c9mi+3). (3.1)

For simplicity, we consider the case involving only the positive convective coefficient in the above equation, since the
derivation will be the same for the negative convective coefficient.
Derivation of expressions for c1–c9 is followed by applying the Taylor series expansions for mi±1, mi±2, mi±3, mi−4 and

mi−5 with respect to mi and then eliminating the seven leading error terms derived in the modified equation. Elimination
of these error terms enables us to derive the following set of algebraic equations:

c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 = 0, (3.2)
−5c1 − 4c2 − 3c3 − 2c4 − c5 + c7 + 2c8 + 3c9 = 1, (3.3)
25
2
c1 + 8c2 +

9
2
c3 + 2c4 ++

1
2
c5
1
2
c7 + 2c8 +

9
2
c9 = 0, (3.4)

−
125
6
c1 −

32
3
c2 −

9
2
c3 −

4
3
c4 −

1
6
c5 +

1
6
c7 +

4
3
c8 +

9
2
c9 = 0, (3.5)

625
24
c1 +

32
3
c2 +

27
8
c3 +

2
3
c4 +

1
24
c5 +

1
24
c7 +

2
3
c8 +

27
8
c9 = 0, (3.6)

−
625
24
c1 −

128
15
c2 −

81
40
c3 −

4
15
c4 −

1
120
c5 +

1
120
c7 +

4
15
c8 +

81
40
c9 = 0, (3.7)

3125
144

c1 +
256
45
c2 +

81
80
c3 +

4
45
c4 +

1
720
c5 +

1
720
c7 +

4
45
c8 +

81
80
c9 = 0. (3.8)

To uniquely determine all nine introduced coefficients shown in (3.1), we need two more equations. Following the
suggestion in [19], we derive the equations by preserving the dispersion relation that governs the relation between the
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angular frequency and the wavenumber of the first-order dispersive term. To obtain the two extra equations based on the
principle of preservation of the dispersion relation, we note that the Fourier transform pair form is

m̃(k) =
1
2π

∫
+∞

−∞

m(x) e−ikx dx, (3.9)

m(x) =
∫
+∞

−∞

m̃(α) eikx dk. (3.10)

If we perform the Fourier transform on each term shown in Eq. (3.1), we obtain that the wavenumber k is approximated by
the following expression

k '
−i
h
(c1 e−i5kh + c2 e−i4kh + c3 e−i3kh + c4 e−i2kh + c5 e−ikh + c6 + c7 eikh + c8 ei2kh + c9 ei3kh), (3.11)

where i =
√
−1.

Supposing that the effective wavenumber k̃ is exactly equal to the right-hand side of Eq. (3.11) [19], we have k ≈ k̃. In
order to acquire a better dispersive accuracy, k̃ should be made as close to k as possible. This implies that E defined in the
sense of the 2-norm of the error between k and k̃will be the local minimum for such a k̃. The error E is defined as follows

E(k) =
∫ π

2

−
π
2

∣∣∣k h− k̃ h∣∣∣2 d(kh) = ∫ π
2

−
π
2

|γ − γ̃ |
2 dγ , (3.12)

where h is denoted as the grid size andγ = kh. For E to be a localminimum,we assume the following two extreme conditions

∂E
∂c4
= 0, (3.13)

∂E
∂c5
= 0. (3.14)

Under the above prescribed extreme conditions, the two algebraic equations needed for the coefficients to be uniquely
determined are

−
4
3
c1 + 4c3 + 2πc4 + 4c5 −

4
3
c7 +

4
5
c9 + π = 0, (3.15)

−
4
3
c2 + 4c4 + 2πc5 + 4c6 −

4
3
c8 + 4 = 0. (3.16)

We remark that for a truly dispersion-relation-preserving scheme, i.e. the error E is truly a local minimum on the parameter
space, one will need to impose ∂E/∂ci = 0 for i = 1...9 to obtain 9 equations for the coefficients. Our approach, instead,
(i) ensures the higher-order accuracy by letting the coefficients satisfy the Taylor series expansions and (ii) partially enforces
the requirements for a dispersion-relation-preserving scheme. Our numerical experiments show that the upwinding scheme
for the first-order derivative obtained by taking the derivatives about c4 and c5 for E (Eqs. (3.13) and (3.14)) produces the
least numerical errors. It is also worth noting that the integration interval shown in Eq. (3.12) needs to be sufficiently wide
to cover a complete period of sine (or cosine) waves.
Eqs. (3.15) and (3.16) together with Eq. (3.2) to (3.8) yield the coefficients:

c1 =
1
50

(
1575π2 − 8340π + 10624
−12432π + 17408+ 2205π2

)
, (3.17)

c2 = −
3
100

(
7875π2 − 42480π + 55552
−12432π + 17408+ 2205π2

)
, (3.18)

c3 =
1
75

(
55125π2 − 303240π + 406976
−12432π + 17408+ 2205π2

)
, (3.19)

c4 = −
1
10

(
−62160π + 85888+ 11025π2

−12432π + 17408+ 2205π2

)
, (3.20)

c5 = −
12

5 (21π − 64)
, (3.21)

c6 = −
7
100

(
17325π2 − 103440π + 153344
−12432π + 17408+ 2205π2

)
, (3.22)
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c7 =
1
25

(
55125π2 − 318360π + 457664
−12432π + 17408+ 2205π2

)
, (3.23)

c8 = −
9
50

(
2625π2 − 15440π + 22656
−12432π + 17408+ 2205π2

)
, (3.24)

c9 =
1
6

(
15π − 44
105π − 272

)
. (3.25)

It is easy to show that the proposed upwinding scheme for the first-order derivative is sixth-order spatially accurate:

∂m
∂x
=
∂m
∂x

∣∣∣∣
exact
−
48
175

(
105π − 332

−12432π + 17408+ 2205π2

)
h6
∂7m
∂x7

+

(
7875π2 − 39360π + 45824
−12432π + 17408+ 2205π2

)
h7
∂8m
∂x8
+ O(h8)+ · · · . (3.26)

4. Three-point sixth-order accurate compact Helmholtz solver

We introduce a compact scheme for solving the Helmholtz equation in this section. It is well known that in order to
obtain a higher-order numerical method for the Helmholtz equation, one can always introduce more points in a stencil. The
improved accuracy, however, comes at the cost of an expensive matrix calculation, due to the wider stencil. With the aim of
developing a numerical scheme that is higher-order accurate while using relative few stencil points in the finite difference
discretization, we introduce a compact scheme involving only three points in a stencil, but is sixth-order accurate.
Consider the following prototype equation

∂2u
∂x2
− ku = f (x). (4.1)

We first denote the values of ∂2u/∂x2, ∂4u/∂x4 and ∂6u/∂x6 at a nodal point i as

∂2u
∂x2

∣∣∣∣
i
= si, (4.2)

∂4u
∂x4

∣∣∣∣
i
= vi, (4.3)

∂6u
∂x6

∣∣∣∣
i
= wi. (4.4)

Development of the compact scheme at point i starts with relating v, s andw with u as follows:

δ0 h6wi + γ0 h4vi + β0 h2si = α1 ui+1 + α0 ui + α−1 ui−1. (4.5)

Based on physics, it is legitimate to set α1 = α−1 since the Helmholtz equation is elliptic in nature. Having set α1 = α−1,
the derivation is followed by expanding ui±1 with respect to ui. Substitution of these Taylor series expansion equations into
Eq. (4.5) leads to

δ0 h6wi + γ0 h4vi + β0 h2si = (α0 + 2α1) ui +
h2

2!
(2α1)

∂2ui
∂x2
+
h4

4!
(2α1)

∂4ui
∂x4

+
h6

6!
(2α1)

∂6ui
∂x6
+
h8

8!
(2α1)

∂8ui
∂x8
+ · · · . (4.6)

Through a term-by-term comparison of the derivatives shown in Eq. (4.6), five simultaneous algebraic equations can be
derived. Hence, the introduced free parameters can be determined as α1 = α−1 = −1, α0 = 2, β0 = −1, γ0 = − 1

12 and

δ0 = −
1
360 . Note thatwi = k

3ui + k2fi + k
∂2fi
∂x2
+

∂4fi
∂x4
, vi = k2ui + kfi +

∂2fi
∂x2
, and si = k ui + fi. Eq. (4.5) can then be expressed

as

α1ui+1 +
(
α0 − β0 h2 k− γ0 h4k2 − δ0 h6k3

)
ui + α1ui−1

=

[
h2β0fi + h4γ0

(
kfi +

∂2fi
∂x2

)
+ h6δ0

(
k2fi + k

∂2fi
∂x2
+
∂4fi
∂x4

)]
. (4.7)
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It follows that

ui+1 −
(
2+ h2 k+

1
12
h4k2 +

1
360

h6k3
)
ui + ui−1

= h2fi +
1
12
h4
(
kfi +

∂2fi
∂x2

)
+
1
360

h6
(
k2fi + k

∂2fi
∂x2
+
∂4fi
∂x4

)
. (4.8)

Using the proposed scheme, the correspondingmodified equation for (4.1) can be derived as follows, after performing some
algebraic manipulation:

∂2u
∂x2
− k u = f +

h6

20160
∂8u
∂x8
+

h8

1814400
∂10u
∂x10
+ · · · + H.O.T .. (4.9)

Eq. (4.9) shows that the three-point stencil scheme is indeed sixth-order accurate. We implement a multigrid method using
the V-cycle and fully-weighted projection/prolongation with the red-black Gauss–Seidel smoother to solve the system of
algebraic equations arising from discretization of the proposed scheme.

5. Numerical results

In this section, we provide several test problems to validate the proposed scheme and elucidate its computational
properties.

5.1. Travelling wave solution in periodic domains

The first example is the travelling wave solution in periodic domains considered in [8,9]. The periodic travelling wave
solution is given by u(x, t) = U(x − c t), provided that the minima of u are located at u = 0 and the wave elevation is
positive. In this case one finds the solution of the travelling wave equation is given by

U ′ = ±

√
−U3 + (c − 2κ)U2 + C(A)U

c − U
, (5.1)

where c and A are denoted as the wave speed and the wave amplitude, respectively, and the integration constant C is a
function of A. Integration of Eq. (5.1) leads to the expression,

x =
2

√
b1(b2 − b3)

(b1 − b2)Π(ϕ, β2, T ). (5.2)

The wavelength L of this periodic solution can be written as

L =
4

√
b1(b2 − b3)

(b1 − b2)Π(ϕ, β2, T ). (5.3)

Details about the variable x, ϕ, β , bi (i = 1 · · · 3), c , and T are discussed in [8,9].
The parameters used in the test problem are c = 2, κ = 1/2, and the integration constant C = 1, which altogether

yield the wavelength (period) of L ≈ 6.3019 according to Eq. (5.3). The total time for the wave to travel through the domain
and back to the initial position is t = 3.1509. The time step used in this calculation is 1t = 1

41x while the grid size is
1x = 0.0492 (or the number of cells N = 128). Fig. 5.1(a) shows the numerical and the exact solutions at t = 0.788.
The initial data is the dashed line. A good agreement with the analytic solution is clearly demonstrated. To show that the
proposed scheme is phase accurate, we also plot the predicted solution at t = 3.1509. As Fig. 5.1(b) is shown, the waveform
over one period of time and the waveform of the initial data are visually identical. Tables 5.1–5.3 show the comparisons of
errors in L2 norm, rates of convergence, and CPU times among three different methods: the proposed method, a second-
order two-step iterative method [17], and a second-order particle method [9]. The solutions are computed at a fixed ratio
c 1t
1x = 0.25, where c = 2 is the wave speed. As expected, the tables show that the proposed method is sixth-order accurate
and has smallest errors in L2 norm among the three methods for fine grids, but the proposed method is less efficient than
the other two methods.

5.2. Smooth travelling wave solution

In [20], an exact travelling wave solution of Eq. (1.1) is given by u(x, t) = U(x− ct) ≡ U(s), where c = 8κ/3 and

U(s) =
8
3
κ

(
1−

3
√
3+ 6 sin 2z

(1+ 2 cos 2z)(2
√
3 cos 2z −

√
3 cos 4z + 2 sin 2z + sin 4z)

)
, (5.4)
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a b

Fig. 5.1. The predicted travelling wave solution at (a) t = 0.787732, (b) t = 3.1509 (over one period). Both are compared with the exact solution, the
dotted lines. The domain is L ≈ 6.3019. The number of cells used for this calculation is N = 128 and1t = 1

41x.

Table 5.1
The comparison of errors in L2 norm among three methods for the problem considered in Fig. 5.1(b). The time step used in the calculation is c 1t1x =

1
4 .

Number of cells Error in L2 norm
Current method Second-order two-step iterative method Particle method

N = 32 4.36E−03 6.83E−03 1.34E−02
N = 64 2.02E−04 9.08E−04 3.19E−03
N = 128 4.76E−06 2.56E−04 7.53E−04
N = 256 5.70E−08 6.47E−05 1.90E−04

Table 5.2
The comparison of rates of convergence among three methods for the problem considered in Fig. 5.1(b). The time step used in the calculation is c 1t

1x =
1
4 .

Number of cells Rate of convergence
Current method Second-order two-step iterative method Particle method

N = 32 – – –
N = 64 4.43 2.91 2.07
N = 128 5.41 1.82 2.08
N = 256 6.38 1.98 1.98

Table 5.3
The comparison of CPU times among three methods for the problem considered in Fig. 5.1(b). The time step used in the calculation is c 1t

1x =
1
4 .

Number of cells CPU times (seconds)
Current method Second-order two-step iterative method Particle method

N = 32 9.37E−02 4.69E−02 ≤ 1.0E−03
N = 64 3.59E−01 1.56E−01 1.56E−02
N = 128 1.72 4.53E−01 3.12E−02
N = 256 3.66 1.16 1.41E−01

with z = arctan(es/2)/3. The initial condition u0(x) = U(x) yields the initial data for the auxiliary variablem,

m0(x) = κ
(

c2

(c − U(x))2
− 1

)
. (5.5)

The CH equation (1.1) is a complete integrable equation. There aremany Hamiltonians associatedwith the equation. Among
these conserved quantities, the massM , and the Hamiltonians H1 and H2 are given as follows:

M =
∫
∞

−∞

u dx, H1 =
1
2

∫
∞

−∞

(
u2 + (ux)2

)
dx, H2 =

1
2

∫
∞

−∞

(u3 + u(ux)2 + 2κu2)dx. (5.6)
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Fig. 5.2. (a) The smooth travelling wave. Comparison between the computed solution and the exact solution at t = 50. They are visually identical.
(b) Verification of the proposed algorithm. It shows that the quantities M , H1 , H2 , andW for the travelling wave problem in (a) are well preserved by the
proposed algorithm. Note that the value ofW is divided by 100.

The conserved quantityW associated with Eq. (1.1) is derived in [5]. The brief derivation forW is described as follows. First,
Eq. (1.1) is written as

∂Wx
∂t
+
∂(uWx)
∂x

= 0, (5.7)

whereWx is defined asWx =
√
m+ κ , wherem = u− uxx. If we define

W =
∫
∞

−∞

Wx dx, (5.8)

then we can write Eq. (5.7) as

Wt + uWx = 0. (5.9)

This is an advection equation, where the conserved quantity W is advected by u and therefore is a constant in time.
Fig. 5.2(a) is a plot for the computed travelling wave solution. The computed solution is compared with the exact solution
at time t = 50 with κ = 1. The figure shows clearly that the computed solution and the exact solution are visually
identical, which means that the proposed scheme evolves the solitary wave while perfectly maintaining its shape. Besides
maintaining the waveform, the sixth-order symplectic time integrator employed in the proposed scheme has the ability
to preserve the Hamiltonians. Fig. 5.2(b) shows that all the conserved quantities, M , H1, H2, and W , are well preserved
by the proposed algorithm. The computational domain for this example is [−180, 180], while the number of cells used is
N = 2048 (1x = 0.17578). The time step used is1t = 0.05.

5.3. Interacting solitons

In [9], the CH equation (1.1) in periodic domains is scaled into the wave-dispersion regimes. Under this set of scales,
Eq. (1.1) is compatible with the KdV equation studied in the paper by Zabusky and Kruskal [21]. Thus, the CH equation
should in principle support solutions that behave similarly to those of the KdV equation and exhibit phenomena similar to
those described in [21], i.e. soliton formation with interactions, and the recurrence of smooth initial states.
Consider the following scaled CH equation in a periodic domain:

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx,

u(x, 0) =
1
3δ
cos(πδx),

u(0, t) = u(2/δ, t),

(5.10)

where κ = 1/(2δ) and δ2 is the small parameter in front of the dispersive term uxxx in the KdV equation. Note that when
δ is small, the required periodic domain for the study is large. Hence a large number of grid points may be necessary for
obtaining fully resolved computations, which makes the initial value problem (5.10) a challenging problem for a long-time
behavior study. Using the parameter δ = 0.022 in (5.10), Fig. 5.3(a) shows that eight solitons appear in the domain at the
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Fig. 5.3. (a) shows that eight solitons appear in the domain at the same time. The peaks and phases of the solitons are identical to those computed by the
particle method. (b) shows that the proposed algorithm preserves all the conserved quantities during the formation of solitons.

same time. The peaks and phases of the solitons are identical to those computed by the particle method. The number of cells
used in this calculation is N = 8192 in the periodic domain L = 2/δ ≈ 90.91. The total number of time steps used is 3785
for the final time t = 1.64. Note that in order to use the result of the particle method as a referenced solution, we use a large
number of particles, N = 20 001, in our calculation. Similar to the example in the previous section, we also compute the
conserved quantities,M , H1, H2, andW . We remark that in terms of preserving these conserved quantities, this example is a
harder problem compared with the smooth travelling wave example in Section 5.2. The reason is that this example involves
the formation of eight sharp solitons. Fig. 5.3(b) shows that the proposed algorithm preserves all the conserved quantities
during the formation of solitons. Note that in Fig. 5.3(b), the value of H1 is divided by 1000, the value of H2 is divided by
100000, and the value ofW is divided by 100.

5.4. The α-formulation

In the limit of κ = 0, the non-dispersive CH equation

ut − uxxt + 3uux = 2uxuxx + uuxxx (5.11)

admits peakon solutions. For peakon solutions, the secondderivative ofu (uxx) at the peaks is aDirac delta function. Hence the
auxiliary variablem = u− uxx is also a Dirac delta function. Therefore solving problems involving peakon solutions poses a
challenge for the proposedm-formulation two-step algorithm. In fact, for problems of this type, numerical simulations pose
a challenge as well to the Eulerian based schemes, including global spectral or pseudo-spectral schemes. A global spectral or
pseudo-spectral scheme is definitely not a good choice for this type of problem, due to the huge number of terms required
in the corresponding expansion (since the second derivative term of the sharp peaked wave is approaching to a Dirac delta
function whose Fourier expansion coefficients do not decay).
In this study, to avoid this numerical difficulty, following the suggestion in [22], wewrite the non-dispersive CH equation

(5.11) into an equivalent system of equations:

ut + uux + Px = 0, (5.12)

−Pxx + P =
1
2
(u2 + α), (5.13)

αt + (uα)x = (u3 − 2Pu)x, (5.14)

where α = u2 + u2x . The two-step iterative method developed for solving Eqs. (1.2) and (1.3), the m-formulation, can be
used to solve the above system of equations. That is, in the first step, instead of solving one Eq. (1.3), we solve Eqs. (5.12)
and (5.14) for u and α. In the second step, we solve a Helmholtz equation (5.13) for the auxiliary variable P . The dispersion-
relation-preserving scheme, the three-point compact Helmholtz solver, and the symplectic sixth-order time integrator all
remind unchanged. We call Eqs. (5.12)–(5.14) the α-formulation. Note that the α-formulation involves estimating only the
first-order spatial derivative of u. This is advantageous for problems involving peakon solutions, since the first-order spatial
derivatives near the peaks can be accurately approximated by a finite difference approximation.

5.4.1. Sharp peaked travelling waves
An example in [5–7] shows that for the non-dispersive CHequation (5.11), the solution u(x, t), corresponding to the initial

conditionm0(x) = a sech2(x), forms a rather sharply peakedwave andmoves to the right, followed by others emerging from
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Fig. 5.4. (a) shows the first soliton, the second soliton, and the formation of the third soliton. (b) is the magnification of the third soliton. The solutions
computed by the proposed method is compared with those computed by the particle method. The results are indistinguishable between the twomethods.

Table 5.4
Comparison of the predicted magnitudes of the first and the second solitons among the proposed method, the particle method, and the theory.

The proposed method The particle method Theoretical prediction
(t = 400) (t = 400) (t →∞)

The first soliton 0.332657 0.332359 1/3
The second soliton 0.067200 0.066665 2/30

the location of the initial humpm0. The peaks are sharpened over time and eventually the first-order spatial derivatives of the
peaks become discontinuous (corners) when time approaches infinity. For the particle method developed in [5–7], one can
observe that the particles rapidly cluster in the region of the peaks of the solitary waves. Such pile-up phenomenon suggests
that particles get very close to each other in this region. When the distance between particles is so close that the machine
precision can no longer distinguish between locations of the coalescing particles, particle collisions occur numerically. This
effect is purely numerical, since particle collisions cannot take place in finite time [7]. As a consequence of such a numerical
artifact, the particle method breaks down shortly after the numerical collision occurs. Nevertheless, because of the particle
clustering, the particle method can capture the peak location accurately before the method breaks down. To resolve the
numerical artifact, one can use a higher-precision arithmetic to extend the time for the first occurrence of such numerical
particle collisions [7]. Besides higher-precision arithmetics, a redistribution algorithm is introduced in [7] to resolve the
numerical particle collision, so that a lower-precision arithmetic can be used for solving the problem. We use results
computed from the particle method as the referenced solutions.
We use a = 1/2 in the initial condition, m0(x) = a sech2(x), and solve the Helmholtz equation (1.2) to obtain u0.

Fig. 5.4(a) shows the first soliton, the second soliton, and the formation of the third soliton computed by the proposed
algorithm with the α-formulation. Fig. 5.4(b) is the magnification of the third soliton. The solutions computed by the
proposed method is compared with those computed by the particle method. The results are indistinguishable between the
two methods. The final time of the calculation is t = 400. The number of cells used for the proposed method is N = 65536
in the domain [−50, 150] (1x ∼= 0.00305176), while the resolution for the particle method is 1x = 0.0075. The time
step used is 1t = 0.00125 for the proposed method and 1t = 0.00325 for the particle method. Table 5.4 compares the
magnitudes of the first and the second solitons computed by the proposed and the particle methods at t = 400, with those
predicted by the theory as t →∞ [5]. Both methods have done a good job of predicting the magnitudes.

5.4.2. Soliton–antisoliton collision
The two-soliton dynamics of the non-dispersive CH equation (5.11) are studied in detail in [1,2]. An exact solution is

given for the perfectly antisymmetric ‘‘soliton–antisoliton’’ collision case. This is a numerically challenging problem, since
the term uuxx tends toward a sum of delta functions when the collision occurs. This suggests that the right-hand side of
Eq. (1.3) becomes the derivative of a delta function when the collision occurs. Similar to the previous example, we avoid the
numerical difficulty by using the α-formulation in our numerical simulations.
Consider the soliton–antisoliton initial condition

u0(x) = e−|x+5| − e−|x−5|. (5.15)
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Fig. 5.5. The soliton–antisoliton collision: (a) is the initial condition, (b) is the beginning of the collision, (c) is the approximate time of the collision, and
(d) is post-collision. The theoretical wave speed is c ' 0.999977, and the theoretical collision time is tc ' 5.69327. The computed solutions are compared
with the exact solutions in the figures. The simulation figures show that the proposed scheme not only accurately captures thewave speed and the collision
time, but they are indistinguishable from the exact solutions.

The collision time tc and the wave speed c can be obtained by solving equation (4.26) in [2]

10 = −2 log [sech(−ctc)] ,

2 =
−2c

tanh(−ctc)
.

(5.16)

Solving the above equations, we have c ' 0.999977299777468 and tc ' 5.693265068768256. Following the notations
in [2], we write the solution of Eq. (5.11) for the soliton–antisoliton collision as

u(x, t) =
c

tanh (c(t − tc))

[
e−|x−q(t)| − e−|x+q(t)|

]
, (5.17)

where

q(t) = − log
[
sech2(t − tc)

]
. (5.18)

Fig. 5.5(a)–(d) show simulations of the soliton–antisoliton collision: (a) is the initial condition, (b) is the beginning of the
collision, (c) is the approximate time of the collision, and (d) is post-collision. The figures compare solutions computed by
the proposed scheme with the exact solutions found by Eqs. (5.17) and (5.18). They show that the proposed scheme not
only accurately captures the wave speed and the collision time, but they are indistinguishable from the exact solutions.
The number of cells used in the simulations is N = 16384 in the domain [−25, 25], or 1x ∼= 0.003051. The time step is
1t = 0.001.
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6. Conclusion and future work

A two-step iterative algorithm for a completely integrable CH equation is developed in this study. The algorithm is sixth-
order accurate and preserves the dispersion relation and the Hamiltonians of the equation. In the first step, we introduce
a sixth-order accurate dispersion-relation-preserving scheme to approximate the first-order spatial derivatives, and in the
second step we develop a three-point sixth-order accurate Helmholtz solver. A sixth-order symplectic Runge–Kutta time
integrator that well preserves the Hamiltonians of the completely integrable CH equation is employed as the time-stepping
scheme in the first step. Strength of the proposed algorithm is validated through several examples to demonstrate the
method’s efficiency and accuracy over time.We assess the computational quality of the proposed algorithmby the computed
errors, the CPU times, and the rates of convergence. Note that for peakon or peakon-like solutions, such as the examples in
Sections 5.4.1 and 5.4.2, it makes sense to implement some type of adaptive-mesh-refinement (AMR) scheme to resolve
the sharp peaks, in particular for the Eulerian type of schemes like the proposed algorithm. However, since this study is a
one-dimensional problem, instead of an AMR scheme, we use very fine grids to resolve the peakon type of solutions, while
maintaining reasonable computational times.
While we have developed an efficient higher-order method to study the solution properties of the CH equation, there are

still questions left unanswered by this study. One of them regards the splitting errors introduced by the two-step iterative
process. The two-step iterative method developed here is similar to operator splitting methods. It is not clear what splitting
error is introduced by solving two equations alternately. We are developing a posterior error estimator to evaluate the
splitting error introduced by the iterative scheme.

Acknowledgements

This work was supported by the National Science Council of the Republic of China under Grants NSC96-2221-E-002-
004 and partially supported by NSF through the Grant DMS-0610149. T.W.H. Sheu would like to thank the Department of
Mathematics at the University of Wyoming in Laramie for its provision of excellent research facilities during his visiting
professorship. In addition, we were stimulated considerably by the discussion with R. Camassa in the course of conducting
this study.

References

[1] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661–1664.
[2] R. Camassa, D. Holm, J.M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994) 1–33.
[3] R.S. Johnson, Camassa–Holm, Korteweg–de Vries and related models for water waves, JFM 455 (2002) 63–82.
[4] J. Lenells, Conservation laws of the Camassa–Holm equation, J. Phys. A. 38 (2005) 869–880.
[5] R. Camassa, Characteristics and initial value problem of a completely integrable shallow water equation, DCDS-B 3 (2003) 115–139.
[6] R. Camassa, J. Huang, L. Lee, On a completely integral numerical scheme for a nonlinear shallow-water wave equation, J. Nonlinear Math. Phys. 12
(2005) 146–162.

[7] R. Camassa, J. Huang, L. Lee, Integral and integrable algorithm for a nonlinear shallow-water wave equation, J. Comput. Phys. 216 (2006) 547–572.
[8] R. Camassa, L. Lee, A complete integral particle method for a nonlinear shallow-water wave equation in periodic domains, DCDIS-A 14 (S2) (2007)
1–5.

[9] R. Camassa, L. Lee, Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation, J. Comput.
Phys. 227 (2008) 7206–7221.

[10] H. Holden, X. Raynaud, A convergent numerical scheme for the Camassa–Holm equation based on multipeakons, DCDS-B 14 (2006) 503–523.
[11] H. Holden, X. Raynaud, Convergence of a finite difference scheme for the Camassa–Holm equation, SIAM J. Numer. Anal. 44 (2006) 1655–1680.
[12] H. Kalisch, J. Lenells, Numerical study of traveling-wave solutions for the Camassa–Holm equation, Chaos Solitons Fractals 25 (2005) 287–298.
[13] H. Kalisch, X. Raynaud, Convergence of a spectral projection of the Camassa–Holm equation, Numer. Methods Partial Differential Equations 22 (2006)

1197–1215.
[14] R. Artebrant, H.J. Schroll, Numerical simulation of Camassa–Holm peakons by adaptive upwinding, Appl. Numer. Math. 56 (2006) 695–711.
[15] Y. Xu, C.W. Shu, A local discontinuous Galerkin method for the Camassa–Holm equation, SIAM J. Numer. Anal. 46 (2008) 1998–2021.
[16] R. Camassa, P.H. Chiu, L. Lee, T.W.H. Sheu, Numerical investigation of Helmholtz regularizations in a class of partial differential equations (submitted

for publication).
[17] P.H. Chiu, L. Lee, T.W.H. Sheu, A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation, J. Comput. Phys. 228 (2009)

8034–8052.
[18] W. Oevel, W. Sofroniou, Symplectic Runge–Kutta schemes II: Classification of symplectic methods, Univ. of Paderborn, Germany, Preprint, 1997.
[19] C.K.W. Tam, J.C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. 107 (1992) 262–281.
[20] R. Camassa, A.I. Zenchuck, On the initial value problem for a completely integrable shallow water wave equation, Phys. Lett. A 281 (2001) 26–33.
[21] N.J. Zabusky, M.D. Kruskal, Interaction of ‘‘solitons’’ in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965) 240–243.
[22] D. Cohen, B. Owren, X. Raynaud, Multi-symplectic integration of the Camassa–Holm equation, J. Comp. Phys. 227 (2008) 5492–5512.


	A sixth-order dual preserving algorithm for the Camassa--Holm equation
	Introduction
	Two-step iterative algorithm
	Dispersion-relation-preserving scheme
	Three-point sixth-order accurate compact Helmholtz solver
	Numerical results
	Travelling wave solution in periodic domains
	Smooth travelling wave solution
	Interacting solitons
	The  α -formulation
	Sharp peaked travelling waves
	Soliton--antisoliton collision


	Conclusion and future work
	Acknowledgements
	References


