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A dispersion-relation-preserving dual-compact scheme developed in Cartesian grids is
applied together with the immersed boundary method to solve the flow equations in irreg-
ular and time-varying domains. The artificial momentum forcing term applied at certain
points in cells containing fluid and solid allows an imposition of velocity condition to
account for the motion of solid body. We develop in this study a differential-based inter-
polation scheme which can be easily extended to three-dimensional simulation. The
results simulated from the proposed immersed boundary method agree well with other
numerical and experimental results for the chosen benchmark problems. The accuracy
and fidelity of the IB flow solver developed to predict flows with irregular boundaries
are therefore demonstrated.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Flow and heat transfer problems of practical and academic importance often involve geometrically complex bodies which
are stationary or in motion in high-Reynolds number fluid flows. These problems can be solved by the classical body-fitted
grid-based methods, which discretize the governing equations in a curvilinear coordinate system that conforms to the
boundaries, with re-gridding procedures at each time step. Grid generation is, however, entailed with a heavy cost in man-
power as well as in computational time. In addition, the quality of grid generation can be a major simulation issue and very
often one has to resort to either a multi-block structured or an unstructured approach in order to handle anything but the
not-so-complicated geometries.

While methods underlying the unstructured grids generated in a multi-block setting, which can offer a greater flexibility,
have been widely used in the past, they still suffer the drawback due to their inapplicability to the multigrid acceleration
solver. A completely different methodology, which was firstly proposed by Peskin [1] in 1972, implemented normally in
body non-conforming Cartesian grids retains most of the favorable properties of the structured grids but it can also provide
a high-level flexibility in handling complex geometries. In short, the immersed boundary (IB) method becomes increasingly
. All rights reserved.
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popular nowadays since generation of grids becomes greatly simplified to tackle the flows with complex stationary or mov-
ing boundaries.

The immersed boundary method of Peskin [1] solves the transport equations of fluid flows both inside and outside of the
stationary/moving solid objects. The underlying idea that makes this class of methods plausible to simulate flows over solid
objects is to match the fluid and particle by the properly distributed force along the boundary. The resulting interaction be-
tween the fluid and the immersed solid can be well accounted for either by the prescribed penalty due to Peskin [1] or by the
duality introduced in the fictions domain approach of Glowinski et al. [2]. Due to the penalty introduced in the immersed
boundary method [1] and the Lagrange multipliers distributed in the fictions domain approach [2], penalty and duality terms
make the resulting constrained equations stiff, thereby imposing restriction on the time step [3].

Since the pioneering work of Peskin [1], in the past four decades there have been various research efforts put into the
improvement of the Peskin’s immersed boundary method for increasing its predicted accuracy to the formally second order
spatial accuracy [4], enforcing the volume conservation enclosed by an immersed boundary [5], increasing the resolution
across the fluid–solid interface [6], and offering the stability analysis [7]. The immersed interface method (IIM) [8], which
differs from the IB method in the way of approximating the singular force appearing in the continuous equations of motion,
was developed to resolve the problem of lower (or first-) order accuracy issue for the problem with a sharp interface by
incorporating the jump conditions for the Dirac function into the formulation. Both methods suffer, however, a severe time
step restriction that is typically much more stringent than the time increment imposed by the explicit schemes for the
advective terms [9]. A possible explanation for the unresolved time-step restriction is due to the accumulation of numerical
errors for the case investigated at the flow incompressibility condition [10].

Within the context of immersed boundary methods, this class of methods can be broadly categorized into the continuous
forcing and the discrete forcing two classes according to the review paper of Mittal and Iaccarino [11]. In the continuous forc-
ing methods, a forcing term is explicitly added to the continuous Navier–Stokes equations before the discretization of them.
Typical examples of them are the original method of Peskin [1], and its subsequent extensions by Goldstein et al. [12] and
Saiki and Biringen [13] who introduced the feedback forcing to account for the effect of solid body so that the fluid velocity
becomes zero at the desired points in the solid. The continuous forcing IB methods have the advantage of being formulated
relatively independent of the chosen spatial discretization methods and can, as a result, be implemented in the existing Na-
vier–Stokes solvers with relative ease. In the discrete forcing methods, the forcing term can be either explicitly or implicitly
applied to the discretized Navier–Stokes equations [16–18,22,21,19,20,14,15]. In comparison with the first category of IB
methods, the discrete forcing methods allow a sharper representation of the immersed boundary [23]. A number of other
immersed boundary methods, known as the sharp interface method or the reshaped-cell method [24,17] developed to
achieve the second-order or an even higher-order accuracy without momentum forcing [25] and the ghost fluid method
(GFM) with momentum forcing [26–28], have been applied to simulate the problems with irregular geometry. One can find
other variants of the immersed boundary methods in Cartesian grids, which avoid invoking grid generation, in [6].

This paper is organized as follows. We will describe in Section 2 the working equations for the incompressible Navier–
Stokes equations cast in primitive variables. The immersed boundary method implemented with accurate interpolation
scheme will be proposed in Section 3 for the evaluation of momentum forcing on the body surface (immersed boundary)
or inside the body. Section 4 presents the dispersion-relation-preserving dual-compact scheme for calculating the Navier–
Stokes solution in non-staggered grids without producing oscillatory pressures. Section 5 validates the proposed steady
and transient Navier–Stokes solvers. For showing the fidelity of the proposed Navier–Stokes flow solver, two problems ame-
nable to analytic solutions are investigated. In order to verify the immersed boundary method, we have investigated several
benchmark problems in Section 6. In Section 7, some concluding remarks will be drawn.
2. Governing equations

In this study we will restrict our attention to the incompressible viscous flow equations, which are governed by the fol-
lowing continuity and Navier–Stokes equations
r � u ¼ 0 ð1Þ
@u
@t
þ u � rð Þu ¼ �rpþ 1

Re
r2u ð2Þ
Given an initial divergence-free velocity field and the prescribed boundary velocity, the chosen primitive variables u and p
will be sought in a region that is enclosed by the boundary @X. The condition applied at @X with an outward normal vector n
must satisfy the integral equation given by

H
@Xu � nds ¼ 0.

Subjected to the constraint Eq. (1), the differential system governing the viscous flow motion is not entirely evolutionary.
Momentum equations can be solved along with the divergence-free Eq. (1). The need to satisfy this constraint condition for
preserving mass (or incompressibility) can, however, lead to a matrix system which is normally not well-conditioned in
cases of high Reynolds number. Under the circumstance, the convergent solutions for ðu; pÞ become much difficult to be cal-
culated using a computationally less expensive iterative solver [29]. In certain cases, the peripheral storage for these matrix
equations may exceed the available computer power and disk space. These drawbacks prompted the derivation of a scalar
equation for p to replace Eq. (1). This class of approaches is subjected to the rigorously derived integral boundary condition
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[30] and is, therefore, computationally more difficult to be dealt with. Due to the above drawback existing in the mixed for-
mulation and theoretically no boundary condition is needed for the pressure, Lin [31] proposed the sequential regularization
method to solve the time-dependent incompressible Navier–Stokes equations without invoking specification of pressure
boundary condition. In the present study, a computationally effective and novel method will be developed in Section 4.2
for the time-dependent Navier–Stokes equations.

3. Immersed boundary method

Fluid flow over a body can exert a force on the no-slip surface and will, in turn, apply a force with the magnitude and
direction opposing to the local flow. As a result, the fluid flow can be brought to rest on the body surface [12]. This implies
that such an externally applied body-force to the momentum equations at certain points in the flow can simulate the effect
of the investigated body in the flow. This idea enables the IB method to mimic the complex body through a suitably intro-
duced artificial force adding to the momentum equations. The resulting momentum equations with an appropriately pre-
scribed forcing vector f at certain points in the vicinity of immersed boundary can be written as
@u
@t
þ ðu � rÞu ¼ �rpþ 1

Re
r2uþ f ð3Þ
As the name of the discrete-time momentum forcing method indicates, the forcing vector f shown above can be directly
computed from the following discrete-time momentum vector equation
unþ1 � un

Dt
þ ðu � rÞu ¼ �rpþ 1

Re
r2uþ f ð4Þ
Note that the momentum forcing vector f , which is applied only along the body surface or inside the body, should be cal-
culated at each time step. This enables the velocity along an arbitrary immersed boundary surface X to be equal to the spec-
ified vector function VX. When the grid line coincides with the immersed boundary, the momentum forcing term specified in
this way can make the velocity magnitude to be equal to VX at this point. For the forcing points inside the body and nearest
the boundary, the momentum forcing term needs to be specified so that the normal and tangential velocity components
along the boundary can be equal in magnitude but opposite in direction to the velocity components at the corresponding
point outside the body. When the boundary surface is not perfectly aligned with the grid plane, the prescribed momentum
forcing term will act only on the points nearest the immersed boundary. Interpolation of the value of momentum forcing
term is therefore required so that the prescribed forcing term can render the velocity with a magnitude approximately equal
to VX at the immersed boundary
f ¼ �RHSþ VX � un

Dt
on X ð5Þ
In the above, Dt denotes the time increment and VX represents the specified velocity along the immersed boundary. Note
that the vector RHS shown above is composed of the pressure gradient, convection, and diffusion terms in the momentum
equations. For the case with a stationary solid body, along which a no-slip boundary condition is applied, VX ¼ 0 will be
specified along the boundary.

3.1. Algebraically-interpolated method for the direct forcing term f

In the immersed boundary method, development of an interpolation scheme to accurately impose the no-slip condition
on the immersed boundary is essential since grid lines are not necessarily aligned with the immersed boundary. Some inter-
polation techniques for evaluating the momentum forcing term on the body surface or inside the body have therefore been
proposed by several authors in the past [14–22,32].

The interpolation procedures due to Li and Wang [32] will be described firstly. Let P shown in Fig. 1(a) be the point along
the immersed boundary, along which no-slip boundary condition is prescribed. The nearest interior point A has only one
neighboring fluid point (node Q). For this case, uA can be calculated linearly from the nodal value of uQ and the no-slip veloc-
ity at P as
uA ¼ �
hA

hQ
uQ ð6Þ
In the above, hA and hQ are denoted as the distances between the points A, Q and P, respectively. In Fig. 1(b), the interior point
A has fluid-neighbor points B, C and D. Let u be approximated as a1 þ a2xþ a3yþ a4xy, then uA � uP can be expressed as
follows:
uA ¼ a1 þ a2xA þ a3yA þ a4xAyA

uB ¼ a1 þ a2xB þ a3yB þ a4xByB

uC ¼ a1 þ a2xC þ a3yC þ a4xCyC

uD ¼ a1 þ a2xD þ a3yD þ a4xDyD

uP ¼ a1 þ a2xP þ a3yP þ a4xPyP

ð7Þ
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Fig. 1. Schematic of the algebraic interpolation schemes given in Section 3.1. (a) Linear interpolation; (b) bilinear interpolation.
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One can then solve the following matrix to get the values of coefficients a1 � a4 and, in turn, the value of uP from
1 xA yA xAyA

1 xB yB xByB

1 xC yC xCyC

1 xD yD xDyD

2
6664

3
7775 �

a1

a2

a3

a4

2
6664

3
7775 ¼

uA

uB

uC

uD

2
6664

3
7775
In most of the problems, the no-slip velocity condition at P is known and we can always use the values of uB;uC ;uD and uP to
calculate uA. In other words, the value of uA can be calculated in a way to satisfy the no-slip condition on the immersed
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boundary (point P). Based on the expression of uA in Eq. (7) and the uniquely determined values of a1, a2, a3 and a4 from the
above 4 � 4 matrix equation, uP is derived as
uP ¼
½ðuD � Dx1 þ uC � Dx2ÞDy2 þ ðuA � Dx1 þ uB � Dx2ÞDy1�

½ðDx1 þ Dx2ÞðDy1 þ Dy2Þ�
ð8Þ
where Dx1 ¼ xP � xB;Dx2 ¼ xA � xP ;Dy1 ¼ yD � yP;Dy2 ¼ yP � yA are shown in Fig. 1(b). By setting uP ¼ 0 in Eq. (8), uA can be
derived as
uA ¼
�ðuD � Dx1 þ uC � Dx2ÞDy2

Dy1 � Dx1
� uB � Dx2

Dx1
ð9Þ
3.2. Differentially interpolated method for the direct forcing term f

Imposition of nodal forces at the immersed boundaries is the key in developing the IB method. In general, the forcing
points are not necessarily located on the immersed boundary. Very often, some of these points will be present inside the
body. Thus, an interpolation procedure is required and the scheme employed to interpolate the velocity in the solid-fluid
cells determines the degree of simulation accuracy. However, boundary treatment by the polynomials used in algebraic-
based approaches may lead to some numerical instabilities. Taking Fig. 2 as an example, we can not prescribe uA from Eq.
(9) since only the velocities at fluid-points B and C are known. A remedy for this type of problem is to change the interpo-
lation function to b1 þ b2xþ b3y. Given the fluid-points B and C, the immersed boundary point P, and the solid point A,
uA � uP can be expressed as follows:
uA ¼ b1 þ b2xA þ b3yA

uB ¼ b1 þ b2xB þ b3yB

uC ¼ b1 þ b2xC þ b3yC

uP ¼ b1 þ b2xP þ b3yP

ð10Þ
One can then solve the following matrix to get the values of b1 � b3 from
1 xA yA

1 xB yB

1 xC yC

2
64

3
75 �

b1

b2

b3

2
64

3
75 ¼

uA

uB

uC

2
64

3
75
B

DC

A

P
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Δx2
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Fig. 2. Schematic of the bilinear algebraic interpolation scheme for the cell involving two fluid nodes.
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and, in turn, the value of uP given below
Fig. 3.
the gra
uP ¼
½Dx1ðDy1 þ Dy2Þ � uA þ ðDx2Dy1 � Dx1Dy2Þ � uB þ Dy2ðDx1 þ Dx2Þ � uC �

½ðDx1 þ Dx2ÞðDy1 þ Dy2Þ�
ð11Þ
By setting uP ¼ 0 in Eq. (11), uA can be derived as
uA ¼ �
½ðDx2Dy1 � Dx1Dy2Þ � uB�
½Dx1ðDy1 þ Dy2Þ�

� ½Dy2ðDx1 þ Dx2Þ � uC �
½Dx1ðDy1 þ Dy2Þ�

ð12Þ
Numerical instabilities were, however, reported to occur when using the above interpolation [26,28]. As the immersed
boundary point P is close to one of the fluid-points, the matrix equation will be ill-conditioned or singular. This will lead
to an unphysically very large value of uA and it will break-down the calculation at the solid point A. Thus, improvement
on this type of methods is still in need [28,33]. In order to avoid this problem, we will propose a different way, that is appli-
cable easily to three-dimensional problems, to impose the no-slip condition without the interpolated problems encountered
in the algebraically-interpolated method.

Following the idea given in [34], we define the value uQ at point Q, which is the image of the ghost point A through the
boundary point P, as shown in Fig. 3. It follows that the length between points A and P (or AP) is equal to the length between
points P and Q (or PQ). The value uA can be derived as a function of uQ and uP by performing the Taylor series expansion along
the direction that is normal to the immersed boundary
uA ¼ 2uP � uQ ð13Þ
Now, how to determine the value uQ at point Q, which is usually not in alignment with the mesh point, is the key issue.
Instead of constructing the local functions shown above, the following advection equation will be employed to transport

the values along the direction that is normal to the immersed boundary
@u
@s
þ n � ru ¼ 0 ð14Þ
In the above, sis the artificial time and n is the unit normal vector. Eq. (14) entails the desirable feature of advecting u along
the characteristic direction of the immersed boundary. By solving this equation, one can transport the known value to the
ghost point placed inside the solid. Here, we can evaluate uQ using the differential Eq. (14) at the ghost point A by choosing
Ds ¼ APQ ¼ 2AP. We can then expect that the value uQ at point Q will transport to the point A. At point A, the transport Eq.
(14) is discretized by the following first-order upwind scheme
B
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A

Q
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C

I H G

JKL

P

Schematic of differential interpolation scheme for the cell involving three fluid nodes. Note that the values used for the interpolation are marked by
y circles.
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usþ1
A � us

A

Ds
þ OðDsÞ

� �
þ nx

us
A � us

B

Dx
þ OðDxÞ

� �
þ ny

us
D � us

A

Dy
þ OðDyÞ

� �
¼ 0 ð15Þ
where Dx and Dy are the mesh sizes along the x- and y-direction, respectively. Define Ds ¼ c1h;Dx ¼ c2h and Dy ¼ c3h, where
h is defined as ðDxþ DyÞ=2. Since the values of c1 to c3 have normally the order of O(1), Eq. (17) can then be derived as
usþ1
A � us

A

c1h
þ OðhÞ

� �
þ nx

us
A � us

B

c2h
þ OðhÞ

� �
þ ny

us
D � us

A

c3h
þ OðhÞ

� �
¼ 0 ð16Þ
After multiplying h, we can derive the following equation:
usþ1
A ¼ us

A � c1ðnx
us

A � us
B

c2
þ ny

us
D � us

A

c3
Þ þ Oðh2Þ ð17Þ
The above equation shows that the value usþ1
A at point A should be equal to uQ up to second-order accuracy. However, the

value us
A is unknown since point A is the solid ghost point.

Thanks to the multidimensional extrapolation idea of Aslam [35], the following two-dimensional extrapolation equation
is proposed
@u
@s�
þ nxðDxu0xxÞ þ nyðDyu0yyÞ ¼ 0 ð18Þ
where u0xx and u0yy will be derived below. Define
uxxði; jÞ ¼ ðui;j � 2ui�1;j þ uiþ1;jÞ=Dx2

uyyði; jÞ ¼ ðui;j � 2ui;j�1 þ ui;jþ1Þ=Dy2
we are led to derive
u0xxði; jÞ ¼ uxxði� 1; jÞifnxði; jÞP 0; elseu0xxði; jÞ ¼ �uxxðiþ 1; jÞ
u0yyði; jÞ ¼ uyyði; j� 1Þifnyði; jÞP 0; elseu0yyði; jÞ ¼ �uyyði; jþ 1Þ
By solving Eq. (18) to reach the steady state, the second-order accurate extrapolation along the characteristic direction can
be obtained on the ghost points. It is worth to note that if nx ¼ 0 or ny ¼ 0, the above derivation will be reduced to the one-
dimensional second-order extrapolation along x or y direction. Numerical results confirm that the solution of second-order
accuracy for usþ1

A can be calculated from Eq. (17) provided that us
A is obtained by solving Eq. (18) to get the steady state

solution.
The overall solution procedures of the present method are summarized below:

(I) Calculate the extrapolated-intermediate velocity us
A at point A by solving Eq. (18) to get the steady state solution.

(II) Calculate usþ1
A at point A by solving Eq. (14) at the artificial time s ¼ 2AP.

(III) Set uQ ¼ usþ1
A and calculate the intermediate velocity uA at point A by using Eq. (13).

For the sake of completeness, we will show the difference between the algebraically-interpolated method and the cur-
rently proposed differentially-interpolated method. The gray circles shown in Figs. 1–4 are the points which are used for cal-
culating uA. It can be seen that the stencil points used in the present method are not compact. However, implementation of
the present method is straightforward and the problem encountered in the algebraically-interpolated method won’t be hap-
pened in the presently proposed method.

4. Discretization schemes

4.1. Dual-compact scheme for spatial flux terms

In a grid of uniform grid size Dx ¼ Dy ¼ h, the first-order derivative term @/
@x and the second-order derivative term @2/

@x2 will
be couplely approximated within the following three-point compact framework
a1
@/
@x

����
i�1
þ @/
@x

����
i

¼ 1
h
ðc1/i�1 þ c2/i þ c3/iþ1Þ � h b1

@2/
@x2

 �����
i�1

þ b2
@2/
@x2

�����
i

þ b3
@2/
@x2

�����
iþ1

1
A ð19Þ

�b1
@2/
@x2

�����
i�1

þ @
2/
@x2

�����
i

þ �b3
@2/
@x2

�����
iþ1

¼ 1

h2 ð�c1/i�1 þ �c2/i þ �c3/iþ1Þ �
1
h

�a1
@/
@x

� ����
i�1
þ �a2

@/
@x

������
i

þ �a3
@/
@x

������
iþ1

1
A ð20Þ
As for the terms @/
@y and @2/

@y2 , they can be similarly approximated along the y-direction. Note that the compact schemes for @/
@x ji

and @2/
@x2 ji are not independent of each other. They are rather coupled through the terms @/

@x ji�1;
@/
@x ji;

@/
@x jiþ1;

@2/
@x2 ji�1;

@2/
@x2
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Fig. 4. Schematic of differential interpolation scheme for the cell involving two fluid nodes. Note that the values used for the interpolation are marked by
the gray circles.
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ji; @
2/
@x2 jiþ1;/i�1;/i and /iþ1. For the sake of description, we only describe below for the case involving the positive convective

coefficient. As for the negative convective coefficient, the derivation can be done in the similar way.

4.1.1. Compact scheme for the second-order derivative term
The second-order derivative term @2/

@x2 is normally approximated by the center-type scheme since its discretization error is
prevailingly dissipative. For this reason, the weighting coefficients shown in Eq. (20) will be determined solely by the mod-
ified equation analysis so as to get a higher spatial accuracy. Derivation of the coefficients �a1; �a2; �a3;

�b1;
�b3; �c1; �c2 and �c3 is

started by applying the Taylor series expansions for /i�1;
@/
@x ji�1 and @2/

@x2 ji�1 with respect to /i;
@/
@x ji and @2/

@x2 ji and, then, elimi-
nating the leading eight error terms derived in the modified equation. Elimination of these leading error terms enables us
to get the following set of algebraic equations for the coefficients shown in Eq. (20)
�c1 þ �c2 þ �c3 ¼ 0 ð21Þ
� �a1 � �a2 � �a3 � �c1 þ �c3 ¼ 0 ð22Þ

�a1 � �a3 � �b1 þ
�c1

2
� �b3 þ

�c3

2
¼ 1 ð23Þ

�
�a1

2
�

�a3

2
þ �b1 � �b3 �

�c1

6
þ

�c3

6
¼ 0 ð24Þ

�a1

6
�

�a3

6
�

�b1

2
þ

�c1

24
�

�b3

2
þ

�c3

24
¼ 0 ð25Þ

�
�a1

24
�

�a3

24
þ

�b1

6
�

�b3

6
�

�c1

120
þ

�c3

120
¼ 0 ð26Þ

�a1

120
�

�a3

120
�

�b1

24
�

�b3

24
þ

�c1

720
þ

�c2

720
¼ 0 ð27Þ

�
�a1

720
�

�a3

720
þ

�b1

120
�

�b3

120
�

�c1

5040
þ

�c3

5040
¼ 0 ð28Þ
By solving Eqs. (21)–(28), we are led to get these coefficients as �a1 ¼ � 9
8 ; �a2 ¼ 0; �a3 ¼ 9

8 ;
�b1 ¼ � 1

8 ;
�b3 ¼ � 1

8 ; �c1 ¼ 3; �c2 ¼ �6 and
�c3 ¼ 3, which are exactly the same as those derived by Chu and Fan [39]. By virtue of the following derived modified equa-
tion, we are led to know that the presently derived coefficients can render the spatial accuracy order of sixth for the approx-
imated equation of @2/

@x2
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@2/
@x2 ¼

@2/
@x2

�����
exact

þ h6

20160
@8/
@x8 þ

h8

604800
@10/
@x10 þ Oðh12Þ þ � � �
4.1.2. Dispersion-relation-preserving compact scheme for the first-order derivative term
The coefficients a1, b1, b2, b3 , c1, c2 and c3 will be partly determined by the Taylor series by expanding /i�1;

@/
@x ji�1 and

@2/
@x2 ji�1 with respect to /i;

@/
@x ji and @2/

@x2 ji. By eliminating the leading six error terms derived in the modified equation, the fol-
lowing set of algebraic equations for Eq. (19) can be derived as
c1 þ c2 þ c3 ¼ 0 ð29Þ

� a1 � c1 þ c3 ¼ 1 ð30Þ

� a1 þ b1 þ b2 þ b3 �
c1

2
� c3

2
¼ 0 ð31Þ

a1

2
� b1 þ b3 þ

c1

6
� c3

6
¼ 0 ð32Þ

� a1

6
þ b1

2
þ b3

2
� c1

24
� c3

24
¼ 0 ð33Þ

a1

24
� b1

6
þ b3

6
þ c1

120
� c3

120
¼ 0 ð34Þ
One more algebraic equation is needed for us to uniquely determine all the seven introduced coefficients shown in Eq. (19).
It is well known that dispersion relation governs the relation between the angular frequency and the wavenumber of the

first-order dispersive term [36]. Hence it is of primary importance for us to develop a scheme that accommodates the dis-
persion relation for the first-order derivative term. To preserve the dispersion relation, the Fourier transform and its inverse
for / given below will be applied
~/ðaÞ ¼ 1
2p

Z þ1

�1
/ðxÞ expð�iaxÞdx; ð35Þ

/ðxÞ ¼
Z þ1

�1
~/ðaÞ expðiaxÞda: ð36Þ
Note that i shown above is equal to
ffiffiffiffiffiffiffi
�1
p

. Development of the advection scheme is followed by performing Fourier transform
on each term shown in Eqs. (19) and (20). The actual wavenumber a for these two equations can be therefore derived as
iahða1 expð�iahÞ þ 1Þ ’ c1 expð�iahÞ þ c2 þ c3 expðiahÞ � ðiahÞ2ðb1 expð�iahÞ þ b2 þ b3 expðiahÞÞ ð37Þ

ðiahÞ2 �1
8

expð�iahÞ þ 1� 1
8

expðiahÞ
� �

’ 3 expð�iahÞ � 6þ 3 expðiahÞ � iah �8
9

expð�iahÞ þ 8
9

expðiahÞ
� �

ð38Þ
In an approximation sense, the effective wavenumbers a0 and a00 should have the same expressions as those shown in the
right-hand sides of Eqs. (37) and (38) [36]. In other words, it is desirable to express a0 and a00 as follows :
ia0hða1 expð�iahÞ þ 1Þ ¼ c1 expð�iahÞ þ c2 þ c3 expðiahÞ � ðia00hÞ2ðb1 expð�iahÞ þ b2 þ b3 expðiahÞÞ ð39Þ

ia0h �8
9

expð�iahÞ þ 8
9

expðiahÞ
� �

¼ 3 expð�iahÞ � 6þ 3 expðiahÞ � ðia00hÞ2 �1
8

expð�iahÞ þ 1� 1
8

expðiahÞ
� �

ð40Þ
By solving Eqs. (39) and (40), the expressions for a0 and a00 can be derived as follows:
a0h ¼ �ið24b1 expð�2iahÞ þ c1 expð�2iahÞ þ c3 þ c1þ 24b1 þ c2 expð�iahÞ þ 24b2 expð�iahÞ þ 24b3 � 48b1

� expð�iahÞ � 8c1 expð�iahÞ � 48b3 expðiahÞ þ 24b2 expðiahÞ þ 24b3 expð2iahÞ � 48b2 þ c2 expðiahÞ
þ c3 expð2iahÞ � 8c3 expðiahÞ � 8c2Þ=ð�8þ expðiahÞ � 8a1 expð�iahÞ þ a1 expð�2iahÞ � 9b1 expð�2iahÞ
� 9b2 expð�iahÞ þ 9b2 expðiahÞ þ 9b3 expð2iahÞ þ a1 þ 9b1 � 9b3 þ expðiahÞÞ ð41Þ

a00h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3 expð�iahÞ � 6þ 3 expðiahÞ � ia0h � 8
9 expð�iahÞ þ 8

9 expðiahÞ
� �

� 1
8 expð�iahÞ þ 1� 1

8 expðiahÞ

s
ð42Þ
It is demanded that ah 	 R½a0h�, where R½a0h� denotes the real part of a0h, to get a better dispersive accuracy for a0. This im-
plies that EðaÞ defined below should be a very small and positive value
EðaÞ ¼
Z p

2

�p
2

½Wðah�R½a0h�Þ�2dðahÞ ¼
Z p

2

�p
2

½Wðc�R½c0�Þ�2dc ð43Þ
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where c ¼ ah and c0 ¼ a0h. Note that Eq. (43) can be analytically integrable provided that the weighting function W, which is
the denominator of ðc�R½c0�Þ, is chosen as
W ¼ �16þ 72b3 þ 72b1 � 81b2
1 � 81b2

3 � 81b2
2 � 162b2b3cosðcÞ � 144a1b3cosðcÞ � 162b1b2cosðcÞ � a2

1cosðcÞ2

þ 8a2
1cosðcÞ � 18b3cosðcÞ3 þ 18b1cosðcÞ3 þ 81b2

2cosðcÞ2 þ 162b1b3 � 72b1cosðcÞ2 þ 81b2
3cosðcÞ2

þ 81b2
1cosðcÞ2 � 72a1b2 � 18b1cosðcÞ þ 16a1cosðcÞ2 � 2a1cosðcÞ3 þ 72b3cosðcÞ2 þ 18b3cosðcÞ � 32a1cosðcÞ

� 36a1b3cosðcÞ4 � 18a1b2cosðcÞ3 þ 162b2b3cosðcÞ3 þ 162b1b2cosðcÞ3 þ 324b1b3cosðcÞ4 þ 72a1b2cosðcÞ2

þ 144a1b3cosðcÞ3 � 486b1b3cosðcÞ2 þ 36a1b3cosðcÞ2 þ 18a1b2cosðcÞ þ 8cosðcÞ � 16a2
1 � cosðcÞ2 ð44Þ
It is worth pointing out that the integration interval shown in Eq. (43) should cover a complete period of the sine (or cosine)
wave. To make E defined in Eq. (43) to be positive and minimum, the following extreme condition is enforced
@E
@c3
¼ 0 ð45Þ
The above equation, which is enforced to preserve the dispersion relation, will be used together with another six previously
derived algebraic equations by way of the modified equation analysis to get a higher dissipation accuracy as well as a dis-
persion accuracy. The resulting seven introduced unknowns can be uniquely determined as
a1 ¼ 0:875 ð46Þ
b1 ¼ 0:12512823415990895606 ð47Þ
b2 ¼ �0:24871765840091043936 ð48Þ
b3 ¼ 0:0001282341599089560636 ð49Þ
c1 ¼ �1:9359611900810925272 ð50Þ
c2 ¼ 1:9969223801621850545 ð51Þ
c3 ¼ �0:060961190081092527237 ð52Þ
We remark here that the upwinding scheme developed to approximate @/
@x can be easily shown to have the spatial accuracy

order of fifth thanks to the following modified equation:
@/
@x
¼ @/
@x
jexact � 0:0007008561524398922475h5 @

6/
@x6 þ 0:0001984126984126984127h6 @

7/
@x7

� 0:0000498830507458330390h7 @
8/
@x8 þ Oðh8Þ þ � � � ð53Þ
4.2. Divergence-free-condition compensated solution algorithm

Following the idea of projection method, we can use the predicted pressure p� to calculate the intermediate velocity u�,
which does not satisfy the divergence-free constraint condition, from the following momentum vector equation
u� � un

Dt
þ ðu� � rÞu� � 1

Re
r2u� þ rp� ¼ f ð54Þ
The velocity is then projected to the divergence-free space to update the pressure value as
unþ1 � u�

Dt
¼ �rp0 ð55Þ

pnþ1 ¼ p� þ p0 ð56Þ
r � unþ1 ¼ 0 ð57Þ
Substitution of Eq. (57) to the semi-discrete equation unþ1�un

Dt þ ðunþ1 � rÞunþ1 � 1
Rer

2unþ1 þrpnþ1 ¼ f yields the following
equation:
unþ1 � un

Dt
þ ðu� � rÞu� � 1

Re
r2u� þ rp� ¼ �rp0 þ f þM1 þM2 ð58Þ
where
M1 ¼ Dt½ðu� � rÞrp0 þ ðrp0 � rÞu� � 1
Re
r2ðrp0Þ� ð59Þ

M2 ¼ �Dt2ðrp0 � rÞrp0Þ ð60Þ



4486 P.H. Chiu et al. / Journal of Computational Physics 229 (2010) 4476–4500
By performing the divergence operator on Eq. (57) and imposing the constraint equationr � unþ1 ¼ 0, we can rewrite Eq. (60)
as
M1 ¼ Dt½ðu� � rÞrp0 þ ðrp0 � rÞu�� � 1
Re
rðr � u�Þ ð61Þ
By setting MDFC ¼ �rp0 þM1 þM2, which is shown in Eq. (58), one is led to know that the introduced term MDFC replaces the
divergence-free condition. We can therefore call MDFC as the divergence-free-condition (DFC) compensated momentum
sourcing term derived to replace the divergence-free constraint condition with the momentum sourcing term.

The computational procedures of the proposed IB method, combined with the DFC compensated method (IB-DFC), are
summarized as follows:

Given the predicted values of u�0 and p�0 for s ¼ 1;2; . . .

(I) Calculate the intermediate velocity unþ1
s by solving the following equation at the mesh points in the fluid-domain.
unþ1
s � un

Dt
þ u�s � ru�s �

1
Re
r2u�s ¼ �rp�s�1 þ f s�1 þMDFCs�1
(II) Calculate the extrapolated-intermediate velocity uA
nþ1
s at the near-fluid solid points by the present IB method, which is

described in Section 3.2.
(III) Calculate p�s and u�sþ1 by
p�s ¼ p�s�1 þ p0s
u�sþ1 ¼ unþ1

s

(IV) When reaching convergence, set unþ1
sþ1 ¼ unþ1 and p�s ¼ pnþ1 and goto the next time step; else goto (I).

The above algorithm allows us to employ the explicit scheme to calculate the solution iteratively from the momentum
equations. With the explicit formulation for pressure, this algorithm turns out to be fully explicit. Also, the non-linear term
can be linearized in the iterative sequence. Note that if the divergence-free constraint condition is satisfied, both MDFC and
rp0 will disappear, thereby yielding u� ¼ unþ1 and p� ¼ pnþ1.

The remaining issue left for the derivation is to derive p0. By performing the divergence operator on Eq. (57), for example,
we can derive
r � unþ1 ¼ r � u� � Dtr2p0 ð62Þ
Enforcement of r � unþ1 ¼ 0 can yield
r2p0 ¼ r � u
�

Dt
ð63Þ
To solve the Poisson equation for p0, one needs to specify its associated boundary condition. This necessity is, however,
unphysical since no boundary condition is available for the pressure. As the above Poisson equation indicates, the pressure
correction has association with the defect of divergence-free condition. It is more natural to explicitly relate the pressure
with the defect divergence-free constraint. Therefore, at an interior point (i, j) the central approximation of Eq. (63) leads to
2
1

Dx2 þ
1

Dy2

� �
p0i;j ¼

r � u�i;j
Dt

� 1
Dx2 ðp

0
i�1;j þ p0iþ1;jÞ �

1
Dy2 ðp

0
i;j�1 þ p0i;jþ1Þ ð64Þ
By omitting the term 1
Dx2 ðp0i�1;j þ p0iþ1;jÞ þ 1

Dy2 ðp0i;j�1 þ p0i;jþ1Þ, we can get the following equation:
p0i;j ¼ �
Dx2Dy2

2ðDx2 þ Dy2ÞDt
r � ui;j� ð65Þ
The need to solve the pressure Poisson equation, which is subjected to the unphysical specification of pressure boundary
condition, is thus avoided.

The above formulation for p0 usually leads to an over-estimated pressure due to the omitted term. We can, therefore, em-
ploy the following way to compensate the omission term. First, we use (65) to calculate the predicted pressure correction p0�
p0�i;j ¼ �
Dx2Dy2

2ðDx2 þ Dy2ÞDt
r � u�i;j ð66Þ
This is followed by calculating the pressure correction p0 from p0�
p0i;j ¼ p0�i;j þ
Dy2

2ðDx2 þ Dy2Þ ðp
0�
i�1;j þ p0�iþ1;jÞ þ

Dx2

2ðDx2 þ Dy2Þ ðp
0�
i;j�1 þ p0�i;jþ1Þ ð67Þ
We can therefore relate the pressure with the defect divergence-free constraint condition without relaxation of p0.
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4.3. Combined compact difference scheme for calculating the pressure gradient in collocated grids

Application of staggered grid approaches to solve the incompressible flow equations has long been known to be able
to suppress pressure oscillations arising from the even–odd decoupling. This type of approaches can, however, increase
programming complexity. Discretization of the differential equations in a domain where velocities and pressure are
stored at the same point will be employed in this study. The pressure gradient term rp in the momentum equations
must be carefully approximated in the non-staggered mesh system. Otherwise, spurious pressure oscillations will be
inevitable.

Our underlying idea of avoiding the notorious even–odd decoupling solutions is to employ pi;j when approximatingrp at
an interior node (i, j). Instead of explicitly approximating @p

@x ji;j, its value can be calculated implicitly with the two adjacent

terms @p
@x ji�1;j using the compact scheme which has been proposed previously by Sheu and his co-authors in [37,38]. Following

the above idea, the combined compact difference (CCD) scheme given by Chu and Fan [39] is used for computingrp in pres-
ent study.
5. Validation of IB-DFC Navier–Stokes solver

To verify the proposed IB-DFC Navier–Stokes solver, two problems amenable to their analytic solutions are investigated
firstly. Both problems are solved in the domain defined by X ¼ ½0;1� � ½0;1�, within which there is a circular body centered at
ðxc; ycÞ ¼ ð1=2;1=2Þ with the radius 1/5 shown in Fig. 5.

5.1. Steady-state analytic validation problem

The steady-state Navier–Stokes equations with the exact boundary velocities prescribed in [40] will be solved at Re = 100
uðx; yÞ ¼ �2ð1þ yÞ
ð1þ xÞ2 þ ð1þ yÞ2

ð68Þ

vðx; yÞ ¼ 2ð1þ xÞ
ð1þ xÞ2 þ ð1þ yÞ2

ð69Þ
The resulting exact pressure can be derived as
pðx; yÞ ¼ � 2

ð1þ xÞ2 þ ð1þ yÞ2
ð70Þ
In Table 1, we tabulate the predicted L2-error norms and the corresponding rates of convergence based on the solutions (u),
(v), (p) obtained at three different uniform grids (212, 412, 812). It can be found from the computed errors that the predicted
x
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Fig. 5. The physical domain for the problem investigated in Section 5.



Table 1
The predicted L2-error norms and the corresponding rates of convergence (R.O.C.) for the problem, given in Section 5.1, carried out at three chosen mesh sizes.

Mesh size u R.O.C. v R.O.C. p R.O.C.

h = 1/20 7.386E�5 – 7.039E�5 – 1.453E�4 –
h = 1/40 1.374E�5 2.426 1.429E�5 2.299 3.742E�5 1.957
h = 1/80 3.248E�6 2.080 3.362E�6 2.088 1.052E�5 1.830

Table 2
The predicted L2-error norms and the corresponding rates of convergence (R.O.C.) for the problem, given in Section 5.2, carried out at three chosen mesh sizes.

Mesh size u R.O.C. v R.O.C. p R.O.C.

h = 1/20 1.565E�3 – 1.511E�3 – 2.878E-3 –
h = 1/40 3.797E�4 2.043 3.557E�4 2.086 7.090E�4 2.021
h = 1/80 8.498E�5 2.159 8.118E�5 2.131 1.671E�4 2.084
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Fig. 6. Schematic of the specified boundary conditions for the Taylor–Couette problem considered in Section 5.3.

Table 3
The computed L2-error norms and the corresponding spatial rates of convergence (s.r.c.) for the problem, given in Section 5.3, carried out at four chosen meshes
for Re = 200.

Mesh size u R.O.C. v R.O.C. p R.O.C.

h = 1/10 4.431E�2 – 4.431E�2 – 3.723E�2 –
h = 1/20 7.990E�3 2.471 7.990E�3 2.471 8.837E�3 2.075
h = 1/40 1.620E�3 2.301 1.620E�3 2.301 1.755E�3 2.332
h = 1/80 3.576E�4 2.180 3.576E�4 2.180 5.556E�4 1.659
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solutions agree very well with the exact solutions. Moreover, the global second order convergence can be obtained using the
proposed scheme.
5.2. Transient analytic validation problem

The transient Navier–Stokes equations with the following exact solutions are also solved at t = 1 for the validation sake
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Fig. 7. Schematic of the semi-circular lid-driven cavity problem investigated in Section 6.1.
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Fig. 8. The predicted vorticity contours for the flow investigated at two Reynolds numbers in a semi-circular lid-driven cavity. (a)Re = 500; (b)Re = 5000.
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(b)
Fig. 9. Comparison of the mid-plane velocity profiles uðx;0:5Þ and vð0:5; yÞ predicted at two Reynolds numbers. (a) Re = 500; (b) Re = 5000.
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uðx; y; tÞ ¼ � cosðpxÞ sinðpyÞ expð�2p2t=ReÞ ð71Þ

vðx; y; tÞ ¼ sinðpxÞ cosðpyÞ expð�2p2t=ReÞ ð72Þ

pðx; y; tÞ ¼ �1
4
ðcosð2pxÞ þ cosð2pyÞÞ expð�4p2t=ReÞ ð73Þ
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Fig. 10. Comparison of the predicted solution computed by the dual-compact scheme and third-order upwind scheme at Re = 500.
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All the solutions will be calculated at Re ¼ 100;Dx ¼ Dy ¼ 1
20 ;

1
40 ;

1
80 and Dt ¼ 10�3. The proposed method is justified by the

predicted L2-norm errors and the rates of convergence tabulated in Table 2. The global second order convergence can be also
confirmed through this test problem.

5.3. Taylor–Couette problem

The flow field driven by the inner cylinder with a constant angular velocity is investigated in the cylinder cavity. In the
domain ðx; yÞ ¼ ð�0:5 � 0:5;�0:5 � 0:5Þ, there are a inner cylinder, moving with the angular velocity x, with the radius
R1ð¼ 0:2Þ, and a outer cylinder is with the radius R2ð¼ 0:4Þ and no-slip condition shown in Fig. 6.

The exact solutions for velocity pressure can be derived as
uðx; yÞ ¼ �K
R2

2

r2 � 1

 !
y ð74Þ

vðx; yÞ ¼ �K
R2

2

r2 � 1

 !
x ð75Þ

pðx; yÞ ¼ K2 r2

2
� R4

2

2r2 � R2
2 logðr2Þ

 !
ð76Þ
where K ¼ xR2
1

R2
2�R2

1
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
. The solutions will be calculated at Re ¼ 200;Dx ¼ Dy ¼ 1

10 ;
1

20 ;
1

40 and 1
80. The proposed meth-

od is justified by the predicted L2-norm errors and the rates of convergence tabulated in Table 3. Again, the global second
order convergence can be confirmed through this test problem (see Table 3)
6. Numerical results

6.1. Flow in a semi-circular lid-driven cavity

The flow field driven by a constant upper lid velocity ulid is then investigated in the semi-circular cavity, shown in Fig. 7, at
Re = 500 and 5000. Note that L(=1) is chosen as the characteristic length and ulid(=1) is the characteristic velocity. The sim-
ulated vorticity contours and the corresponding mid-plane velocity profiles u(0.5,y) and v(x,0.5) predicted at the mid-planes
are plotted in Figs. 8 and 9. Good agreement with the predicted solutions of Glowinski et al. [41] shown in Fig. 9 confirms the
fidelity of applying the proposed scheme to simulate the incompressible viscous fluid flow in irregular domain. In order to
show the performance of the dual-compact scheme, we compare the solution of semi-circular lid-driven cavity problem for
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Fig. 11. The predicted results in the near wake of the circular cylinder. (a) Streamline contours and the chosen characteristic lengths; (b) vorticity contours.
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Re = 500 with dual-compact scheme and third-order upwind scheme. From Fig. 10, it can be easily seen that our proposed
dual-compact scheme is much better than third-order upwind scheme. This also shows the need of using the proposed dual-
compact scheme.
6.2. Flow over a circular cylinder

Flow over a circular cylinder has been extensively studied for verifying the IB solvers. At a lower value of Re, the resulting
flow is of the diffusion-dominated type and is called the creeping flow. At a somewhat higher value of Re (up to Re = 40), two
symmetrical vortices will be stationarily attached behind the cylinder. By increasing the value of Re, the vortices become
stretched and the flow will be distorted and broken apart, leading to an alternating vortex shedding (or Kármán vortex
street) in the wake.

In this study, drag and lift coefficients and Strouhal number will be calculated for the sake of making a comparison with

other numerical results. Drag coefficient is defined as CD ¼ Fx
1
2u2
1D

, and lift coefficient is defined as CL ¼ Fy
1
2u2
1D

, where
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F ¼
R
ðn � rÞdA. The total stress r can be decomposed as a sum of the pressure and the shear stress contributions (r ¼ PI þ s).

When the flow becomes unstable, the stationary vortices behind the cylinder will be evolved to develop a shedding fre-

quency fq. This dimensionless vortex shedding frequency is called the Strouhal number and is defined as St ¼ fq

u1D. Denote

the dimensionless time period as Tp, one can express St as St ¼ 1
u1TpD.

In a rectangular domain, flow over a stationary cylinder will be simulated in Cartesian meshes. A constant velocity profile
u1 ¼ 1 was specified at the inlet, convective boundary was specified at the outlet, and the Neumann boundary condition was
prescribed along the lateral boundaries. One circular cylinder of diameter D = 1 was placed inside the flow domain
ð0 6 x 6 40D;�10D 6 y 6 10DÞ with its center located at x ¼ 9:5D and y = 0. Our simulations were performed at three Rey-
nolds numbers ðRe ¼ qu1D

l ¼ 40;100;200Þ, where the characteristic length and velocity are the diameter of the cylinder (D)
and the constant velocity at the inlet ðu1Þ, respectively. The dimensionless time was defined as T ¼ u1t

D . The meshes with
600 � 300 nodal points are chosen respectively for Re = 40, and 700 � 350 nodal points for Re = 100 and Re = 200, in the
streamwise (x) and transverse (y) directions.

For the case with Re = 40, the wake predicted behind the cylinder was seen to be symmetric and steady. This predicted
result is in good agreement with the well-established results [42,43,17,28,44–46], which were obtained by the linear stabil-
ity theory [42,43]. Fig. 11 plots the streamline vector and the corresponding vorticity at T = 200 for Re = 40. Comparison was
Table 4
Comparison of the results, predicted at the characteristic lengths defined in Fig. 11, with other numerical and experimental results at Re = 40.

Authors CD Lw a b h

Tritton [42]� 1.59 – – – –
Coutanceau and Bouard � [43] – 2.13 0.76 0.59 53.8�
Ye et al. [17] 1.52 2.27 – – –
Tseng and Ferziger [28] 1.53 2.21 – – –
Linnick and Fasel [44] 1.54 2.28 0.72 0.60 53.6�
Choi et al. [45] 1.52 2.25 – – 51.0�
Taira and Colonius [46] 1.54 2.30 0.73 0.60 53.7�
Present 1.52 2.27 0.73 0.60 53.6�

� indicate the experimental data.
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Fig. 12. The predicted results in the near wake of the investigated circular cylinder at T = 200. (a) Streamline contours, Re = 100; (b) vorticity contours,
Re = 100; (c) streamline contours, Re = 200; (d) vorticity contours, Re = 200.
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made for the drag coefficient, the length of bubble recirculation ðLwÞ, distance from the cylinder to the center of the wake
vortex (a), the gap between the centers of wake vortex (b), and the separation angle ðhÞmeasured from the x-axis, schematic
in Fig. 11. Table 4 shows that the results obtained from the currently proposed method agree quite well with other formerly
cited results given in [42,43,17,28,44–46].

The cylinder wake instabilities become observed as Re P 47. This is indeed what we predict from the simulation carried
out at Re = 100 and 200. Fig. 12 plots the streamline vector and the corresponding vorticity at T = 200 for Re = 100 and 200,
respectively. The predicted vortex shedding in Fig. 12 confirms that the proposed method can predict the unsteady flow well.

Comparison of the predicted drag coefficient, lift coefficient, and Strouhal number with other established results in [47–
52,45,46] at Re = 100 and Re = 200 is presented in Table 5. The results obtained from the currently proposed method are in
good agreement with the formerly cited results. For the sake of completeness, we also plot the Strouhal numbers for the
cases investigated at Re = 60, 80, 100, 200. Good agreement with the solutions of Williamson and Brown [53] and Stålberg
et al. [52], shown in Fig. 13, confirms the fidelity of the proposed scheme.
6.3. Flow over two cylinders in tandem

Flow over two cylinders in tandem will be simulated next in the Cartesian mesh. The distance between the two cylinders
is denoted by the dimensionless quantity g� ¼ G

D, where G is the minimum distance between the cylinders and D is the cyl-
inder diameter. It has been known from the experimental result of Zdravkovich [54] that when the cylinder spacing g� be-
comes larger than 3.8, eddy from the upstream cylinder will be shed in synchronization with the downstream one. To
Table 5
Comparison of the predicted drag coefficients, lift coefficients, and Strouhal numbers (frequency) with other numerical results carried out at Re = 100 and 200.

Re = 100 Re = 200

Authors CD CL St CD CL St

Rosenfeld et al. [47] – – – 1.31 ± 0.04 ±0.65 0.20
Liu et al. [48] 1.35 ± 0.012 ±0.339 0.164 1.31 ± 0.049 ±0.69 0.192
Wright and Smith [49] – – – 1.33 ± 0.04 ±0.68 0.196
Calhoun [50] 1.35 ± 0.014 ±0.3 0.175 1.17 ± 0.058 ±0.67 0.202
Russell and Wang [51] 1.38 ± 0.007 ±0.322 0.169 1.29 ± 0.022 ±0.50 0.195
Stålberg et al. [52] 1.32 ± 0.009 ±0.33 0.166 – – –
Choi et al. [45] 1.34 ± 0.011 ± 0.315 0.164 1.36 ± 0.048 ± 0.64 0.191
Taira and Colonius [46] – – – 1.34 ± 0.047 ±0.68 0.195
Present 1.35 ± 0.012 ±0.303 0.167 1.37 ± 0.051 ±0.71 0.198
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Fig. 13. Comparison of the predicted Strouhal numbers at different Reynolds numbers Re for the flow over a cylinder.
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demonstrate that the current method can be used to predict the flow in complex geometry, flow over two cylinders in tan-
dem will be analyzed at Re = 200 and g� ¼ 4:0.

A constant velocity u1 ¼ 1 was specified at the inlet, convective boundary was specified at the outlet, and a Neumann
boundary condition was prescribed along the lateral boundaries. Two circular cylinders of diameter D = 1 were placed inside
the domain with their centers located respectively at ðx; yÞ ¼ ð9:5D;0Þ and ð14:5D; 0Þ. Our simulations have been carried out
in the domain of 0 6 x 6 45D, �10D 6 y 6 10D. The resulting truncated boundaries are sufficiently apart from the cylinders
and can minimize the boundary effect on the flow development. The mesh is chosen to have 810 � 360 nodal points in the
streamwise (x) and transverse (y) directions, respectively.
Table 6
Comparison of the predicted average drag coefficients, lift coefficients, and Strouhal numbers for two cylinders in tandem investigated at g� ¼ 4:0 and Re = 200.
Index 1 refers to the upstream circular cylinder and index 2 indicates the downstream circular cylinder.

Authors CD1 CL1 St1 CD2 CL2 St2

Farrant et al. [55] 1.25 0.71 0.179 0.38 1.59 0.179
Meneghini et al. [56] 1.18 – 0.174 0.38 – 0.174
Present 1.27 0.65 0.180 0.35 1.23 0.180
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Fig. 14. The predicted results at T = 400 in the near wake of two circular cylinders. (a) Pressure contours; (b) vorticity contours.
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For the two investigated cylinders in tandem, calculation will be carried out at Re = 200 and g� ¼ 4:0, which were inves-
tigated before by Farrant et al. [55] and Meneghini et al. [56]. Comparison of the predicted time-averaged drag coefficient, lift
coefficient, and Strouhal number with the established results can be seen in Table 6. Good agreement with other non-Carte-
sian numerical simulations confirms that the proposed method implemented in Cartesian grids can be applied to predict the
flows in complex geometries. Also, the Strouhal number, which is corresponding to the dominant frequency of the lift
variation, for both cylinders has the same value (that is 0.180) shown in Table 6. The predicted identical Strouhal numbers
confirm that the shedding is synchronized and their values are in agreement with the experimental data. In order to reveal
time
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2nd order
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(b)
Fig. 15. Comparison of the predicted time evolving drag coefficients ðCDÞ at different meshes using different interpolation schemes. (a) Third-order and
second-order extrapolations in a domain of 500 � 500 mesh points; (b) third-order order extrapolations in a domain of 500 � 500 and 800 � 800 mesh
points.
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the behavior of the cylinders in tandem, the streamline vector, vorticity contours, and the corresponding pressure and vor-
ticity predicted at T = 400 are also plotted in Fig. 14.

6.4. Flow around a moving cylinder

We will then simulate flow over a constantly moving circular cylinder. Initially, the cylinder of unit diameter (it D = 1) is
stationarily placed at the origin. The flow is then set into motion towards the left with a constant velocity of ubody ¼ 1. The
Reynolds number under investigation is Re ¼ ubodyD=m ¼ 40. In the present study, our simulations have been carried out in a
computational domain ð�16:5D 6 x 6 13:5D;�15D 6 y 6 15DÞwith the no-slip condition being applied along the boundary.

The field-extension procedure of Yang and Balaras [57] has been reported to have the ability to eliminate the spurious
values near the moving boundary. The predicted drag coefficients are, however, seen to oscillate with respect to time if
the second-order extrapolation (Eq. (18)) is used for u. In order to suppress the oscillation, we propose the third-order
extrapolation given by
y
y

Fig.
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16. The predicted instantaneous vorticity contours at Re = 40 for the flow around a moving cylinder. (a) t = 0; (b) t = 1.5; (c) t = 2.5; (d) t = 3.5.
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where u0xxx and u0yyy are as follows:
Fig. 17
observe
u0xxxði; jÞ ¼ uþxxxði; jÞifnxði; jÞ >¼ 0; else u0xxxði; jÞ ¼ u�xxxði; jÞ

u0yyyði; jÞ ¼ uþyyyði; jÞifnyði; jÞ >¼ 0; else u0yyyði; jÞ ¼ u�yyyði; jÞ
and
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(b)
. Comparison of the predicted time evolving drag coefficients ðCDÞ and the lengths of recirculation bubble ðLbcÞ. Note that Lbc is evaluated by an
r sitting on the moving cylinder. (a) CD; (b) Lbc .
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uþxxxði; jÞ ¼ ðui;j � 3ui�1;j þ 3ui�2;j � ui�3;jÞ=Dx3

u�xxxði; jÞ ¼ ðuiþ3;j � 3uiþ2;j þ 3uiþ1;j � ui;jÞ=Dx3

uþyyyði; jÞ ¼ ðui;j � 3ui;j�1 þ 3ui;j�2 � ui;j�3Þ=Dy3

u�yyyði; jÞ ¼ ðui;jþ3 � 3ui;jþ2 þ 3ui;jþ1 � ui;jÞ=Dy3
It can be seen from Fig. 15 that application of the proposed third-order extrapolation helps to suppress the oscillation. In
addition, when the grid is refined to have 800 � 800 nodal points, the oscillation can be well suppressed. Comparisons
are made in the time interval ranging from the non-dimensional time t = 0 to 3.5 for the CD coefficient and the bubble recir-
culation length defined in Section 6.2 in the frame of reference of the cylinder ðu� ubody;vÞ. The results shown in Figs. 16 and
17 are seen to agree well with the results predicted in [46,43,58].
7. Concluding remarks

In this study, an immersed boundary method is proposed for the simulation of steady incompressible viscous semi-cir-
cular lid-driven cavity problem, and time-dependent (unsteady) incompressible viscous flows over a circular cylinder, two
cylinders in tandem, and around a moving cylinder in Cartesian grids. For the sake of accuracy, a dispersion-relation-preserv-
ing dual-compact scheme is developed to approximate the first-order derivative and the second derivative terms. The dif-
ferentially-based interpolation is proposed to improve the classical algebraic-based interpolation. All the results compare
favorably with the experimental and other numerical results. Moreover, the present method can be easily extended to sim-
ulate the three-dimensional problem since there is no need to reconstruct the 3D algebraic-based interpolation.
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