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Historical Background 

‧Not pure theoretical analysis, close to experimental branch 

‧Mathematical theory for numerical solutions of nonlinear P.D.E. is 

inadequate 

1910 L.F. Richardson： (1)Point iterative scheme for Laplace and 

  biharmonic equations 

  (2)Distinguish the scheme for hyperbolic  

  and elliptic problems 

1928 Courant, Friedrichs, Lewy： CFL stability analysis for  

 hyperbolic P.D.E. numerical solution 

1918 Liebmann：Relaxation method 

1940 Southwell：Residual relaxiation 

1950 von Neumann, O'Brien, Hyman, Kaplan： 

 (1)Stability analysis for time marching problem 

 (2)Widely used technique in C.F.D. for determining stability 

1954 Peter Lax： (1)shock-capturing procedure for shock  

 (2)applied in conservation-law form of the 

 governing equations 

 (3)No special requirement is needed 

1950 von Neumann, Richtmyer： (1)shock smearing procedure 

 (2)adding artificial viscosity  

 (explicit) 

1950 Frankel： (1)SOR for Laplace equation 

 (2)significant improvement in convergence rate 

1955 Peaceman, Rachford, Douglas： 

 (1)ADI schemes for parabolic and elliptic equation 

 (2)ADI is probably the most popular method for 

incompressible vorticity transport equations 

1953 DuFort, Frankel： (1)Leap frog method for parabolic equation 

 (2)Fully explicit 

 (3)Arbitarily large time step if no advection  

 Term is appeared 

1957 Evans, Harlow at Los Alamos： 

 (1)Particle In Cell (PIC) 

 (2)Implicit dissipation to smear out the shock 

1962 Gary： (1)technique for fitting the moving shock 

 (2)avoid smearing in shock-capturing procedure 



 

 

1966 Moretti, Abbett, Moretti, Bleich： 

 shock fitting procedure for supersonic flow over various  

 configuration 

1960 Lax, Wendroff： (1) 2nd order scheme 

 (2) A avoid excessive smearing in previous  

 work 

 (3)Implicit dissipation terms 

1969 MacCormack shock smearing 

Review Articles 

Books 

1957 Richtmyer 

1967 Richtmyer and Morton------Parabolic, Hyperbolic (Marching  

 Problem) 

1960 Forsythe-----------Elliptic problem 

1965 Wasow 

1969 Ames---------------Nonlinear numerical methods Papers 

1981 Hall 

1965 Macagno, Harlow, Fromm 

1982 Levine 



 

 

Governing Equations 

Conservation Form 
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Primitive Varible Form 
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Consider a1ux+b1uy+c1vx+d1vy=f1 

 a2ux+b2uy+c2vx+d2vy=f2 

where a1,..........d2,f1,f2 are functions of x,y,u,v 

and the domain of interest is  

 

B.C.

I.C.

B.C.P
Γ

 

question：Is the behavior of the solution just above P uniquely 

determined by the information below and on the curve? 

or are those data sufficient to determine the directional 

derivatives at P in directions that lie above Γ? 

Since du=uxdx+uydy 

 dv=vxdx+vydy 

→ 
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a1,........f2 are known since u,v are known at P 

dx,dy are known since the direction of Γ is known 

du,dv are known since u,v are known along Γ 

→ A unique solution for ux,uy,vx,vy exits 

  If the determinent is not zero, it implies the directional 

derivatives have the same value above and below Γ. 

‧If the determinant is equal to zero, discontinuities in the partial 

derivatives occur when acrossing Γ. 



 

 

 

det≡0→characteristic equation 

 (a1c2-a2c1)(dy)2-(a1d2-a2d1+b1c2-b2c1)dxdy+(b1d2-b2d1)(dx)2=0 

or a(
dy
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 where a=a1c2-a2c1 

 b=a1d2-a2d1+b1c2-b2c1 

 c=b1d2-b2d1 

(i) Two real roots (or two directions) 

 →hyperbolic d.e. 

 
dy
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b (b ac) 2a]2

1

2= − ± −[ /4  is called characterist 

 Any discontinuity which exists will propagate 

 along linesdy
dx

 

(ii) Two coincident roots 

 →parabolic d.e. 

(iii) Complex roots 

 →elliptic d.e. 

 There are no directions dy
dx

 along which the solution can not be 

 expanded. 

Example Consider the quasilinear second-order equation 

 auxx+buxy+cuyy=f 

 where a,b,c,f are functions of x,y,u,ux,uy 

 since d(ux)=uxxdx+uxydy 

 d(uy)=uyxdx+uyydy 

 →
xx

xy x

yx y

a b c u f

dx dy 0 u d(u )

0 dx dy u d(u )

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 The characteristic equation can thus be found 

 



 

 

Example Consider 2D steady flow 
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 where C*2=1.2-0.2(u2+v2) 

 →   Characteristic equation 
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  (i) if u2+v2＜c2 →elliptic 

 (ii) if u2+v2=c2 →parabolic 

 (iii) if u2+v2＞c2 →hyperbolic 



 

 

Classification of system of equations 

The equation most frequently encountered in C.F.D. will be the following 

written as first order system. 

 [ ] [ ]
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A B r 0
t x y
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where [A],[B] are functions of x,y,t. 

(一) hyperbolic 

 The above system is said to be hyperbolic at  points (x,t) and (y,t) if 

 the eigenvalues of [A] and [B] are real and distinct. 

ex: Consider a wave equation 
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 Richtymer and Morton (1967) indicated that a system of equation is 

 said to be hyperbolic if the eigenvalues are all real and [A] can be 

 written as [A]=[T][X][T]-1 , where [X]is the diagonal matrix of the 

 eigenvalues of [A] 

 The eigenvalues of the investigated wave equation is 
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 Homework：find the corresponding [T] 

 =＞ Eignenvalues  dx
dt

c= ±  of [A] represent the 

 characteristic differential equations of the wave equation 

(二) Elliptic 

 The above system of equation is said to be elliptic at a point (x,t) 

 if the eigenvalues of [A] are all complex. 

 

 

 



 

 

ex：consider Cauchy-Rieman equation 
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The eigenvalue of [A] is λ1=i,λ2=-i 

 ‧classification of second-order P.D.E. is very complex 

 ‧mixed system of equations has roots of characteristics(i) real  

 (ii)complex 

 ‧The above set of equations may exhibit the hyperbolic behavior 

in (x,t) space and elliptic in (y,t) space, depending on the 

eigenvalue structure of A, B, matrices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Consistency 

A finite difference representation of a P.D.E. has consistency property if 
 

mesh 0
lim ( ) 0PDE FDE

→
− =  

Stability 

A stable numerical scheme is one for which errors resulting from any 

source ( round-off, truncation) are not permitted to grow in the sequence 

of numerical procedures from one marching step to another ( For 

hyperbolic or parabolic marching problems) 

For equilibrim problems, 

(1)Truncation convergence for iterative process 

(2)The error inherent in the direct method won't grow as mesh size is 

refined 

Convergence 

lim
mesh→0

(solution of F.D.E.) = true P.D.E. solution

with the same B.C. and I.C.

' (******** )********  

‧Generally, a consistent and stable scheme is convergent 

Round-off error 

Any computed solution may be affected by rounding to a finite number of 

digits in the arithmetic operations 

Discretization error 

Error in the solution of PDE  is caused by replacing the continuous 

problem by a discrete one 

In general, second-order accurate methods can provide enough accuracy 

for most of the practical problems 

 



 

 

Conservative Property 

Conservative property of a scheme means a good approxiamtion to P.D.E., 

not only in small, local neighborhood involving a few grid points but also 

in an arbitrarily large regions 

‧A difference formulation based on nondivergence form may lead to 

numerical difficulties in situations where the coefficients may be 

discontinous in flows containing shock waves 

Finite Difference form of P.D.E. 

(a)Taylor series expansion 

(b)Polynominal fitting 

(c)Integral method 

(d)Control volume approach 

In many cases (simple, linear equations), the resulting difference 

equations can be identical 



 

 

Differencing scheme and its error 

First-derivative approximation with △x=h=const 
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If the upstream differencing method is employed to the 1-D convection 

equation 

 ut+cux=0 ; c>0 

then we can obtain the differencing equation 

u cu
c x

u
c x

u O x x t x t tt x xx xxx+ = − − − + +
Δ Δ

Δ Δ Δ Δ Δ Δ
2

1
6

2 3 1
2

2 3 2 2 3( )
( )

( ) (( ) ,( ) , ( ) ,( ) )ν ν ν  

(i) Implicit artifical viscosity (1 )
2

xx

c x
u vν

Δ⎛ ⎞
−⎜ ⎟⎝ ⎠  

 The numerical errors of even order derivatives (e.g. second order 

 derivative) generated inherently in the differencing procedure 

(ii) Explict artificial viscosity 

 The even order derivatives which are purposely added to a 

 differencing scheme 

(iii) Artifical viscosity tends to reduce all gradients in the solution 

 whether it is physically correct or numerically induced 

Dissipation error： direct result of the even derivatives terms in the 

(Amplitude error) truncation error which is related to the amplitude  

  error 

Dispersion error： The direct result of the odd derivatives terms in the 

(phase error)  truncation error which is related to 

the relative phase error (phase relations between 

various waves are distorted) 

Diffusion—The combined effect of dissipation and dispersion 

Shift condition—The finite difference algorithm, exhibiting the behavior 

of  btaining the same result by employing the method of 

 characteristic, is said to obtain the shift condition. 

 ex：1D convection equation solved by the upstream  

 difference method with Courant number=1. 



 

 

Stability 

‧Strong stability：overall error due to round-off doesn't grow 
‧Weak stability：A single general round-off error doesn't grow 

 Let N：numerical solution of discretization 

 D：exact solution of discretization equation 

 A：exact solution of P.D.E. 

Von Neumann (Fourier) analysis of a single equation 

(1) Considering ut=αuxx 

 explicit approximation (j,n) 
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 substitute N=D+ε into (3-101) and D satisfing (3-101) 
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ΔΔ
-----------------------(3-103) 

 i.e.,the error satisfies the original difference form or the numerical  

 error and the exact numerical solution both posses the same growth  

 property in time 

Assuming a distribution of error at any time in a mesh 
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Since the difference equation (3-103) is linear, superposition may be used. 

We examine the behavior of a single term for simplicity(weak stability) 
 ( ) ( ), mik x

m m
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 suppose  bm(t)=eat 

Then,  ( ), mik xat

m x t e eε = ---------------------------------(3-105) 
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Stable requirement means   

‧ The influence of boundary conditions is not included in this analysis.

 (matrix method accounts for the influence of B.C.) 

‧ In general, the Fourier stability analysis assumes that the periodic 

B.C.s  are imposed. 

 

(2) Von Neumann analysis of the hyperbolic equation 
 0                               (3-108)

t x
u cu+ =  

 The solution of (3-108) is 

 u(x-ct)=constant 

 with the characteristics given by a solution of  

 xt=constant 

 i.e.,the initial data prescribed at t=0 is propagated along the 

characteristics 

 Lax scheme for (3-108) is 
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 stability requirement 

 G ≤ → ≤1 1ν  This is the Courant-Friedrichs-Lewy(CFL) 

condition 

 

(3) Second-order hyperbolic wave equation 

 u c utt xx− =2 0 

 The solution at a point (x,t) depends on data contained between the 

 characteristics 

 x+ct=const   C1 

 x-ct=const    C2 
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 Stability analysis 

 →CFL condition 
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 i.e. CFL condition requires that the analytic domain of influence lies 

 within the numerical domain of inflluence. 

 Since the chearacteristic slope is 1dt
dx c

= ±  

such that 
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slope 1/c

CFL slope

 

 the numerical domain may include the analytic zone 



 

 

Positivity- 

Accurate resolution of steep gradients is important in most of the 

problems 

Consider ρ ρt xv+ = 0 (1) 

where v is a constant 

If the above equation is discretized in the following form： 
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=>first-order numerical diffusion rapidly smears a sharp discontinity 

since 
 ( ) ( )1

1 1 1 1
2 2

n n n n n n

i i i i i ii i
ρ ρ ν ρ ρ ν ρ ρ+

+ −+ −
= + − − −  

and  higher-order solution(than one) reduces the numerical diffusion 

 but sacrifices the assureed positivity 

The price of guranteed positivity is a severe, unphysical spreading of the 

discontinuity which should be located at x=vt 

=> the requirements of positivity and accuraty seem to be mutually 

 exclusive→nonlinear monotone methods were invented to 

 circumvent this dilemma 


