NONCOMMUTATIVITY NONASSOCIATIVITY AND NONLOCALITY IN STRING THEORY

Pei-Ming Ho

Department of Physics
National Taiwan University

Nov. 11, 2002

Talk given at the symposium in celebration of Prof. C. N. Yang's 80th birthday.

String theory is a promising candidate for quantum gravity (and everything else).

String $\simeq \infty$ particles

Nature of Space-Time

String Theory $\rightarrow 9+1$ dimensions.

Geometry \leftrightarrow Physics

Euclidean Geometry

(Newtonian Physics)
\downarrow

Riemannian Geometry

(General Relativity - Gravity)

Non-Commutative Geometry

(Quantum Gravity, String Theory)

Quantum Spacetime:
[Yang: On Quantized Spacetime, Phys. Rev. $\underline{72}$ (47) 874]

Dp-brane \simeq
p-dim. subspace on which open strings end

Physics on N coincident D-branes \simeq $S U(N)$ Yang-Mills theory

D-brane with Background Field

B field background: [Chu+Ho(98)]

$$
S=S_{0}+\int B
$$

$B=2$-form gauge field

Nonlocality:

$$
\begin{gathered}
\Delta X_{1}=B_{12} P_{2} \\
\Rightarrow\left[X_{1}, X_{2}\right] \sim\left[\Delta X_{1}, X_{2}\right]=i B_{12}
\end{gathered}
$$

$\underline{\text { Dipole } \rightarrow \text { Nonlocal } \rightarrow \text { NC }}$

Quantization of open string [$\mathrm{Chu}+\mathrm{Ho}(98,99)$]

$$
\Rightarrow\left[X_{i}, X_{j}\right]=\left(\frac{B}{1+B^{2}}\right)_{i j} \simeq i B_{i j}^{-1}
$$

Noncommutativity effectively accounts for the interactions with the background B field.

Correlation functions for NC theory \simeq Corr. fx's for B field background [Schomerus (99)] [Seiberg+Witten(99)]

$$
H=d B=0 \rightarrow \text { Associativity }
$$

$$
(f g) h=f(g h)
$$

For $H=d B \neq 0$:

ASSOCIATIVE or NON-ASSOCIATIVE?

Correlation functions [Cornalba+Shiappa(01)] \rightarrow (indices omitted)

$$
(f \bullet g) \bullet h-f \bullet(g \bullet h)=\frac{1}{6} B^{-1} B^{-1} B^{-1} H(\partial f)(\partial g)(\partial h)+\cdots
$$

open string quantization: [Ho+Yeh(00)]

$$
[X, X]=i B^{-1}+\frac{1}{3} B^{-1} B^{-1} B^{-1} H P+\cdots
$$

\Rightarrow associative algebra [Ho(01)]

The algebra of X and P is mixed,
like the quantized spacetime of Yang (47).

How to define gauge transformations? [Ho(01)]

Non-Commutative Spacetime
In the neighborhood of N D-branes, quantize a probing D-brane \Rightarrow [Ho(00)]

$$
\left[X_{i}, X_{j}\right]=i L_{i j}
$$

same as Yang (47) for $3+1$ dim.

For $A d S_{2} \times S^{2},[\mathbf{H o}+\boldsymbol{L i}(\mathbf{0 0})]$
Noncommutativity \rightarrow uncertainty relation \rightarrow Bekenstein-Hawking entropy for charged black hole.

NC \rightarrow UNCERTAINTY \rightarrow NONLOCALITY

Fluctuations of background field
[Chu $+\mathrm{Ho}+\mathrm{Kao}(99)]$
\rightarrow Uncertainty principle of string theory [Yoneya(97), Li+Yoneya(98)]

$$
\Delta x \Delta t \geq 1 / T_{s}
$$

\rightarrow Nonlocality
a salient feature of string theory

Perturbation theory of higher derivative or nonlocal theories

[Yang + Feldman:

The S-Matrix in the Heisenberg Representation, Phys. Rev. 79, 972 (50)]
applied to string field theory [Cheng $+\mathrm{Ho}+\mathrm{Yeh}(01,02)$]

Nonlocality \sim limit of higher derivatives

Higher derivatives \rightarrow more degrees of freedom

Nonlocality $\rightarrow \infty$ degrees of freedom

String $\simeq \infty$ particles

String \simeq Nonlocal particle ?

Reparametrization symmetry of (nonlocal) particle worldline \simeq Conformal symmetry of string worldsheet [Ho(02)]
particle worldline Lagrangian

$$
L=L\left(x, \dot{x}, \ddot{x}, \cdots, x^{(n)}\right)
$$

$n=1:$
Phase space: x and its conjugate variable Reparametrization:

$$
\delta x=\epsilon \dot{x}
$$

is generated by the Hamiltonian

$$
[H, x]=i \dot{x}
$$

$n=2$:
Phase space: x, \dot{x} and their conj. var.s
Reparametrization: (in addition to the one above)

$$
\delta \dot{x}=(\epsilon \dot{x})^{\cdot}=\epsilon \ddot{x}+\dot{\epsilon} \dot{x}
$$

H only generates the term for ϵ.
New generator needed for $\dot{\epsilon}$.

Theories with higher order time derivatives: Phase space is larger.
Repara. has more independent parameters:

$$
\epsilon, \dot{\epsilon}, \ddot{\epsilon}, \cdots
$$

\rightarrow More symmetry generators.

$$
\begin{aligned}
& L= \\
& e\left[A^{(0)}(x)+A_{\mu}^{(1)}(x) D x^{\mu}\right. \\
& +A_{\mu}^{(01)}(x) D^{2} x^{\mu}+A_{\mu \nu}^{(20)}(x) D x^{\mu} D x^{\nu} \\
& +A_{\mu}^{(001)} D^{3} x^{\mu}+A_{\mu \nu}^{(110)} D^{2} x^{\mu} D x^{\nu}+A_{\mu \nu \lambda}^{(300)} D x^{\mu} D x^{\nu} D x^{\lambda} \\
& +\cdots] \\
& \qquad D=\frac{1}{e} \frac{d}{d \tau}=\text { covar. derivative }
\end{aligned}
$$

nonlocal particle \simeq
open string with spacetime metric $g_{\mu \nu} \rightarrow 0$

If analogous to String Field Theory,

Conformal Symmetry \rightarrow
theory of the background fields $A^{(\cdot)}(x)$

String Theory \simeq

 theory of all theories of particlesNONCOMMUTATIVITY

NONASSOCIATIVITY?

