NONCOMMUTATIVITY NONASSOCIATIVITY AND NONLOCALITY IN STRING THEORY

Pei-Ming Ho

Department of Physics National Taiwan University

Nov. 11, 2002

Talk given at the symposium in celebration of Prof. C. N. Yang's 80th birthday. String theory is a promising candidate for quantum gravity (and everything else).

String $\simeq \infty$ particles

Nature of Space-Time

String Theory \rightarrow 9+1 dimensions.

Geometry \leftrightarrow Physics

Euclidean Geometry

(Newtonian Physics)

Riemannian Geometry

 \downarrow

(General Relativity – Gravity)

Non-Commutative Geometry

(Quantum Gravity, String Theory)

Quantum Spacetime:

[Yang: On Quantized Spacetime, Phys. Rev. <u>72</u> (47) 874]

D*p*-brane \simeq *p*-dim. subspace on which open strings end

Physics on N coincident **D**-branes \simeq SU(N) **Yang-Mills theory**

B field background: [Chu+Ho(98)]

 $S = S_0 + \int B$

B = 2-form gauge field

Nonlocality:

$$\Delta X_1 = B_{12} P_2$$
$$\Rightarrow [X_1, X_2] \sim [\Delta X_1, X_2] = i B_{12}$$

$\underline{\text{Dipole}} \rightarrow \underline{\text{Nonlocal}} \rightarrow \underline{\text{NC}}$

Quantization of open string [Chu+Ho(98,99)]

$$\Rightarrow [X_i, X_j] = \left(\frac{B}{1+B^2}\right)_{ij} \simeq iB_{ij}^{-1}$$

Noncommutativity effectively accounts for the interactions with the background B field.

Correlation functions for NC theory \simeq Corr. fx's for *B* field background [Schomerus (99)] [Seiberg+Witten(99)]

 $H = dB = 0 \rightarrow Associativity$

(fg)h=f(gh)

For $H = dB \neq 0$: <u>ASSOCIATIVE or NON-ASSOCIATIVE?</u>

Correlation functions [Cornalba+Shiappa(01)] \rightarrow (indices omitted)

$$(f \bullet g) \bullet h - f \bullet (g \bullet h) = \frac{1}{6} B^{-1} B^{-1} B^{-1} H(\partial f)(\partial g)(\partial h) + \cdots$$

open string quantization: [Ho+Yeh(00)]

$$[X, X] = iB^{-1} + \frac{1}{3}B^{-1}B^{-1}B^{-1}HP + \cdots$$

 \Rightarrow associative algebra [Ho(01)]

The algebra of X and P is mixed, like the quantized spacetime of Yang (47).

How to define gauge transformations? [Ho(01)]

Non-Commutative Spacetime

In the neighborhood of N D-branes, quantize a probing D-brane \Rightarrow

[Ho(00)]

 $[X_i, X_j] = iL_{ij}$

same as Yang (47) for 3+1 dim.

For $AdS_2 \times S^2$, [Ho+Li(00)]Noncommutativity \rightarrow uncertainty relation \rightarrow Bekenstein-Hawking entropy for charged black hole.

$NC \rightarrow UNCERTAINTY \rightarrow NONLOCALITY$

Fluctuations of background field [Chu+Ho+Kao(99)] \rightarrow Uncertainty principle of string theory [Yoneya(97), Li+Yoneya(98)]

$$\Delta x \Delta t \ge 1/T_s$$

 \rightarrow Nonlocality

a salient feature of string theory

Perturbation theory of higher derivative or nonlocal theories

[Yang + Feldman: The S-Matrix in the Heisenberg Representation, Phys. Rev. <u>79</u>, 972 (50)]

applied to string field theory [Cheng+Ho+Yeh(01,02)]

Nonlocality \sim limit of higher derivatives

Higher derivatives \rightarrow more degrees of freedom

Nonlocality $\rightarrow \infty$ degrees of freedom

 $String \simeq \infty \ particles$

.

String \simeq Nonlocal particle ?

Reparametrization symmetry of (nonlocal) particle worldline \simeq Conformal symmetry of string worldsheet [Ho(02)] particle worldline Lagrangian

$$L = L(x, \dot{x}, \ddot{x}, \cdots, x^{(n)})$$

n = 1:

Phase space: x and its conjugate variable Reparametrization:

$$\delta x = \epsilon \dot{x}$$

is generated by the Hamiltonian

$$[H, x] = i\dot{x}$$

n = 2:

Phase space: x, \dot{x} and their conj. var.s Reparametrization: (in addition to the one above)

$$\delta \dot{x} = (\epsilon \dot{x})^{\cdot} = \epsilon \ddot{x} + \dot{\epsilon} \dot{x}$$

H only generates the term for ϵ . New generator needed for $\dot{\epsilon}$.

Theories with higher order time derivatives: Phase space is larger.

Repara. has more independent parameters:

$$\epsilon, \dot{\epsilon}, \ddot{\epsilon}, \cdots$$

 \rightarrow More symmetry generators.

$$\begin{split} L &= \\ e \left[A^{(0)}(x) + A^{(1)}_{\mu}(x) D x^{\mu} \right. \\ &+ A^{(01)}_{\mu}(x) D^2 x^{\mu} + A^{(20)}_{\mu\nu}(x) D x^{\mu} D x^{\nu} \right. \\ &+ A^{(001)}_{\mu} D^3 x^{\mu} + A^{(110)}_{\mu\nu} D^2 x^{\mu} D x^{\nu} + A^{(300)}_{\mu\nu\lambda} D x^{\mu} D x^{\nu} D x^{\lambda} \\ &+ \cdots \right], \end{split}$$

$$D = \frac{1}{e} \frac{d}{d\tau} =$$
covar. derivative

nonlocal particle \simeq open string with spacetime metric $g_{\mu\nu} \rightarrow 0$

If analogous to String Field Theory, Conformal Symmetry \rightarrow theory of the background fields $A^{(\cdot)}(x)$

 $\frac{\text{String Theory} \simeq}{\text{theory of all theories of particles}}$

NONASSOCIATIVITY?