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This semester we will discuss about PDE and other stuffs which were not

covered by Applied Math I, II or III. This may include some Lie algebra and

differential geometry.

The textbook is Mathews and Walker: Mathematical Methods of Physics,

to be abbreviated as M&W below. This note is provided as a supplement, not

a substitute, to the textbook.

Another standard textbook is Arfken and Weber: Mathematical Methods

for Physicists, 6th ed. (Elsevier Academic Press), to be abbreviated as A&W

below. You are encouraged to consult materials in there.

A good textbook on Differential Geometry which you can study by yourself

is: Schutz: Geometrical Methods of Mathematical Physics, to be abbreviated

as S below.

But it is not necessary to buy the latter two books. We will also provide

links to notes on the course webpage:

http://homepage.ntu.edu.tw/ pmho/ApplMath4/Syllabus.htm

We will use Einstein’s summation convention in this note.
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Chapter 1

Special Functions

1.1 Introduction

Some functions are special and arise naturally in elementary problems. Here

are a few possible reasons how some functions are “special”.

• It arises as part of the eigenfxs of the Laplace op.
More generally, variations

of this eq., say,

(∇2 − V (~r))φ + λφ = 0
for certain V ’s and

curved spaces that are

important for physi-

cists/mathematicians,

can also lead to study of

special functions.

∇2φ+ λφ = 0. (1.1)

The Laplace op. in flat space ∇2 =
∑

i ∂
2
i appears in almost every

elementary problem in physics (wave eq, diffusion eq, Schrödinger eq.,

etc.)

In Cartesian coordinates, ei
~k·~x is special. (And hence sin, cos are special.)

In spherical coordinates, Legendre polynormials are special.

• It has a geometrical meaning.
We will not expect any-

one to memorize or to be

able to derive all the equa-

tions listed below. The

purpose of listing all these

equations is to give you an

idea about what kind of

identities exist for a typ-

ical special function. In

the future, when you need

to use these properties of

a certain special function,

you will not panic and

know what kind of tools

you may have to solve the

problem at hand.

• It has some interesting algebraic properties.

• They form a complete basis for a certain space of functions.

1.2 Legendre Polynomials

Orthogonality: ∫ 1

−1

dxPm(x)Pn(x) =
2

2n+ 1
δmn. (1.2)

Examples:

Boundary condition:

Pn(1) = 1 ∀n.

P0 = 1 (1.3)

P1 = x (1.4)

P2 =
1

2
(3x2 − 1) (1.5)

P3 =
1

2
(5x3 − 3x) (1.6)
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General formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (1.7)

Generating function:

g(t, x) =
∞∑
n=0

Pn(x)tn =
1√

1− 2xt+ t2
. (1.8)

Recurrence relations:

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (1.9)

(1− x2)P ′n(x) = −nxPn(x) + nPn−1(x). (1.10)

Differential equation:

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (1.11)

1.3 Hermite Polynomials

Orthogonality:
∫ ∞
−∞

dxe−x
2

Hm(x)Hn(x) = 2nn!
√
πδmn. (1.12)

Examples:
The coefficient of the xn

term in Hn is 2n.H0 = 1 (1.13)

H1 = 2x (1.14)

H2 = 4x2 − 2 (1.15)

H3 = 8x3 − 12x (1.16)

Symmetry:

Hn(−x) = (−1)nHn(x). (1.17)

General formula:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

. (1.18)

Generating function:

e2xt−t2 =
∞∑
n=0

tn

n!
Hn(x). (1.19)

Recurrence relations:

Hn+1 = 2xHn − 2nHn−1 (1.20)

H ′n(x) = 2nHn−1(x) (1.21)

Differential equation:

y′′ − 2xy′ + 2ny = 0. (1.22)
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1.4 Laguerre Polynomial

Orthogonality: ∫ ∞
0

dxe−xLm(x)Ln(x) = δmn. (1.23)

Example:
Boundary condition:

Ln(0) = 1 ∀n.L0 = 1 (1.24)

L1 = 1− x (1.25)

L2 = 1− 2x+
1

2
x2 (1.26)

L3 = 1− 3x+
3

2
x2 − 1

6
x3 (1.27)

General formula:

Ln =
ex

n!

dn

dxn
(
xne−x

)
. (1.28)

Generating function:

g(x, z) =
∞∑
n=0

znLn =
e−

xz
1−z

1− z . (1.29)

Recurrence relations:

(n+ 1)Ln+1 = (2n+ 1− x)Ln − nLn−1, (1.30)

xL′n(x) = nLn(x)− nLn−1(x), (1.31)

Differential equation:

xy′′ + (1− x)y′ + ny = 0. (1.32)

1.5 Bessel Functions

General formula:

Jm(x) =
∞∑

`=0

(−1)`x2`+m

22`+m`!(m+ `)!
. (1.33)

Normalization:
∫ ∞

0

dx Jn(x) = 1.
Generating function:

From this we have

eix cos θ =
∞∑

n=−∞
ineinθJn(x).

ex(t−1/t)/2 =
∞∑

n=−∞
tnJn(x). (1.34)

Recurrance relation:

d

dx
(xmJm(x)) = xmJm−1(x). (1.35)

Differential equation:

x2y′′ + xy′ + (x2 −m2)y = 0. (1.36)
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Other identities:

J−m(x) = (−1)mJm(x), (1.37)

Jm(x) → (x/2)m

Γ(m+ 1)
, x→ 0, (1.38)

Jn(x+ y) =
∞∑

m=−∞
Jm(x)Jn−m(y), (1.39)

Jn(x) =
1

π

∫ π

0

dθ cos(x sin θ − nθ), (1.40)

Jm(x) →
√

2

πx
cos
(
x− mπ

2
− π

4

)
, x→∞. (1.41)

More identities:

∑∞
m=−∞ Jm(x) = 1, (1.42)

∫ 1

0
dx x Jk(zkmx)Jk(zknx) = 1

2
J2
k+1(zkm)δmn, (1.43)

∫∞
0
dr r Jm(kr)Jm(k′r) = 1

k
δ(k − k′), (1.44)

where zkm = m-th zero of Jk(x).

The defintion of Bessel function Jn can be extended to the case when the

index is real Jν , ν ∈ R.

These functions Jν(x) are sometimes called Bessel functions of the first

kind. There are also Bessel functions of the second kind Yν(x), which are also

called Neumann functions Nν(x). They can be defined by

Nν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
.

This is ill-defined for ν = integer. In that case we take the limit ν → n. Nν(x)

is the other independent solution of the same differential equation (1.36) with

m→ ν. Hankel functions are just a change of basis

H(1)
ν (x) = Jν(x) + iNν(x), H(2)

ν (x) = Jν(x)− iNν(x). (1.45)

The description above allows the argument x of the Bessel function Jν(x) to

be complex. When it is purely imaginary, we get the modified Bessel functions

Iν(x) = i−νJν(ix), Kν(x) =
π

2
iν+1H(1)(ix). (1.46)

They satisfy the differential equation

x2y′′ + xy′ − (x2 + ν2)y = 0. (1.47)

1.6 Other Special Functions

In this section we briefly introduce gamma function Γ(x), beta functionB(x, y),

and hypergeometric functions.
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1.6.1 Gamma Function and Beta Function

The gamma function can be defined as

Γ(x) =

∫ ∞
0

dt tx−1e−t. (1.48)

Using integration by parts, one can show from this that

Γ(x) = (x− 1)Γ(x− 1). (1.49)

For an integer n, Γ(n) = (n− 1)!.

Another useful property is

Γ(x)Γ(−x) = − π

x sin(πx)
. (1.50)

Beta function is defined by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (1.51)

1.6.2 Hypergeometric Function

Differential equation:

x(1− x)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0. (1.52)

A regular solution is

2F1(a, b; c;x) = 1 +
ab

1!c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 + . . . . (1.53)

Another independent solution is

x1−c
2F1(a+ 1− c, b+ 1− c; 2− c;x). (1.54)

Properties:

d
dx2F1(a, b; c;x) = ab

c 2F1(a+ 1, b+ 1; c+ 1;x), (1.55)

2F1(a, b; c;x) = Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
dt t

b−1(1−t)c−b−1

(1−tx)a
. (1.56)

The generalized hypergeometric functions are

pFq

[
a1, a2, · · · , ap
b1, b2, · · · , bq

;x

]
=
∞∑

k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
, (1.57)

where

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1)(a+ 2) · · · (a+ k − 1). (1.58)
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1.7 Exercises:

1. Expand the function

f(x) =

{
+1, 0 < x < 1

−1, −1 < x < 0.
(1.59)

as an infinite series of Legendre polynomials Pn(x).

2. Evaluate the sum
Hint: Use the generating

function.

∞∑
n=0

xn+1

n+ 1
Pn(x). (1.60)

3. Use the Grahamm-Schmidt orthogonalization to work out the first few

Hermite polynomials Hn(x) for n = 0, 1, 2, assuming that Hn(x) is a

polynomial of order n of the form Hn(x) = 2nxn + · · · . (The measure of

integral is e−x
2
.)

4. (Fourier-Bessel transform)

Using (1.44), we define the Fourier-Bessel transform (or Hankel trans-

form)

f(r) =

∫ ∞
0

dk k Jn(kr)F (k), F (k) =

∫ ∞
0

dr r Jn(kr)f(r). (1.61)

Find F (k) for f(r) = e−ar/r.
Hint: Use the generating

function.
5. (Spherical Bessel function)

Try to solve the following differential equation

x2y′′ + 2xy′ + (x2 − n(n+ 1))y = 0 (1.62)

by using the ansatz y = xαJν(x) and y = xαYν(x). Show that the result

is

jn(x) =

√
π

2x
Jn+1/2(x), yn(x) =

√
π

2x
Yn+1/2(x). (1.63)

6. What linear homogeneous second-order differential equation has

xαJ±n(βxγ) (1.64)

as solutions? Give the general solution of

y′′ + x2y = 0. (1.65)

7. Find an approximate expression for the Gamma function Γ(−x) for large

positive x.
Use Stirling’s formula and

(1.50).
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Chapter 2

PDE

Read A&W: Sec.9.1 PDE:

introduction pp. 535-537.We will mostly be concerned with 2nd order linear partial differential equa-

tions. They are of the form:

Dφ = ρ, (2.1)

where D is a differential operator, such as the Laplacian ∇2, and ρ is a given

function, usually referred to as the “source”. The goal is usually to find φ for

given ρ. Typically there are infinitely solutions, because any solution of the
In Electrostatics, φ can

be the electric potential

and ρ the charge density.

There are various unique-

ness theorems correspond-

ing to different ways of

specifying boundary con-

ditions for the solution to

be unique.

homogeneous equation

Dϕ = 0 (2.2)

can be used to generate new solutions of (2.1) by

φ→ φ+ cϕ (2.3)

for any constant c. One has to specify suitable boundary conditions in order

to single out a unique solution.

Another type of PDE we will be interested in is the eigenvalue problem

(D − λ)φ = 0, (2.4)

where λ is a number to be found together with the function φ. The goal is

to find the solution pair (λ, φ). Usually we want to find all possible (λ, φ)

pairs. Again the boundary condition has to be specified first. In principle, the

operator D is not well defined until you specify the class of functions for it to

acts on.

We will see that these two types of problems (2.1), (2.4) are connected

through the notion of Green’s function.

2.1 Review

2.1.1 Orthogonal Functions

The space of functions is a linear space. It is convenient to choose
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eigenfunctions (w. certain BC’s) for the operator D that appears in your PDE

as the basis of this linear space.

Using separation of variables (Sec. 2.4), we can often reduce the linear

space V appearing in a PDE problem to a tensor product of linear spaces

of one-variable functions. That is, V = V1 ⊗ V2 ⊗ · · · , or f(x1, x2, · · · ) =∑
i f

(i)
1 (x1)f

(i)
2 (x2) · · · . Thus we will focus on ordinary diff. op’s. in this

section, although most of the principles can be generalized to partial diff.

op’s.

2.1.2 Sturm-Liouville Differential Operator

For ODE’s, or PDE’s after separation of variables, we are often dealing with

Sturm-Liouville differential operators (so we hope)

D =
1

µ(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
, (2.5)

where µ(x) is the weight function. The inner product should be defined as

〈f |g〉 =

∫
dxµ(x)f ∗(x)g(x). (2.6)

The boundary condition should be chosen such that D is Hermitian.

2.1.3 Completeness of Eigenfunctions

Recall that the complete set of eigenvectors of a Hermitian matrixM constitute

a basis of the linear space on which M acts. Recall also that one can always

choose this basis to be orthonormal. Eigenvectors with different eigenvalues

are automatically orthogonal:

〈vi|M |vj〉 = λi〈vi|vj〉 = λj〈vi|vj〉 ⇒ 〈vi|vj〉 ∝ δij. (2.7)

Eigenvectors with the same eigenvalues (degeneracy) can be chosen to be or-

thogonal to each other by the method of Gram and Schmidt.

Eigenvectors φn of a Sturm-Liouville operator constitute a complete basis

of the linear space of fxs V (on which D is self-adjoint), assuming suitable

choice of p(x), q(x), µ(x) as well as BC’s. (We don’t need to consider eigenfx’s

which do not belong to V .) It is complete in the sense that any well behaved

(piecewise continuous function with a finite number of finite discontinuities)

F can be approximated to arbitrary accuracy by a series
∑

n anφn. That is,

lim
m→∞

∫ x1

x0

dxµ(x)

(
F (x)−

m∑
n=0

anφn(x)

)2

= 0. (2.8)

For an orthonormal basis φn, i.e., 〈φm|φn〉 = δmn, the coefficients an are

an = 〈φn|F 〉 ≡
∫
dxµ(x)φ∗n(x)F (x). (2.9)
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2.1.4 Exercises:

1. Construct a complete, orthonormal basis for the 2 dim. unit sphere by

combining the associated Legendre polynormials Pm
` (θ) as a basis for the

θ-dependence, and eimφ as a basis for the φ-dependence. The resulting

functions {Y m
` (θ, φ)} are called spherical harmonics.

2. The PDE
The eigenvalue problem of

an op. D is to look for

solutions φ(x) of the eq.

(D − λ)φ(x) = 0 for any

λ ∈ R or C. The set of

values of λ is called the

spectrum.

(
P (x)

d2

dx2
+Q(x)

d

dx
+R(x)− λS(x)

)
φ(x) = 0

can be viewed as an eigenvalue problem for a Sturm-Liouville op. D.

What are the fx’s µ(x), p(x), q(x) defining D?

2.1.5 Homework Assignment

1. A&W: Exercise (10.2.3).

2. A&W: Exercise (10.2.8). (Liouville substitution)

3. A&W: Exercise (10.3.5). (Gram-Schmidt)

4. The exercise 1. in Sec. 2.1.1.

5. Construct a complete basis for the space of fx’s Va on the interval [0, π]

with the BC f + af ′ = 0 at both ends for a given number a ∈ R, as

eigenfx’s of the diff. op. d2

dx2 .

2.2 Linear Algebra

The first thing to note about a diff. eq. of the form

Dφ = ρ (2.10)

is that this equation is formally the same as an equation in linear algebra, with

D = matrix (linear map), and |φ〉 and |ρ〉 being vectors.

We will use |·〉 to represent elements in a vector space V and 〈·| elements

in the dual space V∗. So we rewrite (2.10) as

D|φ〉 = |ρ〉. (2.11)

The space of functions is a linear space. If |f1〉, |f2〉 ∈ V , their superposition

(a|f1〉+ b|f2〉) ∈ V .

The differential operator D acts on a function to give another function,

and its action is linear:

D(a|f1〉+ b|f2〉) = aD|f1〉+ bD|f2〉. (2.12)
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Thus D is a linear map acting on the linear space of functions. This is the

most salient feature of linear PDE’s, and we will see that it is useful to view

it as a problem in linear algebra.
Feynman: The same

equations have the same

solutions.

lattice:

Putting the problem on a lattice, the diff. op. becomes a difference oper-

ator. |φ〉 and |ρ〉 become columns with finite number of elements. One can

imagine that the original problem is the continuum limit of this problem of

linear algebra.

The linear space of functions on a lattice has the natural basis in which each

basis vector |en〉 is the function which is 1 at the n-th point and 0 everywhere

else. A function can be expanded in this basis as |f〉 = |en〉fn, where fn is the

value of the function at the n-th point. (The continuum limit of fn is f(x).)

We have the following correspondence:

n↔ x, fn ↔ f(x),
∑

n ↔
∫
dx, δmn ↔ δ(x− x′), (2.13)

|f〉 = fn|n〉 ↔ f(x) =
∫
dx′f(x′)δ(x− x′), (2.14)

〈f |g〉 =
∑

n f
∗
ngn ↔

∫
dxf(x)∗g(x), (2.15)

|f〉〈g| = fmg
∗
n|m〉〈n|, fmg

∗
n ↔ f(x)g(x′)∗. (2.16)

change of basis

One can also choose a different basis for the linear space V related to the

previous basis by a linear mapM : |en〉 = |Ea〉Man. In the new basis, a function

is |f〉 = |Ea〉Fa, with Fa = Manfn In the continuum limit, it is (n→ x, a→ k)

F (k) =

∫
dx u(k, x)f(x). (2.17)

This is the Fourier transform if u(k, x) ∝ exp(ikx). Thus, functions do not

have to be represented as f(x) (in terms of the basis δ(x−x′)). They are vectors

in a linear space and how they look depends on which basis you choose. (The

linear space is infinite dimensional; we will worry about convergence later.)

eigenfunctions
Sec.10.1 Self-Adjoint

ODEs pp. 622-634.Understanding that a diff. eq. is a problem in linear algebra, we can

apply techniques in linear algebra. If D is Hermitian, it is associated with a D is Hermitian if D† = D.

See below.
convenient basis of the linear space V , i.e., its eigenvectors.

D|en〉 = λn|en〉. (2.18)

V∗ is the dual space of V
if there is a nondegenerate

bilinear map 〈α|β〉 ∈ C
∀|α〉 ∈ V, 〈β| ∈ V∗.
If V is equipped with

a (positive-definite) norm

|| |α〉 || 2, V is the dual of

itelf.

By 〈en| we denote the

element in V∗ which

satisfies 〈em|en〉 = δmn.

More generally, by 〈α|
we mean 〈en|α∗n if

|α〉 = αn|en〉, so that

〈α|β〉 = α∗nβn.

The number of eigenvectors equals the dimension of the linear space V . We

can always choose the eigenvectors to satisfy

〈em|en〉 = δmn, (2.19)

and then we have the identity

|en〉〈en| = I, (2.20)
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where I is the identity operator.

M = |em〉Mmn〈en| repre-

sents the matrix with ele-

ments Mmn.

One can think of |en〉 as

the basis of columns, and

〈en| as the basis of rows.

The Hermitian conjugate

M† of an operator M

is defined by 〈α|M |β〉 =
〈M†α|β〉.

Green’s fx.

For problems involving the op. D, it is convenient to represent fx’s in the

basis |ea〉 of eigenfx’s

|ρ〉 = |en〉ρn, ρn = 〈en|ρ〉. (2.21)

The solution to the diff. eq. is then

|φ〉 = |en〉φn, φn = λ−1
n ρn. (2.22)

(Underlined indices are not summed over.) That is

|φ〉 = D−1|ρ〉 = G|ρ〉, (2.23)

where G is called the Green’s function or propagator

G =
|en〉〈en|
λn

. (2.24)

Apparently, if D is Hermitian, G is also Hermitian. If G is also a real fx.

G(x1, x2) ∈ R, it will be symmetric G(x1, x2) = G(x2, x1). (See a more explicit

proof on Arfken and Weber: Symmetry of Green’s function on p. 595, p.

596.)

2.3 Boundary Condition

Read A&W: Sec.9.1 PDE:

Classes of PDEs and Char-

acteristics, Boundary Con-

ditions pp. 538-543.

Usually V is a restricted class of functions for certain physical reasons. For

example, if φ represents the electric potential inside a conducting shell, φ

should vanish on the boundary, and should be finite everywhere except at

places where the charge density ρ diverges.

Terminology:

Dirichlet boundary condition: φ given on the boundary.

Neumann boundary condition: ∂nφ given on the boundary.

Cauchy boundary condition: both φ and ∂nφ given on the boundary.

In general, we can also have boundary conditions which specify the value

of aφ+ b∂nφ.

inner product

The inner product of V and its dual V∗ is usually of the form

〈f |g〉
∫
dxµ(x)f(x)∗g(x), (2.25)

where µ is usually a function (the measure or weight fx) although in principle

it can be a differential operator.
Example: i ddx is a self-

adjoint operator on V if

V is restricted to functions

with suitable BC such that

f∗g|x1
x0

= 0, where x0

and x1 are boundaries of

the interval on which func-

tions in V are defined.
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The adjoint (Hermitian conjugate) of an operator is defined by

〈f |Dg〉 = 〈D†f |g〉, (2.26)

that is ∫
dxµf ∗(x)Dg(x) =

∫
dxµ(D†f)∗g(x). (2.27)

The derivation of the adjoint involves integration by parts and thus there is

usually a boundary term involved. For an operator to be self-adjoint (Her-

mitian), i.e., D† = D, the boundary term has to be taken care of by suitable

boundary conditions and choice of measure µ.

2.3.1 Uniqueness and Existence

Sometimes suitable choice of boundary conditions leads to a unique solution for

the diff. eq. (2.10). This is often guaranteed by physical laws and well-defined

physical setup. For example, x(0) and ẋ(0) uniquely determines x(t > 0) via

the evolution eq. ẍ = −V ′(x).

To discuss this topic, we classify PDE’s into 3 classes: elliptic, parabolic,

and hyperbolic. A diff. op.

D = a
∂2

∂x2
+ 2b

∂2

∂x∂y
+ c

∂2

∂y2
+ d

∂

∂x
+ e

∂

∂y
+ f (2.28)

is elliptic, parabolic or hyperbolic depending on whether b2 − ac is < 0,= 0

or > 0. By change of variables, we can change a, b and c. But the sign of the

determinant is invariant.

This classification can be roughly understood when trying to solve the diff.
If a, b, c are fx’s of x, y,

here we consider an infin-

itesimal region of x, y in

which a, b, c are roughly

constant.

eq.

Df =

(
a
∂2

∂x2
+ 2b

∂2

∂x∂y
+ c

∂2

∂y2

)
f = 0 (2.29)

by using the ansatz

f(x, y) = F (αx+ y). (2.30)

For this ansatz to satisfy (2.29), we need

aα2 + 2bα + c = 0. (2.31)

For the hyperbolic case, this eq. has two sol’s α+, α−, and the general sol.

to (2.29) is

f = F+(α+x+ y) + F−(α−x+ y). (2.32)

For the parabolic case, there is only one sol. α0. We can try another ansatz

f(x, y) = g(x, t)F (α0x+ y) (2.33)

and find the general sol. of the diff. eq.

f = F0(α0x+ y) + g(x, t)F1(α0x+ y), (2.34)
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where g(x, t) is any linear combination of x and y.

The elliptic case admits no solution for this ansatz.

elliptic

The prototype of an elliptic diff. op. is

D = − ∂2

∂x2
i

. (2.35)

(The minus sign is a convention.)

Suppose D is of the form D =
∑

i d
†
idi. If there are two solutions to (2.10),

This expression is always

positive definite if the in-

ner product is positive def-

inite. The inner product

is positive definite if the

norm of a vector |v〉, i.e.

〈v|v〉, is zero only if |v〉 =
0.

we have D|f〉 = 0 for the difference f of the two solutions. Then

0 = 〈f |Df〉 = 〈dif |dif〉 = ||di|f〉|| 2. (2.36)

If the inner product is positive definite, this is possible only if di|f〉 = 0 ∀i.
Together with the boundary condition, which is f = 0 for Dirichlet boundary

condition and f ′ = 0 for Neumann boundary condition, this may lead to the

conclusion that f = 0. (Recall the proof of uniqueness for electric potential

with equipotential boundary conditions.)

parabolic

The standard form of a parabolic diff. op. is

D = − ∂2

∂x2
+
∂

dt
. (2.37)

This op. appears in diffusion eqs.

hyperbolic

The standard form of a hyperbolic diff. op. is

D =
∂2

∂t2
− ∂2

∂x2
=

(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
. (2.38)

For the uniqueness problem, we should study the homogeneous diff. eq. for

the difference of two sol’s. The most general solution to the wave eq. Df = 0

is

f = f+(x+ t) + f−(x− t). (2.39)

The notion of causality in special relativity is helpful for you to decide whether

a boundary condition is suitable or not.

characteristics

If a, b, c are not constant, we can still define two vectors (dt, dx) at each

point (t, x), called characteristics, according to

a

(
dt

dx

)2

+ 2b
dt

dx
+ c = 0. (2.40)

These are the directions that information propagates. Causality is defined by

integrating these vectors into curves.
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For a region in 2D space, consider a segment of boundary given by (x(s), y(s)),

where the parameter s is chosen such that 1 =
(
dx
ds

)2
+
(
dy
ds

)2
. Now we try to

understand how much information we can get from the Cauchy BC on the

boundary. Given f on the boundary, we can get

df

ds
=
dx

ds

∂f

∂x
+
dy

ds

∂f

∂y
. (2.41)

In addition, the normal derivative of f is also given in the Cauchy BC:

∂nf =
dx

ds

∂f

∂y
− dy

ds

∂f

∂x
. (2.42)

From the two eqs above, one can determine the 1st derivatives ∂f
∂x

and ∂f
∂y

, in

terms of the given functions df
ds

and ∂nf . The next step is to check whether

we can also (uniquely) determine the 2nd derivatives on the boundary using

the PDE (2.29). If yes, this BC is suitable for this 2nd order PDE. The eqs at

hand are

a∂2
xf + 2b∂x∂yf + c∂2

yf = some function of(x, y, ∂xf, ∂yf), (2.43)

dx

ds
∂2
xf +

dy

ds
∂x∂yf =

d

ds
∂xf, (2.44)

dx

ds
∂x∂yf +

dy

ds
∂2
yf =

d

ds
∂yf. (2.45)

These linear relations have a unique sol. only if the coeffients on the LHS form

a matrix with nonzero determinant. The determinant is

a

(
dy

ds

)2

− 2b
dx

ds

dy

ds
+ c

(
dx

ds

)2

. (2.46)

If the determinant vanishes, the BC is not suitable. This happens when the

tangent of the boundary satisfies

dy

dx
=
b±√b2 − ac

a
. (2.47)

Note that this is the same as the direction of propagation in the hyperbolic

case.

2.3.2 Comment on BC

Let us make a digression here. In the Lagrangian formulation, a physical

system is defined by an action

S =

∫
dtL, (2.48)

where L is the Lagrangian. The equation of motion, called the Euler-Lagrange

equation in this context, is the condition that extremizes the action. This is

the principle of least action.
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For a nonrelativistic particle,

L = K − V =
1

2
mẋ2 − V (x). (2.49)

For the wave equation
(
∂2

∂t2
− ∂2

∂x2

)
φ(t, x) = 0, (2.50)

the suitable Lagrangian is

L =

∫
dxL =

1

2

(
φ̇2 − φ′2

)
. (2.51)

To derive the Euler-Lagrange eq., we variate the action

δS =

∫
dtdx

(
δφ̇φ̇− δφ′φ′

)
=

∫
dtdxδφ(−φ̈+ φ′′)−

∫
dt [δφφ′]x1

x0
, (2.52)

where x0 and x1 are the boundary coordinates. This not only gives the wave

eq., but also a clue about the BC. The least action principle demands that your

choice of BC must guarantee that the boundary term vanishes. For example:

Dirichlet BC, Neumann BC, and periodic BC are all acceptable here. Different

choices of BC correspond to different physical settings.
BC’s change the spectrum

of eigenvalues of D.

For example, imposing a

periodic BC on R is the

same as replacing R by

S1. The spectrum of ∂2
x

is changed from R to Z.

For spaces without boundary, e.g. a sphere or a torus, the BC is replaced

by the requirement that the field is finite and continuous everywhere on the

space. (We will still call them BC’s.) When we choose the coordinate system

in such a way that the topology of space is not manifest (e.g. polar coordinates

for R2), we also need to impose suitable BC’s to ensure the continuity.

2.3.3 Exercises:

1. Derive the Laplacian for flat space in spherical coordinates.

2. Derive the Laplacian for the metric ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2).

This is the metric for a spatially flat FRW universe.

2.4 Separation of Variables

Fourier transform naturally arises from the wave eq. in flat spacetime with

Cartesian coordinates. The Laplace operator is

∇2 = ∂2
i . (2.53)

This is probably the simplest example of separation of variables. The 3D flat
Read A&W: Sec.9.3 Sep-

aration of Variables pp.

554-560.

Read A&W: Sec.9.8 Heat

Flow, or Diffusion, PDE

pp. 611-618

See M&W for more exam-

ples. (attached)

space is viewed as a product space R3 = R×R×R. The space of functions on

R3 is then A⊗A⊗A, where A is the space of functions on R. Eigenfunctions

on A⊗3 is then eikxxeikyyeikzz = eik·x. What we learned in Sec.2.2 leads to the
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use of Fourier transform. Similarly, separation of variables applied to spherical

coordinates and cylindrical coordinates leads to different bases of functions on

flat space.

The most important technique in deriving the basis of eigenfunctions is the

separation of variables. Separation of variables helps us to reduce a PDE to

ODE’s.

If an isometry is realized as the translation of a coordinate (e.g. x, y, z in

Catesian coordinates, φ, z in cylindrical coordinates and φ in spherical coor-

dinates), the eigenfunctions derived by separation of variables are labelled by

an additive quantum number corresponding to an operator that generates the

translation.

2.4.1 Comments

Why Separation of Variables Work

An arbitrary function of n variables can always be written in the form

f(x1, · · · , xn) =
∑
i

f
(i)
1 (x1) · · · f (i)

n (xn). (2.54)

As an example, any function that admits a Taylor expansion is of this form

f(x1, · · · , xn) =
∑

m1,··· ,mn
fm1···mnx

m1
1 · · ·xmnn . (2.55)

This is merely a special case of (2.54).

Now if we choose a complete basis {φ(a)
αa (xa)} for each variable xa (a =

1, · · · , n), so that each element f
(i)
a (xa) in (2.54) can be expanded in that

basis, the expansion (2.54) is of the form

f(x1, · · · , xn) =
∑

α1,··· ,αn
fα1···αnφ

(1)
α1

(x1) · · ·φ(n)
αn (xn). (2.56)

The trick of separation of variable is to find an ordinary differential operator

for each variable appearing in the partial diff. op. D. Then we use the eigenfx’s

for each ordinary diff. op’s as a basis of fx’s of that variable. In the above we

tried to convince you that we are not missing anything after putting all the

bases of all variables together.

In short, if Va is the space of fx’s for the space Ma, the space of fx’s on

the space M1 ×M2 × · · · ×Mn is V1 ⊗ V2 ⊗ · · · ⊗ Vn.

Even when the space M under investigation is not a product space, sep-

aration of variables can still be applied, although one has to properly define

Va’s by choosing suitable BC’s.
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How to Choose the Variables for Separation of Variables?

In the above we considered the Laplace op. ∇2 in flat space in both Cartesian

coordinates and spherical coordinates. (The use of Cylindrical coordinates can

be found in the textbook.) Why do we need to do separation of variables in

different variables? Is not one complete basis of fx’s enough?

The main reason is the BC. A BC specified on a sphere ar r = R, or a

BC like “f goes to zero at infinity”, which means f
r→∞→ 0, suggests the use of

spherical coordinates. On the other hand, a periodic BC over a box x ∈ [0, Lx],

y ∈ [0, Ly], z ∈ [0, Lz], for example, suggests that the Cartesian coordinates

will be better.

A secondary reason is the symmetry. It is convenient to use different co-

ordinate systems for problems with different symmetries. (This is a general

statement beyond PDE’s.) The bases of fx’s found via separation of variables

in different coordinate systems behave differently under symmetry transfor-

mations of the space. The basis of fx’s for the Cartesian coord’s changes in a

simply way under translation

x→ x+ a, φk(x) = eik·x → eik·aφk(x). (2.57)

The spherical harmonics transform in a simple way under rotations

φ→ φ+ a, Y m
` (θ, φ)→ Y m

` (θ, φ+ a) = eimaY m
` (θ, φ). (2.58)

More generally, under a generic rotation, the spherical harmonics transform

as

(θ, φ)→ (θ′, φ′), Y m
` (θ, φ)→ Y m

` (θ′, φ′) = Mm
n Y

n
` (θ, φ), (2.59)

without mixing harmonics with different `.

Any complete basis of fx’s provides a linear representation of any symmetry

of the underlying space. Generically a symmetry transformation mixes all

states together. But in some bases certain symmetry transformations are

realized in relatively simple ways.

Comment on Laplace Op.

The above can be extended to curved backgrounds. In Riemannian geometry,

the crucial object that defines the Riemannian structure of a space is the

metric

ds2 = gij(x)dxidxj. (2.60)

This gives the definition of distance between to infinitesimally separated points

(x) and (x+ dx). Finite distance can be defined by integration
∫
ds.

For the flat background, gij(x) = δij in Cartesian coordinates. But we can

choose any other coordinate system (e.g. spherical or cylindrical coordinate
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systems). Using the chain rule dxi = dxi(y) = dya ∂x
i

∂ya
, we can express the

metric in terms of a new coordinate system y as

ds2 = g′abdy
adyb, g′ab = gij

∂xi

∂ya
∂xj

∂yb
. (2.61)

Since physics should not depend on the coordinate system we choose, the

proper generalization of the Kinetic term for a particle is

K =
1

2
mẋ2

i ⇒ K =
1

2
mgijẋ

iẋj. (2.62)

For a wave, it is

L =
1

2
∂µφ∂

µφ⇒ L =
1

2

√−ggµν∂µφ∂νφ. (2.63)

From here one can derive the Laplacian that will appear in the wave eq.

∇2 =
1√
g
∂µ
√
ggµν∂ν . (2.64)

Comment on Helmholtz Eq.

The wave eq. in 4 Dimensional Minkowski space is

φ̈−∇2φ = 0. (2.65)

Via Fourier transform w.r.t. t, we only need to consider sol’s of the form

φ = eiωtφω(x, y, z). (2.66)

Then the wave eq. turns into the Helmholtz eq. (With suitable BC, the 3D

Laplacian is positive definite. Otherwise ω might be complex, signaling an

instability.)

Separation of variables allows you to imagine that PDE of the form

∇2φ+ k2φ = 0 (2.67)

arises from the PDE

∇′2φ = 0 (2.68)

in a higher dimension with

∇′2 = ∇2 +
∂2

∂t2
. (2.69)

For the ansatz

φ = e−atφ0(x), (2.70)

the diffusion eq.

∇2φ =
∂φ

∂t
(2.71)

is also of the same form.
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2.4.2 Exercises:

1. For f(x, y) = X(x)Y (y), derive the ODE’s that X(x) and Y (y) should

satisfy in order for f(x, y) to satisfy the PDE

Df = λf, D =
1

a2(x)
(∂2
x + ∂2

y). (2.72)

2. Find the most general fx. f(r, θ, φ) satisfying the following conditions in

terms of the complete basis of 3D space in spherical coordinates:

• r ∈ [0,∞), limr→∞ f(r, θ, φ) = 0.

• r ∈ [a, b], f(a, θ, φ) = A(θ, φ), f(b, θ, φ) = B(θ, φ) for given fx.’s A

and B.

• r ∈ [0,∞), φ ∈ [0, π], f(r, θ, 0) = f(r, θ, π) = 0.

3. Find the most general fx. f(ρ, φ, z) in cylindrical coordinates for f de-

fined on ρ ∈ [a, b], with the BC f(a, φ, z) = F0(φ, z) and f(b, φ, z) =

F1(φ, z), where F0 and F1 are given fx’s.

4. A long hollow conductor has a rectangular cross section with sides a

and 2a. One side of length 2a is charged to a potential V0. The other

3 sides are grounded V = 0. Find the electric potential V (x, y) for

x ∈ [−a, a], y ∈ [−a/2, a/2].

5. The temperature of a homogeneous sphere of radius a obeys the diffusion

eq. ∇2T = Ṫ . (Ṫ = ∂tT .) By external means, the surface temperature

of the sphere is given by T (t, r = a) = T0 sin(ωt). Find the temperature

inside the sphere T (t, r).

2.4.3 Homework Assignment

1. The exercise 1. in Sec. 2.3.3.

2. A&W: Exercise (9.3.4).

3. A&W: Exercise (9.3.5).

4. A&W: Exercise (9.3.6).

5. A&W: Exercise (9.3.8).
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Chapter 3

Green’s Function

Read A&W: Sec.10.5

Green’s Function-

Eigenfunction Expansion

pp. 662-674.

Read A&W: Sec.9.7 Non-

homogeneous Equation-

Green’s Function pp.

592-610.

Green’s function was formally discussed in Sec.2.2. It satisfies the PDE

Dirac δ fx is defined

(as a distribution) by∫
dx′δ(x − x′)f(x′) =

f(x) for any well-behaved

fx f .

DG(x, x′) =
1

µ(x)
δ(x, x′), (3.1)

so that the PDE Dφ(x) = ρ(x) for given ρ can be solved by

φ(x) =

∫
dx′µ(x′)G(x, x′)ρ(x′). (3.2)

In Sec. 2.2 we have a general sol. for Green’s fx. (2.24)

G =
|φn〉〈φn|
λn

. (3.3)

Here we repeat the derivation in more explicit notations.

First, we use the eigenfx’s of D as the basis of fx’s. We have

Dφn(x) = λnφn(x). (3.4)

Gram and Schmidt told us that we can choose φn’s to be an orthonormal basis

satisfying

〈φm|φn〉 ≡
∫
ddxµ(x)φ∗m(x)φn(x) = δmn. (3.5)

For 3D flat space (d = 3),
∫
d3xµ(x) =

∫
dxdydz =

∫
drdθdφr2 sin θ, etc.

As a basis, we can expand the x dependence of G in φn(x) as
We can also do this for the

x′-dependence of gn(x′)

gn(x′) =
∑
m

gnmφm(x′),

(3.6)
so that

G(x, x′) =
∑
mn

gmnφm(x)φn(x′).

(3.7)
But we will not need to do

this for this derivation of

G.

G(x, x′) =
∑
n

gn(x′)φn(x). (3.8)

Similarly we can expand Dirac’s delta fx. as

1

µ(x)
δ(x, x′) =

∑
n

An(x′)φn(x). (3.9)

Now we multiply this eq. by φ∗m(x) and integrate
∫
dxµ(x). We get

φ∗m(x′) = Am(x′). (3.10)
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Hence we have rederived eq. (2.20)

1

µ(x)
δ(x, x′) =

∑
n

φn(x)φ∗n(x′). (3.11)

Now we should determine gn(x′) from the PDE (3.1), which gives

DG(x, x′) =
∑
n

gn(x′)λnφn(x) =
1

µ(x)
δ(x, x′) =

∑
n

φn(x)φ∗n(x′). (3.12)

It is now obvious that gn(x′) = φ∗n(x′)/λn, and so
This general expression of

the Green’s fx. depends

on the choice of BC’s since

the eigenfx’s φn do.

G(x, x′) =
∑
n

φn(x)φ∗n(x′)
λn

. (3.13)

Often this infinite sum can be greatly simplified to a more compact expression.

3.0.4 Green’s Function for Electrostatic Potential

The physical meaning: Green’s fx = the field of a unit point source.

A well known example of Green’s fx is

G(x, x′) =
1

4π|x− x′| , (3.14)

which appears in electrostatics for the electric potential. The PDE ∇2φ(x) =

−ρ(x) is solved by φ(x) =
∫
dx′G(x, x′)ρ(x′).

The Green’s fx (3.14) assumes that the BC is G(r)
r→∞→ 0. The method of

images can be used to find the Green’s fx with some other BC’s.

As we learned from Sec. 2.2, this Green’s fx can also be expressed in terms

of a basis of functions:

1

4π|x− x′| =
∞∑

`=0

∑̀

m=−`

1

2`+ 1

r`<
r`+1
>

Y m
` (θ1, φ1)Y m

`
∗(θ2, φ2)

=
1

4π

∞∑

`=0

r`<
r`+1
>

P`(cos γ) (3.15)

=
∞∑

m=−∞

∫ ∞
0

dk

2π2
Im(kρ<)Km(kρ>)eim(φ1−φ2) cos(k(z1 − z2)).

Here Y m
` are spherical harmonics properly normalized so that

δ(cos θ − cos θ′)δ(φ− φ′) =
∞∑

`=0

∑̀

m=−`
Y m
` (θ, φ)Y m

`
∗(θ′, φ′). (3.16)

(Y m
` (θ, φ) is proportional to the product of associated Legendre polynomial

Pm
` and eimφ.) A more compact expression is often preferred over the sum of

an infinite basis.

Due to the translation and rotation symmetry, the Green’s fx (3.14) is

particularly easy to find. Now we show by examples how to compute Green’s

function in other situations In addition to the expansion of Green’s function

in terms of a basis of eigenfunctions,
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3.0.5 String

As an example, we consider the wave eq. for a string
This discussion can be

found in M&W pp. 269-

271.
d2u

dx2
+ k2u = ρ(x), u(0) = u(L) = 0. (3.17)

The goal is to find the Green’s function G for this problem (so that u =
∫
Gρ).

First approach

Find normalized eigenfx’s

un =

√
2

L
sin
(nπx
L

)
. (3.18)

According to (2.24), the Green’s fx is

G(x, x′) =
2

L

∞∑
n=1

sin(nπx/L) sin(nπx′/L)

k2 − (nπ/L)2
. (3.19)

Second approach

For x 6= x′, we have
d2G

dx2
+ k2G = 0. (3.20)

The boundary condition for G implies that

G(x, x′) =

{
a sin(kx) (x < x′)

b sin(k(x− L)) (x > x′)
(3.21)

Integrating the diff. eq. from x′ − ε to x′ + ε, we get

dG

dx

∣∣∣∣
x′+ε

x′−ε
= 1. (3.22)

Integrating again gives

G|x′+εx′−ε = 0. (3.23)

These two conditions (that the first derivative of G jumps by 1 at x = x′ and
For 2nd order diff. op’s,

the Green’s fx. G(x, x′)
is continuous at x = x′,
while its first derivative is

discontinuous. If G(x, x′)
is discontinuous at x =
x′, its first derivative in-

cludes a δ-fx., and its sec-

ond derivative includes δ′.

G is continuous) fix the values of a and b

a =
sin(k(x′ − L))

k sin(kL)
, b =

sin(kx′)
k sin(kL)

. (3.24)

A concise expression of the final answer is

G(x, x′) =
−1

k sin(kL)
sin(kx<) sin(k(L− x>)), (3.25)

where x< and x> represent the smaller and larger value of (x, x′).
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3.0.6 Membrane

What we did for the string can be extended to the membrane. Consider a
See M&W pp. 271-275.

circular drum

∇2u+ k2u = f, u = 0 when r = R. (3.26)

The Green’s fx. satisfies

∇2G+ k2G = δ(2)(x− x′). (3.27)

For x 6= x′, one can solve G by separation of variables

G =

{ ∑
mAmJm(kr) cos(mθ), (r < r′)∑
mBm(Jm(kr)Ym(kR)− Ym(kr)Jm(kR)) cos(mθ). (r > r′).

(3.28)

Here we used the BC that G(r = R, r′) = 0 for r > r′, and that G(r = 0, r′)

should be finite for r < r′. The coordinate θ is by definition the angle between

x and x′. There is no sin(mθ) terms in G because G should be an even fx. of

θ.

Similar to the previous case, we integrate the PDE over an infinitesimal

region ∫
∇2Gd2x =

∮
(∇nG)d` = 1. (3.29)

The contour of integration should be chosen such that ∇n = ∂r except negli-

gable part of the contour. Then we find

∫
dθr′

∂G

∂r

∣∣∣∣
r′+ε

r′−ε
= 1, (3.30)

which implies that

∆
∂G

∂r
=

1

r
δ(θ). (3.31)

From this discontinuity condition and the continuity of G at r = r′, one can

solve Am and Bm

Am =
Jm(kR)Ym(kr′)− Jm(kr′)Ym(kR)

2εmJm(kR)
, Bm = − Jm(kr′)

2εmJm(kR)
, (3.32)

where εm = 2 if m = 0 and εm = 1 if m > 0.

3.0.7 Comment on Green’s Function

The idea of Green’s function can also be applied to sources on the boundary,

i.e., inhomogeneous BC’s. On the other hand, homogeneous PDE with in-

homogeneous BC can be turned into inhomogeneous PDE with homogeneous

BC. (Of course the question is whether this change of variable φ → φ + φ0

really helps you solve the problem.)
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Green’s function can be used to convert a PDE into an integral eq. For

example, the Schrödinger equation

− ~2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x) (3.33)

can be rewritten as the integral eq.

ψ(x) = ψ0(x) +

∫
dyG(x, y)V (y)ψ(y), (3.34)

where G(x, y) is the Green’s fx for the op. −( ~
2

2m
∇2 + E), and ψ0, which is

analogous to the constant of integration, satisfies

−
(
~2

2m
∇2 + E

)
ψ0 = 0. (3.35)

For a weak background potential V (y), an approx. sol. of ψ for an incoming

plane wave (scattering of a plane wave by a weak potential) can be derived by

iteration. The 0-th order approx. ψ0 should be chosen to satisfy (3.35). The

1st order correction is then

ψ1(x) =

∫
dyG(x, y)V (y)ψ0(y). (3.36)

ψ ' ψ0 + ψ1 is called the Born approximation. A perturbation theory can be

constructed by further iterations.

In the above we have focused on elliptic diff. op’s. In wave eq’s we have

hyperbolic diff. op’s. Discussions on their Green’s fx’s will be different because

of the difference in how we specify their BC’s. We will discuss them later, after

we are more familiar with the Fourier transform.

3.0.8 Exercises:

1. Find the Green’s fx. satisfying
Hint for Ex.1: Use rota-

tion and translation sym-

metry. In d dim’s ∇2 =
1

rd−1 ∂rr
d−1∂r + · · · .

∇2G(x, x′) = δ(x, x′) (3.37)

for d dimensional space. Find also the Green’s fx. satisfying

(∇2 −m2)G(x, x′) = δ(x, x′) (3.38)

for constant m ∈ R.

2. Find the Green’s fx. for D = d
dx

defined for x ∈ R with the BC

limx→−∞ φ(x) = 0.

3. Find the Green’s fx. for D = d2

dx2 defined for x ∈ [0, 1] with the BC

φ(0) = φ(1) = 0. What would you do if the BC is φ(0) = a, φ(1) = b

for a, b 6= 0? (We are imaging that we are solving an eq. of the form

Dφ = ρ.) Can you find the Green’s fx. for the periodic BC?
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4. Find the general form of the Green’s fx. for the Sturm-Liouville op. D =
1

µ(x)
d
dx
p(x) d

dx
. (DG(x, x′) = 1

µ
δ(x, x′).) Assume that φ0(x) and φ1(x) are

solutions to Dφ = 0 and the BC at the two boundaries, respectively.

5. Solve the PDE for x ∈ [0,∞) (` > 0)

(
d2

dx2
+

2

x

d

dx
− `(`+ 1)

x2

)
G(x, x′) = δ(x− x′), x′ > 0, (3.39)

with the BC G(0, x′) = G(∞, x′) = 0.
Hint for Ex.6: Expand

the dependence on y by

a complete basis. Use

symmetries to argue that

G can depend on x only

through |x− x′|.

6. For (x ∈ (−∞,∞), y ∈ [0, 1]), find the Green’s fx. for D = ∂2
x + ∂2

y and

the Dirichlet BC that it vanishes on the boundaries at y = 0, 1.

Hint for Ex.7: use method

of images.

7. For the 3D space (x ∈ R, y ∈ R, z ∈ [0, 1]) with periodic boundary

condition at z = 0, 1, find the Green’s fx. for the Laplace op. ∇2 =

∂2
x + ∂2

y + ∂2
z .

3.0.9 Homework Assignment

1. A&W: Exercise (9.7.3).

2. A&W: Exercise (9.7.9).

3. A&W: Exercises (10.1.12), (10.1.13).

4. A&W: Exercise (10.5.2).

5. A&W: Exercise (10.5.8).

3.1 The Use of Complex Analysis

Advanced reading:

M&W: Sec.8-5 Wiener-

Hopf Method pp.

245-253.

Analytic continuation is a powerful technique often used in solving PDE’s.

There are many ways it can be used and it takes experience to use it well.

Whenever possible, you may keep in mind the possibility of promoting real

variables in your problem to complex variables.

Here we should insert the proof of Liouville theorem using Green’s fx.?
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Chapter 4

Perturbation Theory

Perturbation theory is very important in physics. A large portion of problems

are solved using perturbative appraoches because an exact solution is usually

(almost) impossible to find. This is also why (over-)simplified problems are

important – more practical problems may be viewed as their perturbations.

When the quantities in a problem are naturally ordered by powers of a

scale, perturbation theory can be used to obtain approximate results. If there

is a parameter ε << 1, we can expand a quantity as

φ = φ0 + εφ1 + ε2φ2 + ε3φ3 + · · · , O(φn) = 1. (4.1)

Or we can write, using a different definition of variables,

φ = φ0 + φ1 + φ2 + φ3 + · · · , O(φn) = εn. (4.2)

4.1 Elementary Example

Consider the following elementary problem. For given matrix M and colume

ρ, we can solve the linear eq.

Mφ = ρ (4.3)

as

φ = M−1ρ. (4.4)

Now suppose we also need to solve another linear eq.

(M + δM)φ = ρ, (4.5)

where δM is another matrix whose elements are much smaller (What this

means needs further clarification).
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4.2 Formal Expansion

The solution is

φ = (M + δM)−1ρ

=
[
(1 + δMM−1)M

]−1
ρ

= M−1
[
1− δMM−1 + δMM−1δMM−1 − · · · ] ρ. (4.6)

Check that for a matrix A,

(1−A)−1 =
∞∑
n=0

An

in the sense that formally

multiplying (1−A) to the

RHS gives 1 (from both

left and right). (Here 1 is

the unit matrix.) Another

way to look at this iden-

tity is to diagonalize A =
U−1DU , if this is possi-

ble, so that (1 − A)−1 =
U−1(1−D)−1U , where D

is diagonal and (1−D)−1

is easily defined. From

this you can also see that

the inverse breaks down if

one of the eigenvalues of

A is 1.

The first term is the original solution (4.4). The next term is smaller than

the first term, and so on. Naturally, if we denote the n-th term by φn−1, and

rewrite (4.6) as

φ = φ0 + φ1 + φ2 + · · · (4.7)

Each term is smaller than the previous terms. The more terms we include, the

better the approximation is.

4.3 2nd Approach

Expecting that the result of φ can be organized according to the power of δM

appearing in each term in the expansion (4.6), we can rederive the same result

in the following way. (This will be the prototype of deriving a perturbation

theory.) First we write down (4.7), and remember that φn is of order O(δMn).

Then we plug it into (4.5) and rearrange the eq. by collecting terms at the

same order

(Mφ0 − ρ) + (Mφ1 + δMφ0) + (Mφ2 + δMφ1) + · · · = 0. (4.8)

To the lowest order approximation, that is, the eq. (4.5) is satisfied up

to O(δM) ((M + δM)φ = ρ + O(δM)), we just need the first term above

(Mφ0−ρ) = 0 (because all the rest are of order O(δM)) and find φ0 = M−1ρ.

To the next leading order, we want (4.5) to be satisfied up to O(δM2), and

so we need in addition Mφ1 + δMφ0 = 0, which implies

φ1 = −M−1δMφ0 = −M−1δMM−1ρ. (4.9)

If we repeat the same argument, we reproduce all the terms in (4.6).

4.4 3rd Approach: Iteration

Another way to derive the same result is to rewrite the linear eq. (4.5) as
The reasons why this ex-

pression is good for iter-

ation are (1) Only φ ap-

pears on the LHS. (2) φ

only appears as a sublead-

ing term on the RHS.

φ = M−1(ρ− δMφ). (4.10)
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This can be used for iteration. For the lowest order approximation, for small

δM , we ignore the 2nd term on the RHS, and

φ = M−1ρ. (4.11)

Then we plug this back in the RHS of (4.10) and find

φ = M−1(ρ− δMM−1ρ). (4.12)

Iteration leads to the same result (4.6).

4.5 Perturbation for PDE

Consider the application of perturbation theory to PDE. Consider a differential

eq. of the form

D0φ(x) = ρ(x). (4.13)

Suppose that the solution of this eq. is known to be φ0(x). Perturbation
Example: D0 = − d

dx , ρ =
δ(x − x0). Assume the

BC: φ(−∞) = 0.

φ0 = Θ(x− x0).

theory will be useful if we want to consider a deformation of the diff. eq.

Dφ ≡ (D0 + εD1)φ = ρ. (4.14)

To get corrections due to D1, we plug (4.1) into (4.14), and find that the 0th
Consider the case D1 =
f(x) for a function f(x)
which is “small” in some

sense.

order eq. is already satisfied. At the first order of ε, the diff. eq. implies

D0φ1(x) +D1φ0(x) = 0, (4.15)

which can probably also be solved because φ0 is now given (so the 2nd term
d
dxφ1(x) = −f(x)Θ(x)
implies φ1(x) =
−Θ(x)

∫ x
0
dx′f(x′).

is known), and this equation is of the same form as (4.13) (which was assumed

to be an easier problem).

At the next order,

D0φ2(x) +D1φ1(x) = 0. (4.16)

φ2(x) =
−Θ(x)

∫ x
0
dx′f(x′)φ1(x′) =

Θ(x)
∫ x

0
dx′
∫ x′

0
dx′′f(x′′).

Apparently we can repeat this to higher orders of ε.

4.6 Questions:

1. What is the expression for φn(x) for generic n? (You can assume that

G0(x, x′) is known.)

2. What is the expansion of the Green’s fx of D? (You can assume that

G0(x, x′) is known.)
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4.7 Example

When we say something

is “small” or “ big”

we are always compar-

ing it with something

else. (Only pure num-

bers without units can

be “small” or “ big”

without further justifica-

tion.) Ususally the deriva-

tion of perturbation the-

ory will tell you necessary

assumptions correspond-

ing to what you meant

by “small” or “big”, while

a good physical intuition

will also help.

The Schrödinger equation

− ~2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x) (4.17)

can be solved approximately by perturbation theory if V (x) = V0(x) + V1(x)

where V1(x) is very “small” and V0(x) is a “familiar” potential, such as a

constant or the potential for SHO.

If the operator
[
− ~2

2m
∇2ψ(x) + V0(x)

]
has a discrete spectrum, please refer

to Sec. 4.8. It this op. has a continuous spectrum, we can ask the question:

For given E, how is ψ(x) changed when V (x) is slightly deformed from V0(x)

to V0(x) + V1(x)?

4.8 Perturbation for Eigenvalue Problems

Suppose that the eigenvalue problem

D0φ = λφ (4.18)

can be solved and a complete basis of eigenfunctions {φ(0)
n } and their eigen-

values {λ(0)
n } are known. Now if we want to solve the eigenvalue problem for

another operator

D ' D0 + εD1, (4.19)

we can use the perturbation theory. The idea is the same. Plugging

φ = φ(0)
n + εφ(1)

n + · · · , λ = λ(0)
n + ελ(1)

n + · · · (4.20)

into

(D0 + εD1)φ = λφ, (4.21)

we find

D0φ
(0)
n = λ

(0)
n φ

(0)
n , (4.22)

D0φ
(1)
n = −D1φ

(0)
n + λ

(0)
n φ

(1)
n + λ

(1)
n φ

(0)
n , (4.23)

...

The 1st eq. is trivial because that is just how we have defined φ
(0)
n and λ

(0)
n .

The 2nd eq. is nontrivial, but since we already have a complete basis {φ(0)
n },

we can expand φ
(1)
n in the basis

φ(1)
n =

∑

m6=n
anmφ

(0)
m . (4.24)

Note that we have skipped φ
(0)
n in the sum, because that term should be

combined with the 0-th order term. (We have not yet tried to normalized φn.)
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The standard thing to do now is to take the inner product of (4.23) with

an eigenfunction φ
(0)
k . If we take the inner product with φ

(0)
n , (4.23) gives

0 = −〈φ(0)
n |D1|φ(0)

n 〉+ 0 + λ(1)
n 〈φ(0)

n |φ(0)
n 〉. (4.25)

which gives the first order correction to the eigenvalue

λ(1)
n =

〈φ(0)
n |D1|φ(0)

n 〉
〈φ(0)

n |φ(0)
n 〉

. (4.26)

The 2nd order correction

to the eigenvalue is

λ(2)
n =

∑

m6=n

QmnQnm

λ
(0)
n − λ(0)

m

,

(4.27)
where Qnm =
〈φ(0)
n |D1|φ(0)

m 〉, as-

suming that φ
(0)
m ’s are

normalized.

If we take the inner product with φ
(0)
m for m 6= n, (4.23) gives

anm =
〈φ(0)

m |D1|φ(0)
n 〉

λ
(0)
n − λ(0)

m

, (4.28)

where we assume that φ
(0)
m is normalized.

Therefore, the 1st order eq. (4.23) gives the 1st order correction to both

the eigenvalue and eigenvector. One can continue the same kind of analysis to

higher orders of ε.

4.9 Question

What are the 2nd order corrections to the eigenvalue and eigenfunction?

4.10 Perturbation for Nonlinear PDE

Consider the nonlinear PDE

(∇2 + k2)φ(x) + gφ2(x) = ρ(x). (4.29)

If g = 0, this eq. is linear and solvable for standard BC’s. For small g, we can

solve this eq. perturbatively.

Let

φ = φ0 + φ1 + · · · . (4.30)

To the lowest order, the eq. is linear

(∇2 + k2)φ0(x) = ρ(x). (4.31)

The 1st order correction of the eq. is

(∇2 + k2)φ1(x) = −gφ2
0(x). (4.32)

This can be easily solved if the Green’s function of (∇2 + k2) is known for the

given BC.

You can try to find the 2nd order corrections yourself.
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4.11 WKB

The Schrödinger eq.
(
− ~

2

2m
∇2 + V (x)

)
ψ(t, x) = i~∂tψ(t, x) (4.33)

should agree with classical mechanics when ~ → 0. The WKB (Wentzel,

Kramers and Brillouin) method, or semiclassical approximation, is the pertur-

bation theory corresponding to the expansion of ~.

~ is (comparatively) small if the phenomenon is not too different from what

is described by classical mechanics. ~ is the parameter of quantum correction.

We can write the wave function in the form

ψ(t, x) = A(t, x)eiθ(t,x), (4.34)

where A and θ are both real. The first crucial question to ask is: what are

the orders of A and θ? In other words, what are m and n in A = O(~m)

and θ = O(~n)? This is important because A and θ will both appear in the

Schrödinger eq., and to divide the Schrödinger eq. into eqs at different orders,

we need to know at least the relative order of magnitude between A and θ

(m− n).

Physically, A gives the density ρ = |A|2, so it should be of order 1 (m = 0).

What is the classical interpretation of θ? For the simplest case V = 0, θ =
i
~(p · x − Et), where p · x − Et is the action. So we propose that θ = O(~−1)

(n = −1). It is thus natural to rename θ as S/~ and

ψ(t, x) = A(t, x)eiS(t,x)/~. (4.35)

We can expand A and S as

A = A0 + ~A1 + ~2A2 + · · · , S = S0 + ~S1 + ~2S2 + · · · . (4.36)

4.11.1 Equations and Solutions

Plugging these into the Schrödinger eq., we get

− ~
2

2m

(
∇2A+

2i

~
∇A · ∇S − 1

~2
A(∇S)2 +

i

~
A∇2S

)
+V A = i~

(
∂tA+

i

~
A∂tS

)
.

(4.37)

At the 0th order, we find

1

2m
(∇S)2 + V + ∂tS = 0, (4.38)

assuming that A 6= 0. (Solution of this eq. should be denoted S0.) For a state
For 1D, its solution is

S = W (x)− Et,

where W (x) =
± ∫ x dx′

√
2m(E − V (x′)).

with given energy, the solution is of the form

S = W (x)− Et. (4.39)
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At the 1st order, the Schrödinger eq. gives

1

2m

(
2∇A · ∇S + A∇2S

)
+ ∂tA = 0. (4.40)

MultiplyingA to it and denoting ρ = A2, this can be rewritten as the continuity

eq.
1

m
∇ · (ρ∇S) + ∂tρ = 0. (4.41)

For a stationary state, ρ is

time-independent, so

ρ∇W = constant.

In 1D, we find

A =
constant

|E − V (x)|1/4

4.11.2 Patching Solutions

Consider the 1 dimensional case in more detail. In this case, A blows up when

E = V (x), and WKB breaks down. In the neighborhood of the point x0 where

E = V (x0), we can use the approximation

V (x) ' E +
dV

dx
(x0)(x− x0), (4.42)

and then ψ can be solved from the Schrödinger equation without using WKB.

For a generic problem where E = V (x) holds for a number of points, we

divide the space into several regions. In each region, we can either use WKB,

or we can use the approx. (4.42). For each region, the solution of the wave fx.

is not totally fixed until the BC’s are given, and the BC’s should be chosen to

impose the continuity of the wave fx.

Another way to deal with the problem at E = V (x0) is to analytically

continuate x into the complex plane and circumvent the point x0.

4.11.3 Question

What is the solution of the Schrödinger eq.
It is a Bessel fx. of order

±1/3.
− ~2

2m

d2

dx2
ψ(x) +

dV

dx
(x0)(x− x0)ψ(x) = 0, (4.43)

which is valid in the neighborhood of x = x0. (E = V (x0).)

4.12 WKB in general

Forgetting QM, what we did for WKB for 1 dimensional problems was that

we started with a diff. eq. of the form

d2y

dx2
+ f(x)y = 0. (4.44)

Then the solution of y for constant f suggests the substitution

y = eiφ(x). (4.45)
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The diff. eq. becomes

− (φ′(x))2 + iφ′′ + f = 0. (4.46)

Now if we assume that φ′′ is small, this eq. has the approximate solutions

φ′ = ±
√
f ⇒ φ(x) = ±

∫ x

dx′
√
f(x′). (4.47)

This approximation is good if

|φ′′(x)| ' 1

2

∣∣∣∣
f ′√
f

∣∣∣∣ << |f |. (4.48)

While
√
f is roughly the inverse of wavelength, this condition means that the

change of f in one wavelength is much smaller than |f |.
By iteration, we find from (4.46) the next order correction

(φ′)2 = iφ′′ + f ' ± i
2

f ′√
f

+ f, (4.49)

which implies that

φ′ ' ±
√
f +

i

4

f ′

f
. (4.50)

Thus
Note that this is an ex-

ample of the cases where

1st order corrections are

not less important than

the 0th order term.

φ(x) ∼ ±
∫ x

dx′
√
f(x′) +

i

4
log f, (4.51)

and so

y(x) ' 1

f 1/4(x)

(
c+e

i
R x√f(x′)dx′ + c−e−i

R x√f(x′)dx′
)
. (4.52)

4.13 Homework Assignment

1. Find the the solution φ to the linear eq.

Mφ = ρ (4.53)

where

M =

(
1 ε

−ε −1

)
, ρ =

(
1

0

)
(4.54)

up to terms of order O(ε2).

2. (a) Find the Green’s fx. defined by

(
d2

dx2
+m2

)
G(x, x′) = δ(x− x′). (4.55)

Use Fourier transform to compute, and let m → m + iε (ε > 0) to

fix the ambiguity.
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(b) Find the lowest order correction to the solution

φ(x) = eimx (4.56)

for the diff. eq.
(
d2

dx2
+m2 + α(Θ(x+ 1)−Θ(x− 1))

)
φ(x) = 0 (4.57)

for small α.

3. Find the lowest frequency of oscillation of a string of length L, tension

T , and mass per unit length ρ0 if a mass m is fastened to the string a

distance L/4 from one end. The wave eq. is

∂2y

∂x2
− ρ

T

∂2y

∂t2
= 0, (4.58)

where

ρ = ρ0 +mδ(x− L/4). (4.59)

The string is fixed at both ends (Dirichlet BC). Find the answer to the

1st order correction, and find the condition on m for this to be a good

approximation.

4. For ε << 1, let

M =

(
2 + ε 1− ε
1− ε 2 + 2ε

)
. (4.60)

(a) Find eigenvectors and eigenvalues at the 0th order.

(b) Find corrections at the 1st order and 2nd order.

(c) Find the exact result and compare.

5. Find λ, the lowest eigenvalue of the diff. eq.

∇2φ(r, θ) + λ(1 + αr2)φ(r, θ) = 0, (4.61)

defined for the disk r < R in polar coordinates, to first order for α << 1.

(The BC is φ(R, θ) = 0.)

4.14 Exercises

1. Find the lowest eigenvalue of the diff. eq.

φ′′(x) + aφ′(x) + k2φ(x) = 0, (4.62)

with the boundary condition

φ(0) = φ(1) = 0, (4.63)

for small a up to terms of order a3. (We want to keep terms of order a2.)
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2. In this section we have only showed the 1st order corrections explicitly.

Work out the general formula for 2nd order corrections.

3. Repeat what we did in Sec. 4.8 for the case when the eigenvalue problem

is deformed from

D0φ = λφ (4.64)

to

D0φ = λ(1 +D1)φ. (4.65)
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Chapter 5

Integral Equations

Read A&W Chapter 16 In-

tegral Equations.5.1 Introduction

Usually a differential equation comes with some BC’s in order to uniquely

fix the solution. One can “integrate” the diff. eq. to rewrite the eq. as an

integral eq. As integration introduces constants of integration, the BC’s are

automatically encoded into the integral eq. Sometimes this is a preferred form

of eq. to solve.

As an example, consider the scattering of a charged particle off a fixed

potential V (x). The Schrödinger eq. for the charge with energy E is

− ~2

2m
∇2ψ + V (x)ψ = Eφ(x). (5.1)

If the potential V (x) is weak, it is natural to rewrite the wave fx in the form

ψ(x) = ψ0(x) + ψ1(x), (5.2)

where ψ0(x) is the plan wave representing the incoming particle, and so it is

a solution of the eq. with V = 0. (That is, ψ0(x) is a plane wave with energy

E.) Note that here ψ1(x) is defined as ψ(x) − ψ0(x) without approximation,

rather than the 1st order correction to ψ.

Now the Schrödinger eq. can be written as

(
− ~

2

2m
∇2 − E

)
ψ1(x) = −V (x)(ψ0 + ψ1). (5.3)

This can be integrated (using the Green’s fx) to give

ψ1(x) = ρ(x)−
∫
dx′G(x, x′)V (x′)ψ1(x′), (5.4)

where ρ(x) is a given fx. defined by

ρ(x) ≡
∫
dx′G(x, x′)V (x′)φ0(x′). (5.5)
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The Schrödinger eq. (5.1) (together with the specification of the incoming

wave fx.) is thus equivalent to the integral eq. (5.4) of ψ1(x), which should

satisfy the BC that ψ1(x)→ 0 for x→ ±∞.

Sometimes the problem naturally appears as an integral eq. In those cases

one might want to “differentiate” the integral eq. to rewrite it as a diff. eq.

For example, the integral eq.

u(x) = x+

∫ x

0

dy xyu(y) (5.6)

can be turned into a diff. eq. easy to solve:

f ′(x) = x2(1 + f(x)), (5.7)

where f(x) is define by

f(x) =

∫ x

0

yu(y)dy (5.8)

and thus u(x) = f ′(x)/x.

Apart from rewriting the integral eq. as a diff. eq., the integral eq. can

also be solved perturbatively, or iteratively.

5.2 Neumann Series

The integral eq.

φ(x) = ρ(x) + λ

∫
dx′ K(x, x′)φ(x′), (5.9)

can be iterated to give the solution

φ(x) = ρ(x)+λ

∫
dx′ K(x, x′)ρ(x′)+λ2

∫ ∫
dx′ dx′′ K(x, x′′)K(x′′, x′)ρ(x′)+· · · .

(5.10)

The expansion makes some sense if K is small in some sense. This is called

the Neumann series.

If we apply the Neumann series to the example above (5.4), the lowest

order correction is called Born approximation.

Apparently, if K coincides with the Green’s fx for an op. D, the integral

eq. above is equivalent to a diff. eq.

(D − λ)φ(x) = Dρ(x) (5.11)

plus suitable BC.

5.3 Homework Assignment

1. Solve the integral eq.

f(x) = x+ λ

∫ 1

0

y(x+ y)f(y)dy (5.12)
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(a) by Neumann series (to all orders).
Hint: Let

A =
∫ 1

0

yf(y)dy,

B =
∫ 1

0

y2f(y)dy.

(b) by first proving that f(x) is of the form f(x) = ax + b for some

constants a, b, and then solving for a, b.

2. (a) Use the Neumann series to solve the integral eq.

φ(x) = 1− 2

∫ x

0

tφ(t)dt. (5.13)

(b) Solve the same eq. by first turning it into a differential eq.

5.4 Exercises

1. Solve for f(x)
Try Neumann series to all

orders.f(x) = ex + λ

∫ x

−∞
dyex+yf(y). (5.14)

2. Solve for f(x)

f(x) = ex + λ

∫ x

0

dyeyf(y). (5.15)

3. Find all eigenvalues λ for

f(x) = λ

∫ 1

0

dy(1 + xy)f(y). (5.16)
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Chapter 6

Calculus of Variations

Read A&W Chapter 17

Calculus of Variations.The calculus of variations is needed for the Lagrangian formulation of a phys-

ical system. Canonically, a physical system can be described in terms of the

Lagrangian formulation and/or the Hamiltonian formulation. For fundamental

physics, the Lagrangian formulation has the advantage of showing symmetries

of the theory more manifestly than the Hamiltonian formulation. While the

latter is more amenable to the operator formulation of QM, the former is more

readily used in the path integral formulation. Although most physical systems

admit both formulations, it is convenient to be familiar with both and use the

formulation more convenient for the problem at hand.

6.1 Euler-Lagrange Equation

To minimize the action S, or any quantity of the form
S[y] is called a functional.

It maps a function to a

number, i.e., it is a func-

tion of a function. In con-

strast, F (y(t)) ≡ y(t)2

is not a functional be-

cause it maps a func-

tion to a function, not

to a number. S[y] ≡∫
dty2(t)δ(t) = y(0)2 and

S[y] =
∫
dt(ẏ2 + y2) are

examples of functional.

S[y] =

∫ t1

t0

dtL(y, ẏ), (6.1)

we variate S with respect to y(t) and demand y(t) to be such that δS = 0

against infinitesimal variations of y(t). This is analogous to the problem of

minimizing a function f(xi). The function is minimized when ∂if = 0, or

equivalently when δf(xi) = 0 for generic infinitesimal δxi. We can imagine

that the functions y(xi) defined on the interval [t0, t1] can be approximated

for all practical purposes by a function on a lattice {t0, t0 + ∆, · · · , t1−∆, t1}.
(∆ = t1−t0

N
for large N .) We can label the values of y at the n-th point by yn

(yn = y(tn)). Then S is simply a function with N − 1 variables. (There are

N + 1 points on the lattice, but there should be two BC’s: δy0 = δyN+1 = 0.)

S is minimized at {yi = y
(0)
i } if ∂

∂yi
S[y(0)] = 0. This means that ∂S = 0 at

y = y(0), or more precisely

δS[y(0)] ≡ S[y(0) + δy]− S[y(0)] = 0 +O(δy2). (6.2)

In the limit N → ∞, δy = {δyi}N−1
i=1 corresponds to a generic infinitesimal

variation of the function y(t).
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To consider this variation of a fx., we generalized the Taylor expansion of

a function

f(x+ δx) = f(x) + δxi∂if(x) + · · · (6.3)

to

L(y + δy, ẏ +
d

dt
δy) = L(y, ẏ) + δy

∂L

∂y
+

(
d

dt
δy

)
∂L

∂ẏ
+ · · · . (6.4)

The variation of the action is then

δS[y] '
∫ t1

t0

dt

[
δy
∂L

∂y
+

(
d

dt
δy

)
∂L

∂ẏ

]

=

∫ t1

t0

dt

[
δy
∂L

∂y
+
d

dt

(
δy
∂L

∂ẏ

)
− δy d

dt

∂L

∂ẏ

]

=

[
δy
∂L

∂ẏ

]t1
t0

+

∫ t1

t0

dt

[
δy

(
∂L

∂y
− d

dt

∂L

∂ẏ

)]
. (6.5)

In order for S to be minimized at y = y0(t), we need δS[y0] = 0. This can be

satisfied only if both the first and the second terms vanish
[
δy
∂L

∂ẏ

]t1
t0

= 0,
∂L

∂y
− d

dt

∂L

∂ẏ
= 0. (6.6)

If S is an action and t is time, the 1st term vanishes because we always assume
For example, δy(t) =∑
n an sin(nπ t−t0

t1−t0 ), and

the variation of y(t) is the

same as varying an’s.

that δy(t0) = δy(t1) = 0 as part of the definition of the least action principle.

(It is also called the Hamilton’s principle.) In other cases, the problem should

specify the BC of y such that the first term vanishes. The 2nd eq. is called

the Euler-Lagrange equation.

Depending on the specific problem, there can be many advantages to use

the action to specify a physical system. The formulation starting with the

action is called the Lagrangian formulation. (The integrand L is called the
For more details about the

connection between the

two formulations and dis-

cussions about their valid-

ity, see my notes on QM3,

also available at the web-

page for Appl. Math. 4.

em Lagrangian.) The formulation starting with the Hamiltonian (how to de-

fine energy in terms of coordinates and momenta) is called the Hamiltonian

formulation.

6.1.1 Newtonian Mechanics

The action of a Newtonian particle with potential energy V (x) is

S =

∫
dtL, L =

1

2
mẋ2 − V (x). (6.7)

That is, Lagrangian equals the kinetic energy minus the potential energy.

Example: brachistochrone

“Brachistochrone” is

Greek for “shortest time”.
Let A and B be two points in a vertical plane, with A higher than B. Along

what curve connecting A and B will a particle slide (without friction) from A

(starting at rest) to B in the shortest time?
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we want to minimize

T =

∫
dt, (6.8)

where

dt =
ds

v
=

√
1 + y′2dx√

2gy
. (6.9)

Here ds =
√
dx2 + dy2 =

√
1 + y′2dx is the distance, and v =

√
2gy is the

velocity gained by reducing the potential energy. So we want to minimize

T =

∫ x0

0

dx

√
1 + y′2

2gy
. (6.10)

The Euler-Lagrange eq. derived from minimizing T can be solved and the

solution is

x = A(φ− sinφ), y = A(1− cosφ). (6.11)

6.1.2 Geodesic

In Riemannian geometry, a manifold can be equipped with the notion of dis-

tance by assigning the distance between two infinitesimally separated points

to be given by

ds2 = gij(x)dxidxj, (6.12)

where dxi is the coordinate difference of the two points. The tensor gij(x) is

called the “ metric”.

A change of coordinate will change how the metric looks, but the notion

of “distance” is independent of the choice of coordinate system.

For two given points A and B on the manifold with metric gij(x), the

geodesic (the shortest path) connecting them should minimize

S =

∫
ds =

∫ √
gij(x)dxidxj =

∫
dτ

√
gij
dxi

dτ

dxj

dτ
, (6.13)

where τ is an arbitrary parametrization of the path. The derivation of the

Euler-Lagrange eq. (the geodesic eq.) is left as an exercise.

6.1.3 Generalizations

When there are more than one variables and higher than first derivatives, the

derivation of Eular-Lagrange eq. is straightforward. For the integral

S =

∫
dtL(xi, ẋi, ẍi, · · · ), (6.14)

there is an Euler-Lagrange equation for each xi derived by varying δxi. S is

minimized when all Euler-Lagrange eq’s are simultaneously satisfied. This is

analogous to what we do to minimize a multi-variable fx.
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6.2 Lagrange Multiplier

Often it is convenient to use redundent variables, that is, variables with con-

straints. For example, a point on a circle can be specified by the Cartesian

coordinates (x, y) or the angular coordinate θ. The difference is that (x, y) is

constrained by x2 + y2 = R2, while θ = θ0 and θ = θ0 + 2π represent the same

point.

When we express a fx. in terms of variables with constraints, we can not

minimize it by demanding that its derivatives vanishe for all derivatives with

respect to all variables. We can either choose to use only variables without

constraints, or we can use the trick of Lagrange multipliers. The trick of

Lagrange multiplier is this: to minimize the fx. f(xa) with the constraints

{gi(xa) = 0}, we can just minimize the fx.
In addition to the con-

straints gi = 0, the EL eqs

are ∂af(x) + λi∂ag(x) =
0.

F (xa, λi) ≡ f(xa) + λigi(xa) (6.15)

as if all variables xa, λi are free of constraints.

6.2.1 Example

The fx. to be minimized is f = x for the Cartesian coord. on the circle of

radius R = 1. It is wrong to demand that df
dx

= 0, which is impossible. The
The same trick works

when the variables are

fx’s. In that case the La-

grange multipliers are also

fx’s.

trick is to consider F = f + λ(x2 + y2 − 1), where λ is called the “Lagrange

multiplier”. F is a fx. of x, y, λ. Now we can demand that all derivatives of

F vanish

∂xF = 1 + 2λx = 0, ∂yF = 2λy = 0, ∂λF = x2 + y2 − 1 = 0. (6.16)

The EL eq. for the Lagrange multiplier is just the constraint. The other two

EL eq’s are different from df
dx

= 0, and are the correct conditions to minimize

f . We can solve the EL eq’s by

x = − 1

2λ
, y = 0, x = ±1. (6.17)

(So in the end we find λ = ∓1/2 but we don’t really care about the value of

the Lagrange multiplier.)

Another way to find the same result is to use the angular variable f = cos θ

and so it is extremized at θ = 0, π.

Let us consider this problem in a slightly more general setting. Suppose

we want to minimize f(x, y) with the constraint g(x, y) = 0. To get some

intuition, one can imagine that we draw curves along which f(x, y) is constant

on the x− y plane. These curves would be the equipotential surfaces if f(x, y)

is a potential, so we will call them equipotential curves of f . Now we also

draw the curve satisfying g(x, y) = 0. To minimize f(x, y) with the constraint
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g(x, y) = 0 is to look for minimal values of f along the curve of g = 0. When

we reach a local extremum of f along the curve of g = 0, the value of f will

hardly change when we walk an infinitesimal distance along the curve of g = 0.

Therefore, the extremal value of f will happen at a point where the tangent

of the curve of g = 0 is parallel to the tangent of the equipotential curve of f

passing through that point. In equations,
Actually these eq’s say

that the gradient (which is

the normal to the tangent)

of f is parallet to the gra-

dient of g.

∂xf(x, y) = λ∂xg(x, y), ∂yf(x, y) = λ∂yg(x, y). (6.18)

6.2.2 Example

What is the EOM for a point mass constrained to a frictionless circle? The

action for a point mass in flat space is

S0 =

∫
dt

1

2
m(ẋ2 + ẏ2). (6.19)

The constraint is

x2 + y2 = R2. (6.20)

So the action for the particle on a circle should be

S = S0 +

∫
dtλ(t)(x2(t) + y2(t)−R2). (6.21)

Check that the EOM’s derived from varying x(t), y(t), λ(t) this action is equiv-
Check that λ(t) is propor-

tional to the normal force

exerted on the point mass

to keep it on the circle.

alent to the action

S ′ =
∫
dt

1

2
mR2θ̇2(t), (6.22)

which is written in terms of the variable θ that solves the constraint (i.e. the

constraint is solved by x = R cos θ, y = R sin θ).

Now we generalize the problem to the motion of a point mass constrained by

a generic condition g(x, y) = 0. The track that constrains the point mass will

exert force on the point mass to keep it on the track. The difference between

a constraint and a potential is that the force due to a potential V (x, y) is

−∇V , while the force due to a constraining track depends on the motion of

the point mass. On the other hand, we know that motion along the track is

not obstructed, and thus the force due to the track must be perpendicular to

the tangent of the track. The force is thus parallel to the gradient of g, i.e.,

the force is

λ(∂xg(x, y), ∂yg(x, y)) (6.23)

for some λ ∈ R. The EOMs are therefore

mẍ = λ∂xg(x, y), mÿ = λ∂yg(x, y). (6.24)
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The magnitude of the normal force, or the magnitude of λ, should be exactly

what is needed to keep the point mass on the track. That is, the EOMs above

together with the constraint

g(x, y) = 0 (6.25)

should determine x, y, λ altogether. This is exactly what we get by using the

Lagrange multiplier.

6.3 Eigenvalue Problems

A&W: Exercise 17.7.6
Check that the EL eq. for minimizing

∫ b

a

dx

[
p

(
d

dx
φ(x)

)2

+ q(x)φ2(x)

]
(6.26)

with the constraint ∫ b

a

dxρ(x)φ2(x) = 1 (6.27)

is the eigenvalue eq.

Dφ(x) = λ(x)φ(x), (6.28)

where λ(x) is the Lagrange multiplier, for the Sturm-Liouville op.

D =
1

ρ(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
. (6.29)

While the numerator of

K is the same as (6.26),

the effect of the constraint

(6.27) is the same as that

of the denominator of K,

that is, to exclude the in-

fluence on (6.26) due to

scaling φ(x).

On the other hand, to minimize (6.26) with the constraint (6.27) is the

same as minimizing

K ≡
∫
dx[p(x)φ′2(x) + q(x)φ2(x)]∫

dxρ(x)φ2(x)
. (6.30)

Plugging an eigenfx. φn(x) into K, and using the BC for the eigenfx., we

find that the minimal values of K are the eigenvalues of D.

If we know the eigenfx. φ0 for the lowest eigenvalue λ0 to a first order

approximation, one can check that the estimation of λ0 by K is good up to
See A&W p. 1073 for the

proof.2nd order approx. Hence K is useful for estimating the lowest eigenvalue of

an op.

6.3.1 Example

For the eigenvalue problem

d2

dx2
u(x) + λu(x) = 0, (6.31)

with the BC

u(0) = u(1) = 0, (6.32)
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we know that the exact value of the lowest eigenvalue is

λ0 = π2. (6.33)

If we use a polynomial satisfying the BC

u(x) = x(1− x) (6.34)

(there is no need to normalize it), we find that

λ0 ≤ K = 10, (6.35)

which is a good approx. of π2 ' 9.87. (∆λ0 ' 1.3%.)

6.4 Homework Assignment

1. For a uniform string of length L hanging from two supports at the same

height, by minimizing the potential energy of the string, find the eq.

determining the shape of the string, and the vertical distance from the

supports and the lowest point on the string.

2. Find the minimum of the function

f(x) = x2 + 2y2 + 3z2 + 2xy + 2xz (6.36)

subject to the constraint

x2 + y2 + z2 = 1. (6.37)

3. Estimate the lowest freq. of a circular drum head of radius a. (Use the

trial fx. of the form u(r) = 1− ar.) Compare it with the exact result.

6.5 Exercises:

• Find the minimal and maximal values of the fx. f(x) = ax + by + cz

with the constraint x2 + y2 + z2 = 1.

• An object of mass m is in the 2 dimensional force field

~F (~r) =
GMm

r2
r̂. (6.38)

Curves along which the mass falls between given points in the shortest

time are solutions of a differential eq. of the form

dr

dθ
= f(r). (6.39)

Find the fx. f(r).
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• Estimate the lowest eigenvalue of the op.

D = − d2

dx2
+ V (x), V (x) = ω2x2, (6.40)

defined on the real line x ∈ R. The BC’s to be satisfied by the eigenfx’s

φ are

φ(±∞) = 0. (6.41)

Use trial fx’s of the form e−
a
2
x2

to estimate the lowest eigenvalue.
K is now a fx. of a. De-

termine a by dK
da = 0.
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Chapter 7

Differential Geometry

48



Chapter 8

Groups

8.1 Definition and Examples

A set of elements G = {ga} equipped with a product · is a group if the following

conditions are met:

• For any ga, gb ∈ G, ga · gb ∈ G. (Closure of the algebra.)

• For any ga, gb, gc ∈ G, (ga · gb) · gc = ga · (gb · gc). (Associativity of the

algebra)

• There is an element e ∈ G such that e · ga = ga · e = ga for all ga ∈ G.

(Existence of identity.)

• For each ga ∈ G, there is a gb ∈ G so that gb · ga = ga · gb = e, and we

will denote gb = g−1
a . (Existence of inverse.)

8.1.1 Example: U(1) and SO(2)

The set of rotations of a 2 dimensional flat space is a group. In terms of the

Cartesian coordinates x, y, a rotation is labelled by an angle θ ∈ [0, 2π)

(
x

y

)
→
(

cos θ − sin θ

sin θ cos θ

)(
x

y

)
. (8.1)

This group, whose elements have a 1-1 matching with these 2× 2 matrices, is

called SO(2). It is also defined as the group of 2 × 2 matrices which satisfy

the following properties

• All entries are real.

• Its determinant is 1.

• Its transpose is its inverse.
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If we consider n × n matrices with these properties, they form the group

denoted by SO(n). SO(n > 2) are non-Abelian while SO(2) is Abelian.
If some elements in a

group do not commute,

i.e., g1 · g2 6= g2 · g1,

the group is non-Abelian.

Otherwise it is Abelian.

In terms of a complex coordinate z = x + iy, a rotation corresponds to a

phase eiθ (z → eiθz). The set of phases {eiθ} is the group denoted by U(1).
U(n) is the group of n ×
n matrices which are uni-

tary, i.e., its Hermitian

conjugate is its inverse.

This implies that the de-

terminant of a U(n) ma-

trix is either 1 or −1. If we

also demand that the de-

terminant is 1, the group

is called SU(n).

The notion of a group can be abstract (e.g. “ the group of rotations of

an n-dimensional flat space”, or, say, G = {a, b}). The product of group

elements can be induced from its definition (e.g. two rotations of the flat

space is equivalent to a certain rotation) or assigned abstractly by hand (e.g.

aa = a, ab = b, ba = b, bb = a).

Very often we use the algebra of matrix multiplication to realize the algebra

of a group. That is, for every element ga ∈ G, there is a corresponding matrix

M(ga) such that

M(ga)M(gb) = M(ga · gb). (8.2)

We say that M(g) is a representation of G. Representations related to each

other by the conjugation of a nonsingular matrix S

M ′(g) = SM(g)S−1 (8.3)

are said to be equivalent.

If we have two representations of G (or even two copies of the same rep.),
Check that if M1, M2 are

rep’s, M is also a rep.we can construct a new representation

M(g) =

(
M1(g) 0

0 M2(g)

)
. (8.4)

A rep. that is equivalent to a rep. like M is called reducible, otherwise it is

irreducible. If we would like to study all rep’s of a group G, we only need to

study all irreducible representations.

Another way to construct new rep’s out of old ones is to take a product

(the previous operation is called a “sum”)

M(g)(ia)(jb) = (M1(g))ij(M2(g))ab. (8.5)

8.1.2 Example: Zn

The group Zn can be defined as Zn = {e, a, a2, · · · , an−1} where the rule of

multiplication is just an = e and those implies by the criteria of a group. The

algebra of Zn also agrees with the algebra of addition modulo n, as well as the

algebra of multiplication generated by e2πi/n (i.e. e→ 1 and a→ e2πi/n).

Z2 is also the group of flipping a coin. We can use 1× 1 matrices to realize

Z2 as M(e) = 1,M(a) = −1. This is a 1 dimensional realization of the group

Z2. Z2 also has a 2 dimensional realization as

M(e) =

(
1 0

0 1

)
, M(a) =

(
0 1

1 0

)
. (8.6)
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The groups Zn is quite different from SO(m) or SU(m) in that the for-

mer have a finite number of elements, while the latter have infinitely many

elements.

8.2 Lie Group and Lie Algebra

Lie groups are groups which have continuous parameters to label elements in

the group. For example, SO(n) and SU(n) are Lie groups. Due to the fact
Obviously Lie groups are

not finite groups.that parameters can take continuous values, we can define differentiation with

respect to these parameters. What we get in the end from differentiation of

Lie groups are Lie algebras.

8.2.1 Example SU(2)

The group SU(2) is the most important example of Lie groups. It can be

defined as the group of 2× 2 unitary matrices with their determinant equal to

1

U(α, β) =

(
α β

−β∗ α∗

)
, |α|2 + |β|2 = 1, α, β ∈ C. (8.7)

It takes 2 complex parameters α, β satisfying a constraint, or equivalently, 3

continuous real parameters to parametrize elements in the group. For example,

we can define 3 real parameters θ, φ, ϕ by

α = cos θeiφ, β = sin θeiϕ. (8.8)

Or, we can define 3 real parameters a1, a2, a3 by

U(a1, a2, a3) = ei
P3
i=1 aiσi , (8.9)

where σi are Pauli matrices

σ1 =
1

2

(
0 1

1 0

)
, σ2 =

1

2

(
0 −i
i 0

)
, σ3 =

1

2

(
1 0

0 −1

)
. (8.10)

This is also a natural way to parametrize elements in SU(2) because
∑

i aiσi

is the most general traceless Hermitian 2× 2 matrices, so that its exponential

is the most general unitary 2× 2 matrices with unit determinant.

There is some advantage to this parametrization of SU(2) because we will

take the differentiation and exponentials are easier when it comes to differen-

tiation. We differentiate U(ai) with respect to ai and evaluate at the identity

of the group, which is the point parametrized by a1 = a2 = a3 = 0. We get

∂

∂ai
U(a1, a2, a3)

∣∣∣∣
a1=a2=a3=0

= iσi. (8.11)
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The algebra of the Pauli matrices

[σi, σj] = iεijkσk (8.12)

is then the Lie algebra of SU(2), denoted by su(2).

Conceivably if we had started with a different parametrization of the group,

we might get a slightly different result. But they should be related by a linear
Since there are 3 inde-

pendent parameters for

SU(2), there will always

be 3 linearly independent

elements in su(2).

transformation

σ′i = Aijσj (8.13)

for some constant Aij. Therefore the commutators in su(2) may look different

in a different basis.

8.2.2 Example SO(3)

What is the Lie algebra for the Lie group SO(3)? SO(3), the group of 3D

rotations, has 3 degrees of freedom. We can rotate around the x, y or z-axis.

Using Cartesian coordinates for a vector in 3 dim Euclidean space, a rotation

around the z-axis corresponds to the matrix

M3(θ) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 . (8.14)

For an infinitesimal rotation around the z4-axis, the change of a 3-vector is

δx = M3(θ)x− x ' iθλ3x, (8.15)

where

λ3 =




0 i 0

−i 0 0

0 0 0


 . (8.16)

This is the Lie algebra generator corresponding to an infinitesimal rotation

around the z-axis. Now we can write down the Lie algebra generators for

rotations around the x and y-axes by permutation of directions. It is straight-

forward to check that the Lie algebra of SO(3) is the same as that of SU(2)

[λi, λj] = iεijkλk (8.17)

up to a scaling, so these two Lie algebras are equivalent.

This algebra is very important in physics. It is the algebra of angular

momentum operators. The Lie algebra so(3) is the same algebra that angular

momentum operators satisfy in QM, regardless of the details of the physical

system. However, for a different physical system, the angular momentum op.

may be in a different rep. of so(3).

The fact that su(2) and so(3) are the same also have significant physical

consequences. While representations of SO(3) only admits integral spin (spin

= eigenvalue of the matrices M(τi)), representations of SU(2)
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8.2.3 Lie Algebra

For every continuous symmetry of a physical theory or a physical model, e.g.

the translation symmetry or rotation symmetry of 3D space,

• It is a Lie group G, and has a Lie algebra. (G is R3 or SO(3) for

translation and rotation symmetry.)

• There are corresponding conserved charges (due to Noether’s theorem).

(E.g. momentum, angular momentum.)

• The commutators of the conserved charge operators in QM are the same

as the Lie algebra.

In general, a Lie algebra is a linear space {∑a αaτa}, where τa’s are the

generators/basis, equipped with the algebra defined by the brackets

[τa, τb] = ifabcτc, (8.18)

where the constants fabc are called structure constants. The structure con-

stants are antisymmetric
These two properties are

automatic if we recall that

the bracket comes from

the commutator.

[τa, τb] = −[τb, τa], (8.19)

and they satisfying the Jacobi identity

[τa, [τb, τc]] + [τb, [τc, τa]] + [τc, [τa, τb]] = 0. (8.20)

The Lie algebra is related to a Lie group through exponentiation
More than one Lie groups

can correspond to the

same Lie algebra. Check

that SU(2) and SO(3)
have the same Lie algebra.

g = eiαaτa . (8.21)

A representation of a Lie algebra realizes the bracket by commutators of

matrices

[M(τa),M(τb)] ≡M(τa)M(τb)−M(τa)M(τb) = ifabcM(τc). (8.22)

Apparently they go hand in hand with representations of the corresponding

group

M(g) = eiαaM(τa) (8.23)

unless there are more than one groups for the same Lie algebra.

8.3 Exercises:

• Which of the following are groups? (1) A group of people. (2) Coordinate

transformations x→ x+a with any a ∈ R. (3) Coord. transfs. x→ x+n

with n ∈ Z. (4) Coord. transfs. x→ x+ a with a > 0.
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• Derive the Lie algebra for the group G which consists of 2× 2 matrices

of the form (
1 a

0 1

)
, a ∈ R. (8.24)

• Derive the Lie algebra for the group G which consists of rotations and

translations of the 2 dimensional Euclidean space.

8.4 Isometry

Symmetry is one the most important subject in physics. There are several

types of symmetries. All symmetries are groups.
Symmetry of a theory,

symmetry of a configu-

ration or a state; global

symmetry, gauge symme-

try, · · ·

The symmetry of a space is called its isometry. For instance, Poincare

group is the isometry of Minkowski space. Here we consider two examples of

spaces with large isometries.

8.4.1 Example: R2

Consider the example of 2 dimensional Euclidean space. This space has the

rotation symmetry and translation symmetry. Functions on this space is trans-

formed under rotation and translation as

f(x, y)→ f(x′, y′) = f(cos θx− sin θy + x0, sin θx+ cos θy + y0). (8.25)

They form a representation of the isometry group.

Let us choose the Fourier basis

ψ~k = ei(kxx+kyy) (8.26)

for fx’s on R2. Under an isometry transformation,

ψ~k → ei(kxx0+kyy0)ψ~kR , (8.27)

where ~kR represents the result of rotating ~k.

First, focusing on the group of translations, each Fourier mode is by itself

a rep. for which a translation by (x0, y0) is represented by a phase factor (1×1

matrix)

ei(kxx0+kyy0). (8.28)

The Fourier modes are also the eigenfx’s of the translation op’s

px = −i∂x, py = −i∂y. (8.29)

The translation op’s generate translations on fx’s

f(x, y)→ f(x+ x0, y + y0) = ei(x0px+y0py)f(x, y). (8.30)
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The infinitesimal version is

δf(x, y) = i(x0px + y0py)f(x, y). (8.31)

Therefore, px and py are Lie algebra generators corresponding to translations.

Including rotations, the set of Fourier modes with the same wave number

|~k| is a rep. of the group of rotation and translation. The generator of rotation

is

J = −i(x∂y − y∂x). (8.32)

8.4.2 Example: S2

Consider the Schrödinger eq. for a particle in a spherically symmetric potential

(−∇2 + V (r)
)

Ψ(r, θ, φ) = EΨ(r, θ, φ). (8.33)

Here the Laplace op. for 3D Euclidean space is

∇2 = ∂2
r +

1

r2
∇2
S2 . (8.34)

We have learned before that the eigenvalues of

∇2
S2 =

1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2
φ (8.35)

are −`(`+ 1) for ` = 0, 1, 2, · · · .
The eigenfx’s of ∇2

S2 are

the spherical harmonics

Y`m(θ, φ):

Y`m = ±N`mP |m|` (cos θ)eimφ,

where N 2
`m =

(2`+1)
4π

(`−|m|)!
(`+|m|)! is chosen

such that Y`m is an

orthonormal basis
∫
d cos θdφY †`mY`′m′ = δ``′δmm′ .

The sign ± is chosen to be

(−1)m for m ≥ 0, +1 for

m < 0.

By separation of variables, we can decompose the Schrödinger eq. into

−∇2
S2ψ(θ, φ) = `(`+ 1)ψ(θ, φ) (8.36)

and (
−∂2

r −
1

r2
`(`+ 1) + V (r)

)
R(r) = ER(r) (8.37)

for the ansatz Ψ(r, θ, φ) = R(r)ψ(θ, φ). From now on we will focus our atten-

tion on ψ(θ, φ), a fx. defined on S2. The radial part depends on the potential

V (r) and is irrelevant to the SO(3) symmetry of S2.

Note that, by the definition of ∇2
S2 (8.34) (without looking at the com-

plicated expression in (8.35)) it should be clear that it is invariant under 3D

rotations, since ∇2 and r are both invariant. On the other hand, eigenfx’s

of ∇2
S2 will in general change under rotations. This means that, for an eigen-

value of∇2
S2 and its corresponding eigenfx, we can rotate it and obtain another

eigenfx with the same eigenvalue. That is, the set of eigenfx’s with the same

eigenvalue constitute a representation of the group SO(3).

Let us first consider functions in R3. In the end we can set x2 +y2 +z2 = 1

and reinterpret them as functions on S2. In terms of the Cartesian coordinates,
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it is easy to see that the following sets of functions form representations of

SO(3)

{1} (8.38)

{x, y, z} (8.39)

{x2, xy, xz, y2, yz, z2} (8.40)
... (8.41)

In general, since SO(3) is a linear map on the Cartesian coordinates, any set of

fx’s generated by monomials {xi1 · · ·xin} of a fixed order n is a rep. of SO(3).

However, they are not irreducible except for n = 0, 1. In the above, while

the first two rep’s are irreducible, the 3rd rep. is not, because the element

x2 +y2 + z2 is invariant under SO(3) rotations, and so it must be a trivial rep.

by itself. Eliminating this element from the rep., we get

{Y ij ≡ xixj − 1

3
δijx2} (x2 ≡

∑

k

x2
k), (8.42)

which is an irreducible rep. Note that not all elements in this set are linearly
We will use “irrep” as

the abbreviation of “irre-

ducible representation”.

independent, because Y ii = 0.

Similarly, from the rep. {xixjxk}, we can project out elements like x2xi,

which transform in exactly the same way as {xi} by themselves, and get an

irrep.

{Y ijk ≡ xixjxk − ax2(δijxk + δjkxi + δkixj)}. (8.43)

The constant a here should be determined by demanding that Y iij = 0, because

Y iij will transform like xj by themselves. (So a = 1
5
.) After eliminating those

elements which form their own reps, we get irreps.

Therefore we see that we get a basis of functions which is organized by

listing fxs in the same irrep together. Setting

x = sin θ cosφ, y = sin θ sinφ, z = cos θ, (8.44)

this basis is reduced to a basis of fxs on S2.

Although the Cartesian coordinate system has its obvious advantage of

maintaining the symmetry among the 3 variables, sometimes we would like to

use a different coordinate system

w = x+ iy = sin θeiφ, w̄ = x− iy = sin θe−iφ, z = cos θ, (8.45)

which has the advantage that rotations around the z-axis are realized in a

simpler way.

In terms of the new coord. system, the irrep. {xixj − 1
3
x2δij} is written as

{w2, w̄2, wz, w̄z, z2 − 1

3
(ww̄ + z2)}. (8.46)
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In terms of θ, φ, these fxs on S2 are the same as the spherical harmonics

{Y2m}2
m=−2 (up to normalization factors). We list here some of the spherical

Question: Why are fx’s

in the same irrep’s also

eigenfx’s?

harmonics for comparison:

Y00 = 1√
4π
,

Y1±1 = ∓
√

3
8π

sin θe±iφ, Y10 =
√

3
4π

cos θ,

Y2±2 =
√

15
32π

sin2 θe±2iφ, Y2±1 = ∓
√

15
8π

sin θ cos θe±iφ, Y20 =
√

5
16π

(3 cos2 θ − 1).

In the above, we constructed irrep’s of SO(3) by fx’s on S2, and these fx’s

are identified with eigenfx’s of the Laplace op. ∇2
S2 on S2.

From the action of SO(3) on fx’s on S2, one can deduce the action of so(3)

on these fx’s. Consider a rotation along the z-axis, for example. A rotation

by the angle φ0 corresponds to

φ→ φ+ φ0. (8.47)

Its action on a fx. is

f(θ, φ)→ f(θ, φ+ φ0) = eφ0∂φf(θ, φ). (8.48)

An infinitesimal rotation θ0 � 1 along the z-axis is generated by the diff. op.

Jz ≡ −i∂φ (8.49)

in the sense that

δf(θ, φ) = iθ0Jzf(θ, φ). (8.50)

The spherical harmonics Y`m have eigenvalue m for Jz. If the fx’s here are

wave fx’s, J is the angular momentum op.

In terms of Cartesian coordinates,

Jz = −i(x∂y − y∂x). (8.51)

Apparently, the complete angular momentum op., which is a 3-vector, can be

written as

Ji = −iεijkxj∂k. (8.52)

One can check that, when acting on fx’s on S2, the Laplace op. on S2 is

equivalent to

∇2
S2 = J2

1 + J2
2 + J2

3 . (8.53)

The Lie algebra of SO(3) can be derived from (8.52)

[Ji, Jj] = iεijkJk. (8.54)

This relation is independent of the rep. We can use this algebraic relation to

show universal properties of rep’s. For example, an irrep. corresponding to a
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given `, e.g. {Y`m}`m=−`, has elements with eigenvalues m = −`, · · · ` of Jz at

intervals of 1. We can derive this property from the algebraic relation (8.54)

as follows. Let

J± = J1 ± iJ2. (8.55)

Then (8.54) is equivalent to

[J±, Jz] = ∓Jz, [J+, J−] = 2Jz. (8.56)

It follows that, if a fx fm has eigenvalue m for Jz, i.e.

Jzfm = mfm, (8.57)

then (J±fm), which is another fx., has the eigenvalue m ± 1 for Jz (unless

J±fm = 0) because

Jz(J±fm) = (J±Jz + [Jz, J±])fm = (m± 1)(J±fm). (8.58)

This is why it is useful to extract the algebraic structure of Lie algebra from

specific problems.

In this example, we demonstrated the connection between partial differ-

ential eqs, geometry, group theory and Lie algebra. In both physics and

mathematics, problems with different appearances may turn out to be closely

connected. A good comprehension of a topic often demands understanding of

several seemingly independent subjects. As promising young investigators, you

are encouraged to learn as much as possible, as a preparation for uncovering

previously unknown deep connections among concepts and phenomena.

**************** END ******************
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