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Feynman: To those who

do not know mathemat-

ics, it is difficult to get

across a real feeling as to

the beauty, the deepest

beauty, of nature... If you

want to learn about na-

ture, to appreciate nature,

it is necessary to under-

stand the language that

she speaks in.

References of the course include:

• Mathews and Walker: Mathematical Methods of Physics.

• Trodden: Lecture notes: Methods of Mathematical Physics I

http://www.phy.syr.edu/ trodden/courses/mathmethods/

The materials to be covered in this course are the following:

• Complex analysis and evaluation of integrals (saddle-point approx.)

• Fourier transform (+ Laplace transform)

• Sturm-Liouville theory, linear space of functions and special functions

• Special functions

This note is provided as a supplement, not a substitute, to the references.

We will use Einstein’s summation convention in this note.



Chapter 1

Complex Analysis

T: 1. Analysis of

Complex Functions;

2.2 Riemann-Lebesgue

Lemma and Method of

Stationary Phase; 2.3 The

Saddle-Point Method.

MW: Appendix: Some

Properties of Functions of

a Complex Variable; 3.3

Contour Integration; 3.6

Saddle-Point Methods

In this chapter we will learn how to use complex analysis, in particular the

residue theorem, to evaluate integrals. We will also learn how to compute the

saddle-point approximation of an integral.

• holomorphic/analytic functions.

• singularity, branch cut.

• contour integral, residue theorem.

• using residual theorem to evaluate integrals.

• saddle-point approximation.

1.1 Introduction

Complex numbers and complex functions appear in physical problems as well

as formulations of fundamental physics. Why is complex analysis useful? Are
An example of the use of

complex fx’s appeared in

your E&M course when

dealing with waves: cos(k·
x) → eik·x. In QM, com-

plex fx’s are needed at a

more fundamental level.

not all physical quantities real? Since z = x + iy, a complex function of z is

just two real functions of (x, y)

f(z) = u(x, y) + iv(x, y). (1.1)

Why don’t we just reduce every problem in complex analysis to real analysis?

Holomorphic functions are rare, in the sense that there are a lot more

functions on R2 than holomorphic functions on C.

This is why analytic continuation (f(x) → F (z)) is possible. Given a
If we are not restricted

to holomorphic functions,

there are infinitely many

functions F (z, z̄) which

reduce to a given f(x)

when z = z̄ = x. For

example, for f(x) = x2,

we can have F = z2,

|z|2, z1/2z̄3/2 etc. Only

the first choice is holomor-

phic.

real function f(x) of x ∈ R, we can imagine that it is the restriction of a

holomorphic function F (z) to the real axis of the complex plane C. Therefore,

properties of F (z) can be viewed as properties of f(x). A lot of properties of

f(x) are hidden until we view it in the form of F (z). These properties allow

us to deal with problems involving f(x) (such as the integration of f(x)) more

easily.
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1.2. PRELIMINARIES AND DEFINITIONS 3

A theorem that demonstrates this notion is Liouville’s theorem (for com-

plex analysis, not phase space).

Another example is that z → z′ = z′(z) always defines a conformal map.

1.2 Preliminaries and Definitions
Definitions are not just

about names, which help

us to communicate more

efficiently. More impor-

tant is the concept behind

a definition.

1. Change of variables on R2:

z = x+ iy, z∗ = x− iy, (1.2)

z = reiθ, z∗ = re−iθ. (1.3)

2. We consider functions that are single-valued maps from domains in C to

ranges in C. A function which appears to be multiple-valued should be

restricted to a smaller domain such that it is single-valued.

3. What is ∂ ≡ ∂z = ∂/∂z ? (What is ∂̄ ≡ ∂z̄ = ∂/∂z̄ ?)

∂ =
1

2
(∂x − i∂y), ∂̄ =

1

2
(∂x + i∂y). (1.4)

4. The rules of differentiation (chain rule, Leibniz rule) are the same as for

real functions.

5. Caution: ∂z(1/z̄) 6= 0.
Recall that the electric

potential V (r) of a point

charge is ∝ 1
r . Gauss’s

law: ∇2 1
r = −4πδ(3)(~r).

The analogue in 2D is

V (r) ∝ log r, and we need

∇2 log r ∝ δ(2)(~r). Now

log r = 1
2 (log z + log z̄),

and ∇2 ∝ ∂∂̄, so we need

∂ 1
z̄ ∝ ∂̄

1
z ∝ δ

(2)(~r).

General rule:

To compute the derivative

of a function ill-defined

at a point, we use Gauss’

law or Stoke’s theorem.

Stoke’s theorem∮
C

(Axdx+ Aydy) =

∫
R

dxdy(∂xAy − ∂yAx) (1.5)

implies that∮
C

f(z)dz =

∮
C

(f(z)dx+ if(z)dy)

=

∫
R

dxdy(i∂x − ∂y)f(z) =

∫
R

dxdy2i∂̄f(z). (1.6)

If f(z) is well-defined in R, ∂̄f(z) = 0, implying
∮
C
f(z)dz = 0 (Cauchy’s

theorem). If f(z) = 1
z
, for C being an infinitesimal circle around the

origin,
∮
C
f(z)dz = 2πi, implying that

∂
1

z̄
= ∂̄

1

z
= πδ(2)(x, y). (1.7)

6. A function is analytic at a point if it has a derivative (complex-differentiable)

there. That is,

f ′(z) = lim
h→0

f(z + h)− f(z)

h
(h ∈ C) (1.8)

exists and is independent of the path by which the complex number

approaches to 0.
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7. f(z) = u(x, y) + iv(x, y) satisfies Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.9)

So u and v are harmonic functions

∇2u = 0, ∇2v = 0. (1.10)

Let u = xy. One can

solve v from CR-eqs and

get v = (y2 − x2)/2 + c.

Thus f = −iz2/2+ic. Al-

ternative derivation: Try

z2 since u is quadratic.

8. One can use CR-eqs to derive v if u is given (assuming that v exists).

Ex: f(x) =
∑
n(−x)n

→ f(z) =
∑
n(−z)n with

rad. of conv. = 1. One

can compute f (n)(1/2)

for all n and find f(z) =∑
n

2
3 (− 2

3 (z − 1
2 ))n with

rad. of conv. = 3/2. This

goes beyond the conver-

gence region of the 1st ex-

pression.

9. Taylor expansion, analytic continuation, radius of convergence, singular-

ity.

Theorem: The Taylor ex-

pansion of an analytic fx.

around a point inside R

has a finite radius of con-

vergence.

10. [Holomorphic/Analytic function in R] = [function that is analytic every-

where in R].

11. The rad. of conv. R of f(z) about z0 is equal to the distance between

z0 and the nearest singularity of f(z).

12. Composition of analytic functions:

af1 + bf2, (1.11)

f1f2, (1.12)

f1/f2 when f2 is not 0, (1.13)

f1(f2(z)). (1.14)

Examples of entire fx’s:

f(z) = z, f(z) = ez, etc.13. [Entire function] = [function that is holomorphic on the whole complex

plane].

14. [Laurent series of f(x)] = [
∑∞

n=−m fnz
n].

Example: f(z) = z−n has

a pole of order n at z = 0

for n ∈ Z+.

• f has a pole (isolated singularity) of order m if 0 < m <∞.

• [Simple poles] = [poles of order 1].
An essential singularity is

a singularity more severe

than poles of any order:

limz→z0(z − z0)nf(z) =

∞ for any finite n.

Example of essential sin-

gularity: f(z) = e1/z.

• f has an essential singularity if m =∞.
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A fx. f(z) is meromor-

phic iff f(z) = g(z)/h(z)

for some holomorphic fx’s

g(z) and h(z).

15. Meromorphic function in R = analytic except at isolated points in R

with singularities of finite order.

A fx. is discontinuous

across a branch cut.

Examples of branch cut:

f(z) = z1/2, f(z) =

log(z).

16. Branch cut = curve in C taken out of the domain to avoid multiple-

valuedness.

1.3 Residue Theorem

The residue of a function f(z) at z0 is defined by

Resz→z0f(z) ≡ f−1 (1.15)

if the Laurent expansion of f around z0 is

f(z) = · · ·+ f−2

z2
+
f−1

z
+ f0 + f1z + f2z

2 + · · · . (1.16)

The residue is nonzero

only at singular points. This number f−1 is special because it is singled out from all coefficients fn

if we integrate f over a small circle around z0:∮
S1(z0)

dzf(z) = 2πif−1. (1.17)

The essence of the residue theorem is simply∫ 2π

0

dθeimθ = 2πδ0
m, (1.18)

which we used to derive (1.17).

Residue Theorem:

The contour integral of an analytic fx. f(z) is given by the sum of its residues
This theorem is easy to

understand by replacing

the contour by infinitely

many infinitesimal circles.

at all singular points encircled in the contour:∮
C

dzf(z) = 2πi
∑
i

Resz→zif(z). (1.19)

This is for C going around the poles once in the counterclockwise direction.

In general we get an integer factor on the right hand side if C is going in the

opposide direction or if C encircles the poles more than once.

To prove this theorem, we simply quote Cauchy’s theorem proved in Sec.

1.2 and (1.17).

Immediate consequences of the residue theorem:

• Cauchy’s theorem

We used Cauchy’s theo-

rem to prove residue theo-

rem, but once you accept

and memorize residue the-

orem, it is convenient to

view Cauchy’s theorem as

its consequence because

residue theorem is more

general.

∮
C

f(z)dz = 0 (1.20)

if f(z) is analytic in R and C ∈ R.
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• Cauchy’s integral formula

For an analytic function f(z) in R,

f(z) =
1

2πi

∮
z

dζ
f(ζ)

ζ − z
, (1.21)

where C is a closed contour in R encircling the point z once in the

counterclockwise direction.

• A contour integral of f(z) in C with endpoints z0, z1 is invariant un-

der continuous deformations of the contour with fixed endpoints if the

deformation never crosses over any singularity.
Hint of proof: Con-

sider |f(z1)−f(z2)| using

Cauchy’s integral formula.

• Liouville’s theorem

A bounded entire function must be constant.

A holomorphic function

f(z) with only simple

poles is uniquely deter-

mined by the locations

and residues of the simple

poles, and its value at in-

finity.

Liouville’s theorem implies that: If f(z) → 0 as z → ∞, f(z) must have

singularities (unless f(z) is identically zero).

The residue theorem not only helps us to understand analytic functions

better, it is also very powerful for evaluating integrals. However it takes expe-

rience (a lot of practice) and ingenuity (which usually only comes after hard

working) in inventing the relevant analytic function and contour.

1.3.1 Examples

In the following, let a > 0.

1. ∫ ∞
−∞

dx

x2 + a2
=? (1.22)

2. ∫ ∞
0

dx

(x2 + a2)2
=? (1.23)

3. ∫ ∞
0

dx

1 + x3
=? (1.24)

4. For a > b > 0, ∫ π

0

dθ

a+ b cos θ
=? (1.25)

5. ∫ ∞
0

dx

√
x

1 + x2
=? (1.26)

6. For 0 < a < 1, ∫ ∞
−∞

dx
eax

ex + 1
=? (1.27)
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7. ∫ 1

−1

dx√
1− x2(1 + x2)

=? (1.28)

8. For f(z) with several isolated singularities, consider the contour integral∮
f(z)dz

sin πz
. (1.29)

Show that
∞∑

n=−∞

(−1)nf(n) = −π
∑
k

Rk

sin πzk
, (1.30)

where Rk is the residue of f(z) at zk.

9. ∫ ∞
−∞

dx
x− sinx

x3
=? (1.31)

10. A holomorphic function f(z) has only 2 simple poles at z = ±1 with

both residues equal to 1. f(z) also approaches to 1 at infinities. Find

f(z) and prove that it is unique.

1.3.2 Comments

Holomorphicity

Given a complex number z = x+iy ∈ C, its complex conjugate z̄ = x−iy is

known. But algebraically z and z̄ are independent. Consider a general change

of coordinates of R2

x′ = ax+ by, y′ = cx+ dy (1.32)

for arbitrary coefficients a, b, c, d (as long as the inverse exists). A function

f(x, y) can be rewritten in terms of (x′, y′) as f ′(x′, y′) such that f ′(x′(x, y), y′(x, y)) =

f(x, y). The new coordinates (x′, y′) are independent variables just as (x, y)

are independent variables. One can consider derivatives and use the chain rule

to derive

∂

∂x
=
∂x′

∂x

∂

∂x′
+
∂y′

∂x

∂

∂y′
,

∂

∂y
=
∂x′

∂y

∂

∂x′
+
∂y′

∂y

∂

∂y′
. (1.33)

All of these algebraic relations remain the same for our special case of z =

x′, z̄ = y′ (a = 1, b = i, c = 1, d = −i). In this sense, (z, z̄) are independent

variables.

Analytic continuation

Analytic continuation means to extend the domain of a function from its

original definition to other regions on the complex plane as much as possible,
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with the function’s analyticity preserved. For example, if we define f(x) by

the series

f(x) = 1 + x+ x2 + x3 + · · · =
∞∑
n=0

xn, (1.34)

its domain is (−1, 1) because its radius of convergence is 1.

By analytic continuation, we extend the original definition of f(x) to ev-

erywhere on the complex plane except the point x = 1, so that

f(x) =
1

1− x
. (1.35)

Suppose we find the expansion (1.34) in a physical problem, and we are

interested in the case when x is a phase. Strictly speaking, based on the

definition (1.34), the value of f(x) for x = eiθ is ill-defined. One might wonder

whether we can define f(eiθ) as the limit

lim
ε→0+

∞∑
n=0

(eiθ−ε)n =
1

1− eiθ
, (1.36)

but how do we justify this choice, rather than the other choice (ε→ 0−)?

In a physical problem, there should be physical reasons to justify one choice

over the other. A simple criterion is that, if the quantity you are computing is

physical/observable, then it must be finite and well-defined. Roughly speaking,

this justifies the use of analytic continuation whenever possible.

As an example of the use of analytic continuation, imagine that in a phys-

ical problem, we need to solve the differential equation

(1− x)f ′(x)− f(x) = 0. (1.37)

One might try to solve f(x) as an expansion

f(x) = f0 + f1x+ f2x
2 + f3x

3 + · · · . (1.38)

Then we will get some recursion relations and find that (1.34), up to an overall

constant factor, is the solution. For this problem, one will not hesitate to

replace the series (1.34) by (1.35), because one can directly check that (1.35)

satisfies the differential equation (1.37). The appearance of the series (1.34)

is not a consequence of anything of physical significance, but only a result of

the mathematical technique we apply to the problem.

Residue theorem

In the above, we see that the use of residue theorem is very powerful. We

can use it to evaluate many integrals which we do not know how to compute

otherwise. Even for some of the integrals which we can directly integrate, it

is much easier to use the residue theorem. It is a really elegant technique.

The use of the residue theorem always involves complex numbers in the

calculation, even when the integral is real. It is important to have a rough
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idea about the integral, e.g. whether it is real, positive or negative, etc. before

applying the residue theorem, so that you can easily detect an error in calcu-

lation. If, after using the residue theorem, you find a complex number for a

real integral, or a negative number for an integral that is obviously positive

definite, you must have made a mistake.

1.4 Saddle-Point Approximation

Most integrals can not be carried out to give an exact answer. Saddle-point

method is one of the most important methods to estimate an integral. The

integral must have a parameter whose value is “large”. The larger the param-

eter, the better the approximation.

The basic idea is this. Consider a function f(x) with a maximum at x0.

The contrast between values of f(x) at different points x is magnified in the

expression

eαf(x) (1.39)

for large α. The value of the integral∫
dxeαf(x) (1.40)

is expected to be dominated by the contribution from a small region around the

point x = x0. As a lowest order approximation, in the very near neighborhood

of x0 (i.e., x ∼ x0), we can approximate f(x) by
We have f ′(x0) = 0 and

f ′′(x0) < 0 since x0 is a

maximum. f(x) ' f(x0) +
1

2
f ′′(x0)(x− x0)2. (1.41)

Then the integral (1.40) is approximated by a Gaussian integral∫
dxeαf(x) ' eαf(x0)

∫
dxe

1
2
αf ′′(x0)(x−x0)2 . (1.42)

This can be carried out easily assuming that the range of integration covers∫ ∞
−∞

dxe−x
2/2 =

√
2π.

(1.43)

The standard deviation of

the Gaussian is small ∼
1√
α

.

the point x0 and its neighborhood of several standard deviations. In case the

range of integration misses a significant portion of the Gaussian function, we

can still estimate the Gaussian integral by looking it up in a table or using a

computer.

Whether this is a good approximation depends on whether the integral is

dominated by a small region around x0 within which the first few terms of the

Taylor expansion (1.41) is a good approximation of f(x).

Higher order approximations can be obtained by keeping more terms in

the Taylor expansion

f(x) ' f(x0) +
1

2
f ′′(x0)(x− x0)2 +

1

3!
f ′′′(x0)(x− x0)3 + · · · , (1.44)
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and Taylor-expand the integrand apart from the Gaussian factor

eαf(x) ' eαf(x0)e
1
2
αf ′′(x0)(x−x0)2(1 + A(x− x0)3 +B(x− x0)4 + · · · ). (1.45)

Then we can carry out the integration term by term. To do so, you should

know how to derive the following (using integration by parts)
Check that the 2nd term

A(x − x0)3 in the expan-

sion above has no contri-

bution.

∫ ∞
−∞

dxe−x
2/2xn =

{
2(n+1)/2Γ(n+1

2
) =
√

2π[1 · 3 · 5 · · · (n− 1)], n = even,

0, n = odd.

(1.46)

With the help of complex analysis, we can extend the discussions above

from R to C. The function f(x) can be analytically continuated and the

integration on the real axis can be deformed into the complex plane. The

condition f ′(x) = 0 which determines the maximum x0 is replaced by
Both the real and imagi-

nary parts of f(z) are har-

monic fxs. They have no

maximum nor minimum in

the bulk. They can only

have saddle points.

f ′(z) = 0 → z = z0. (1.47)

This point z0 is not a local maximum nor minimum but a saddle point. In

the two dimensional plane C, one can choose to pick the contour with steepest

descent or the one with stationary phase. Formally, the two approaches look

almost the same∫
dz ef(z) '

∫
dz ef(z0)+ 1

2
f ′′(z0)(z−z0)2 = ef(z0)

√
2π

−f ′′(z0)
. (1.48)

The subtle difference lies in how to define the square root, which depends on

how we choose the contour to pass through the saddle point z0 (at what angle

in the complex plane).

More precisely, if we choose a real parameter s on the contour so that

z ' z0 + seiφ (1.49)

around the point z0 for a constant φ, we have∫
dz e

1
2
f ′′(z0)(z−z0)2 = eiφ

∫
ds e

1
2
ρ cos(θ+2φ)s2+i 1

2
ρ sin(θ+2φ)s2 (1.50)

where we denoted f ′′(z0) = ρeiθ.

In the steepest descent approach, in order for the real part of f(z) to be

local maximum, we want to choose φ so that

cos(θ + 2φ) = −1 ⇒ sin(θ + 2φ) = 0, (1.51)

so that the imaginary part is automatically roughly constant. Then the ex-

pression above is

eiφ
∫
ds e−

1
2
ρs2 = eiφ

√
2π

ρ

(
= ±

√
2π

−f ′′(z0)

)
. (1.52)
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The sign depends on which of the two solutions of φ is chosen to satisfy (2.20).

For the stationary phase approach, we choose

sin(θ + 2φ) = ±1 ⇒ cos(θ + 2φ) = 0, (1.53)

so that the real part is automatically roughly constant. Then (1.50) becomes

eiφ
∫
ds e±i

1
2
ρs2 = eiφ

√
2π

∓iρ
= ei(φ±π/4)

√
2π

ρ

(
= ±

√
2π

−f ′′(z0)

)
. (1.54)

The sign depends on which solution of φ is chosen to satisfy (2.20).

Note that the final results (1.52) and (1.54) are exactly the same up to the

ambiguity of a sign, which depends on the choice of the contour.
Refer to MW for details of

saddle-point approx.

1.4.1 Examples

1. For large x,

Γ(x+ 1) =

∫ ∞
0

dt txe−t. (1.55)

2. For large α, ∫
dxg(x)eαf(x) (1.56)

3. For large n ∈ Z, ∫ 2π

0

sin2n θdθ. (1.57)

4. For large α, ∫
C

dzeαf(z). (1.58)

1.4.2 Comments

Before applying the saddle point approximation, it is necessary to have a rough

idea about the behavior of the integrand. We might not want to go all the

way to figure out the shape of the contour in the complex plane, but at least

we should know, for example, whether the integral is dominated by the region

close to a boundary of integration. This may happen even when there is a

local maximum within the range of integration, and then the saddle point

approximation can not be used without modification.

The ambiguity in choosing the direction of integration (due to different

choices of the contour) when we pass over the saddle point results in the

ambiguity of an overall sign of the integral. This ambiguity in the sign can

also be associated with the ambiguity of the sign of the square root
√

2π
−f ′′(z0)

.

Usually it is not too hard to guess which choice is correct for a given integral,

and so it is usually not necessary to figure out the details of the contour. It is
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sufficient to know that the integral is dominated by a small region somewhere

along a certain contour.

In both case (steepest descent and stationary phase), the key point is

to make sure that the dominating contribution of the integral comes from

a “small” region of the contour, so that we can approximate the integrand

ef(z) by Taylor-expanding f(z) and keeping only the first few terms.

The difference in the two approaches lies in the reason why the integral is

dominated by a small region. For the steepest descent approach, the reason

is that the real part of the exponent f(z) is large in a small region (while the

imaginary part of f(z) does not change quickly within that small region, so

that there is no significant cancellation due to changes of phase).

For example, the integral of f(x) = e−
α2

2
x2+βx3 over the real line is dom-

inated by the region close to x = 0, with a width of ∼ 1
α

. For larger α, the

region is smaller. But how small is small enough? The small region is small

enough if the term βx3 can be ignored compared with the first term −α2

2
x2

within the region (− 1
α
, 1
α

) so that our saddle point approximation is good.

That is, we want |β 1
α3 | � |α

2

2
1
α2 |, i.e., |β| � α3. This necessary condition for

the steepest descent approach can be directly written down by counting the

“dimension” of each quantity. Imagine that this integral arises in a physical

problem and the dimension of x is L. Then the dimension of α is 1/L, and

that of β is 1/L3. Since it makes no sense to talk about the precise meaning of

“large” or “small” for a quantity with dimension, we can only talk about the

dimensionless quantity β/α3 being large or small. Since it is obvious that we

want |β| to be small in order to ignore it, what we really want must be that

|β/α3| � 1.

For the stationary phase approach, the reason why the integral is domi-

nated by a small region is that, except this small region, the imaginary part

of f(z) changes quickly (while the real part changes slowly) when we move

along the contour, corresponding to a high frequency oscillation that leads to

a large cancellation in the integration.

As an example, consider the integral of f(x) = ei
α2

2
x2+βx3 over the real line.

If |β/α3| � 1 so that we can ignore the 2nd term, the first term of the exponent

tells us that the wavelength of the oscillation around a point x in a small region

(much smaller than the wavelength) is roughly 1
α2x

. Integration over the fast

oscillating region largely cancals, and so the integration is dominated by the

region (−1/α, 1/α), within which the wavelength is of order 1/α or larger.

1.5 Exercises:

1. For k, a ∈ R,
ε → 0+ means that ε re-

mains positive in the limit.
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lim
ε→0+

∫ ∞
−∞

dx
eikx

x2 − a2 + iε
=? (1.59)

2. For a, b ∈ R, m+ n ≥ 2,∫ ∞
−∞

dx
1

(x2 + a2)m(x2 − b2)n
=? (1.60)

3. For a > b > 0, ∫ 1

−1

dx
1√

1− x2(a+ bx)
=? (1.61)

4. For a > b > 0, ∫ 2π

0

dθ
sin2 θ

a+ b cos θ
=? (1.62)

5. ∫ ∞
0

dx
log(x)

x3 + a3
=? (1.63)

6. (a) Consider the contour integral∮
dzf(z) cotπz (1.64)

around a suitable large contour, and obtain thereby a formula for

the sum
∞∑

n=−∞

f(n). (1.65)

(b)

g(a) =
∞∑

n=−∞

1

n2 + a2
=? (1.66)

7. Evaluate

I(x) =

∫ ∞
0

dtext−e
t

(1.67)

approximately for large positive x.

8. (a) Check that the saddle-point approximation of the gamma function

is

Γ(z) =

∫ ∞
0

dte−ttz−1 '
√

2πzz−1/2e−z. (1.68)

(b) Find the saddle-point approximation of the beta function

B(a, b) =

∫ 1

0

dxxa−1(1− x)b−1. (1.69)

(c) Check that the results in (a) and (b) agrees with the relationship

between the gamma function and the beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (1.70)
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9. The Bessel function can be expressed as the Bessel’s integral

Jn(z) =
1

π

∫ π

0

dθ cos(nθ − z sin θ). (1.71)

Use saddle-point approximation to find the asymptotic behavior of the

Bessel function Jn(z) for large z.

10. (a) For large α, find the saddle-point approximation of∫ 1

0

dx xe−αx
2/2. (1.72)

(b) Find the exact result of the integral and compare.



Chapter 2

Fourier Transform

2.1 Motivation
Fourier transform can be

viewed as a limit of Fourier

series. As we can never

really measure anything

with infinite spatial or

temporal extension, the

conceptual difference be-

tween f(x) defined on R
and periodic functions de-

fined on a finite inter-

val is an illusion, although

for most applications of

Fourier transform Fourier

series is simply impracti-

cal.

Fourier transform is a rearrangement of the information contained in a function

f(x). It is based on the fact that any (smooth) function f(x) can be obtained

as a superposition of sinusoidal waves with suitable amplitudes and phases

f(x) =

∫ ∞
−∞

dk f̃(k)eikx, (2.1)

where

f̃(k) = |f̃(k)|eiθ(k) ∈ C (2.2)

specifies the amplitude and phase of the sinusoidal wave eikx with wave num-

ber k. Fourier transform is the map from f(x) to f̃(k). There is no loss of

information in this transformation. We can reconstruct f(x) from f̃(k) via the

inverse Fourier transform.

Fourier transform can be generalized to higher dimensions. It implies, for

example, that we only need to consider plane waves when we learn about

electromagnetic waves, because all electromagnetic waves can be viewed as

superposition of plane waves.
Our ears work as a Fourier

transformer of the sound

waves, although it only

keeps the information of

the amplitudes.

As we will see, sometimes it is very helpful to present the information en-

coded in a function by its Fourier transform. In particular, it is useful to solve

differential equations that are translationally invariant. In later chapters, we

will also generalize the notion of Fourier transform for more general differential

operators.

2.2 Dirac Delta Function and Distribution

Dirac δ-function is defined by
Sometimes we also define

δ-function by the limit of

a series of functions. E.g.

δ(x) = lim
α→∞

1√
2πα

e−
x2

2α .

Only properties of the δ-

fxs that does not depend

on the choice of the series

of functions are accepted

as properties of the δ-fx.

∫ x2

x1

dxδ(x− x0)f(x) =

{
f(x0), x0 ∈ (x1, x2),

0, otherwise,
(2.3)

15
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where f(x) is a good (smooth) function.

From its definition and integration by parts, one deduce that the derivative

of the δ-function can be defined∫
dxδ′(x− x0)f(x) = −f ′(x0), (2.4)

assuming that the range of integral includes x0.

Dirac δ-functions and its derivatives are not (good) functions. They are

defined only through integrals with good functions. Such objects are called

“distributions”. Other operations, e.g. δ2(x− x0), or even δ(x− x1)δ(x− x2),
We will allow integration

by parts and use the fact

δ(x) = 0, x 6= 0.

are ill-defined.

Since δ-functions are defined only via integrals, we can derive all properties

that can be defined for δ-functions by considering integrals with functions.

2.2.1 Examples

Prove the following identities.∫ x2
x1
dxf(x) d

dx
δ(x− x0) = −f ′(x0), x1 < x0 < x2, (2.5)

f(x)δ(x− x0) = f(x0)δ(x− x0), (2.6)

δ(a(x− x0)) = 1
|a|δ(x− x0), (2.7)

δ(f(x)) =
∑

k
1

|f ′(xk)|δ(x− xk), ∀xk 3 f(xk) = 0. (2.8)

Note that the coefficients on the RHS in (2.7) and (2.8) are absolute values

since the δ-functions are positive-definite.

2.2.2 An Identity for Delta Function

Consider the distribution

A(x) ≡ lim
k→∞

eikx. (2.9)

Firstly it is a distribution rather than a well-defined function of x. For x 6= 0,

A(x) = 0, because∫
dx A(x)f(x) =

∫
dx lim

k→∞
eikxf(x) = 0 (2.10)

for any smooth function f(x) that vanishes in the neighborhood of x = 0. (We

used this property in the stationary phase approximation.) For x = 0, it is

just 1. Hence this distribution A(x) is nonzero on only one point (of measure

0). It is thus equivalent to 0.

Next we consider the distribution

B(x) =

∫ ∞
−∞

dkeikx = lim
k→∞

1

ix
(eikx − e−ikx). (2.11)
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Again, it vanishes for any x 6= 0, but it is ill-defined for x = 0. We may guess

that it is proportional to δ(x), which is also 0 for x 6= 0 and ill-defined for

x = 0. We can check this by computing∫ a

−a
dxB(x) =

∫ a

−a
dx

∫ ∞
−∞

dkeikx =

∫ ∞
−∞

dk
eika − e−ika

ik
= 2π (2.12)

for any a > 0. (You can use the residue theorem to evaluate the last step.)

Thus, if B(x) is proportional to δ(x), it must be

B(x) =

∫ ∞
−∞

dkeikx = 2πδ(x). (2.13)

Let us try to be more rigorous in deriving this result (2.13). Since B(x)

vanishes for all x 6= 0,
∫
dxB(x)f(x) should only depend on the the behavior

of f(x) at x = 0. Because
∫
dxB(x)f(x) is a linear map of f(x) (to C), the

most general situation is∫ ∞
−∞

dxB(x)f(x) = a0f(0) + a1f
′(1) + a2f

′′(2) + · · · (2.14)

for constant coefficients a0, a1, a2, · · · . This means∫
dxδ(n)(x)f(x) = (−1)nf (n)(0). B(x) =

∫ ∞
−∞

dkeikx = a0δ(x)− a1δ
′(x) + a2δ

′′(x)− · · · . (2.15)

What we can learn from (2.12) is only that a0 = 2π.

From the definition of B(x) one can check that it is an even function of

x. This implies that all an = 0 for all odd n’s. We can further fix all the rest

δ(n)(−x) = (−1)nδ(n)(x).
coefficients an by considering a simple example∫ ∞

−∞
dx B(x)e−

α
2
x2 =

∫ ∞
−∞

dk

∫ ∞
−∞

dxe−
α
2

(x−ik/α)e−
1
2α
k2

=

√
2π

α

∫ ∞
−∞

dke−
1
2α
k2

= 2π. (2.16)

This should be identified with∫ ∞
−∞

dx(2πδ(x) + a2δ
′′(x) + a4δ

(4)(x) + · · · )e−
α
2
x2 = 2π + a2α + 3a4α

2 + · · · .

(2.17)

Hence we conclude that an = 0 for all n.

2.3 Review of Fourier Series

Periodic functions f(x) of period 2π can be approximated by

f(x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) . (2.18)
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Another equivalent expression is

f(x) =
∑
n∈Z

fne
inx. (2.19)

If f(x) is real, an, bn ∈ R and fn = f ∗−n ∈ C.

The equal signs in (2.18) and (2.19) are not exact. There can be points of

measure 0 where the equality breaks down. In particular there is the Gibbs’

phenomenon: if there is a sudden change of the slope of f(x), the value of the

Fourier series typically overshoots.

The Fourier series for periodic functions is just a special case of the fol-

lowing general idea: For a given class of functions (e.g. periodic functions
We will talk about the

general theory of complete

basis of functions in Chap.

3.

on [−π, π), one can choose a complete basis of functions {φn(x)} so that it

is always possible to express any function f(x) in this class as a linear su-

perposition of them: f(x) =
∑

n fnφn(x), which holds almost everywhere on

the domain of f(x). The Fourier expansion to be discussed below is another

example. Here we give two more examples.

If periodic functions on [−π, π) can be expressed as (2.18), then even peri-

odic functions can be expressed as

f(x) =
∞∑
n=0

an cos(nx), (2.20)

and the odd ones as

f(x) =
∞∑
n=1

bn sin(nx). (2.21)

These are functions defined on [0, π], and their values in [−π, 0] are determined

by either f(−x) = f(x) or f(−x) = −f(x). When we consider a function f(x)

defined on [0, π], we can use either cos(nx) or sin(nx) to expand it, and its

values in the region [−π, 0] will be determined accordingly. Note that the RHS

of (2.20) has the property that its first derivative vanishes at the boundaries

x = 0, π, while the RHS of (2.21) vanishes at x = 0, π.

2.4 Fourier Transform as a Limit of Fourier

Series

Any periodic function f(x) of period 2π can be approximated to arbitrary

accuracy by
∑

n fne
inx. By a change of variable (scaling of x) we have

f(x) =
∑
n∈Z

fne
i2πnx/L, x ∈ [−L/2, L/2). (2.22)

Using ∫ L/2

−L/2
dxei2πmx/Lei2πnx/L = Lδ0

m+n, (2.23)
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we find

fn =
1

L

∫ L/2

−L/2
dxe−i2πnx/Lf(x). (2.24)

Now we take the limit L → ∞ and expect that any fx. f(x) defined on

R can be approximated to arbitrary accuracy by the expansion. To do so, we

imagine that the fx fn : Z→ C defined on Z is promoted to a fx. f̂(n) : R→ C
defined on R by interpolation, so that f̂(n) = fn for n ∈ Z. In the limit of

large L, we focus on fx’s fn which are very smooth, so that they do not change

much when n→ n+ 1. That is, fn+1 − fn → 0 as L→∞.

Consider the change of variables

n→ k = 2πn/L, (2.25)

fn → f̃(k) = N f̂(n). (2.26)

The first equation implies that∑
n '

∫
dn =

∫
dk L

2π
, (2.27)

δ0
m+n ' δ(m+ n) = δ( L

2π
(k − k′)) = 2π

L
δ(k − k′). (2.28)

To make the connection between the Kronecker delta and Dirac delta fx., we

examine a sum/integral of them∑
n

fnδ
0
m+n = f−m ' f̂(−m) =

∫
dnf̂(n)δ(m+ n). (2.29)

Thus eqs. (2.22), (2.23) and (2.24) become

f(x) =
∫∞
−∞ dk

L
2πN f̃(k)eikx, (2.30)∫∞

−∞ dxe
ikxeik

′x = 2πδ(k + k′), (2.31)

f̃(k) = N
L

∫∞
−∞ dxe

−ikxf(x). (2.32)

To get a well-defined limit for L→∞, the ratio L/N should be a finite num-

ber. On the other hand the choice of the finite number is merely a convention.

An often used convention is L/N =
√

2π:

f(x) =
∫∞
−∞

dk√
2π
f̃(k)eikx, (2.33)

f̃(k) =
∫∞
−∞

dx√
2π
e−ikxf(x). (2.34)

The constants in the

Fourier transform and its

inverse

f(x) =

∫ ∞
−∞

dk

N1
f̃(k)eikx,

f̃(k) =

∫ ∞
−∞

dx

N2
e−ikxf(x)

always satisfy

N1N2 = 2π.

Repeating this decomposition for n-variables, we get

A function f(x, y) of 2

variables is also a function

of one variable when the

other variable is given. We

can first do Fourier trans-

form on x for any given y

f(x, y) =

∫
dkxg(kx, y)eikxx,

and then do Fourier trans-

form on each g(kx, y) for

given kx

g(kx, y) =

∫
dkyh(kx, ky)eikyy.

Together we have the

Fourier transform on both

variables of f .

f(x) =
∫∞
−∞

dnk
(2π)n/2

f̃(k)eikx, (2.35)

f̃(k) =
∫∞
−∞

dnx
(2π)n/2

e−ikxf(x). (2.36)
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2.5 Basics of Fourier Transform

Try to be familiar with the following identities:

˜̃f(x) = f(x), (2.37)

˜(f + g)(k) = f̃(k) + g̃(k), (2.38)

(̃af)(k) = af̃(k), (2.39)

(̃∂if)(k) = ikif̃(k), (2.40)

˜(∂i1 · · · ∂imf)(k) = (iki1) · · · (ikim)f̃(k), (2.41)

Parseval:
∫
dnk|f̃(k)|2 =

∫
dnx|f(x)|2, (2.42)

f̃(0) =
∫

dnx
(2π)n/2

f(x), (2.43)

f(x)∗ = f(x)⇔ f̃(−k) = f̃ ∗(k), (2.44)

convolution: f̃ g(k) =
∫

dnp
(2π)n/2

f̃(k − p)g̃(p). (2.45)

2.5.1 Uncertainty Relation

What Fourier transform does to a function f(x) is to decompose it into a

superposition of sinusoidal waves. (This is the same as Fourier series, except

that the period →∞.)

Spiky details of f(x) correspond to the large k dependence of f̃(k), while

the large scale behavior of f(x) is encoded in the small k dependence of f̃(k).

If we superpose two si-

nusoidal waves with al-

most the same wavelength

ei(k+κ)x + ei(k−κ)x =

2 cos(κx)eikx, the result

is a seemingly sinusoidal

wave with a slowly-varying

amplitude. It takes a dis-

tance of scale ∆x ∼ 1/κ,

which is the inverse of the

uncertainty in wave num-

ber, to see the change in

amplitude, and to tell its

deviation from an exact si-

nusoidal wave.

An important property of Fourier transform is that it demonstrates the

uncertainty principle ∆x∆p ≥ 1 of QM. If a wave function f(x) has a charac-

teristic length scale L so that it is natural to write f(x) = F (x/L), then its

Fourier transform will have a characteristic scale of L−1. That is, if the wave

function f(x) is mostly concentrated within a range of length L, its Fourier

transform f̃(k) is mostly concentrated within a range of length 1/L.

This can be seen by a scaling argument as follows:

f̃(k) =

∫
dx√
2π
f(x)eikx

=

∫
dx√
2π
F (x/L)eiLkx/L

=

∫
Ldx′√

2π
F (x′)eiLkx

′

= LF̃ (Lk). (2.46)

In the 3rd step we let x = Lx′. (Note that the overall scaling of a wave function

does not change the range of concentration.)
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2.5.2 Example

The most important example is the Gaussian

f(x) = Ae−
x2

2a2 . (2.47)

Its Fourier transform is

f̃(k) = A

∫
dx√
2π
e−

x2

2a2
+ikx

= A

∫
adx′√

2π
e−

x′2
2 e−

a2k2

2

= aAe−
a2k2

2 . (2.48)

In the 2nd step we used the change of variable ax′ = x − ia2k to complete

square. The Gaussian we start with (f(x)) has an uncertainty of ∆x = a, and

its Fourier transform is again an Gaussian with the uncertainty of ∆k = 1/a.

Find the Fourier transform of the following functions:

1. Identity f(x) = 1.

2. Dirac δ-fx. f(x) = δ(x− x0).

3. f(x) = 1
x2+a2

.

2.6 Applications to Differential Equations

Fourier transform can be used to reduce the action of differential operators to

multiplications by variables. For example, the ODE with constant parameters

a, b, (
d2

dx2
+ a

d

dx
+ b

)
φ(x) = ρ(x) (2.49)

is reduced to

(−k2 + iak + b)f̃(k) = ρ̃(k). (2.50)

f̃ can be easily solved from this algebraic eq., and then f(x) is know as the

Fourier transform of f̃ . This works also for ODE’s of higher orders.

Fourier transform for several variables can also be used to solve PDE’s.

Fourier transform is not so useful when the differential op. involves non-

trivial fx’s as coefficients. But if the coefficients are all independent of a certain

variable, it is still helpful to perform Fourier transform on that variable. For

example, for op’s of the form

D = D0 − ∂2
t , (2.51)

where D0 is independent of t, we can do Fourier transform on t so that it is

reduced to

D = D0 + k2. (2.52)

Fourier transform applies best to problems with translational symmetry.
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2.6.1 Example

Find the general solution to the differential equation
Recall that y(x) is in gen-

eral a special solution plus

a general solution of the

homogeneous equation.

d2

dx2
y(x) + a

d

dx
y(x) + by(x) = A cos(kx) (2.53)

for given constants a, b, A. Note that we have a quite different situation if k

happens to be a solution to the algebraic equation

−k2 + iak + b = 0.

(This happens only when a = 0 if k ∈ R.)

2.6.2 Electric Potential of Time-Dependent Source
This example combines

your knowledge of E&M,

complex analysis and

Fourier transform.

The electric potential V (x) in Lorentz gauge satisfies

�2φ(x) = −ρ(x), (2.54)

where ρ(x) is the charge density. Due to superposition principle (the fact that

this equation is linear), the solution of V can be obtained by superposing the

electric potential generated by a point charge at an instant of time

�2G(x, x′) ≡ (∇2 − ∂2
t )G(x, x′) = δ(4)(x− x′), (2.55)

where G(x, x′) represents V (x) generated by a point charge at the space-time
In general, solutions of a

PDE of the form

DG(x, x′) = δ(x− x′)

is called Green’s functions.

point x′. If G(x, x′) is known, φ(x) is just

φ(x) = −
∫
d4x′G(x, x′)ρ(x′). (2.56)

Therefore, solving G(x, x′) reduces the problem of solving V (x) for all kinds

of charge distributions ρ(x) to a problem of integration.

Due to translation symmetry, G(x, x′) = G(x − x′). Its Fourier transform

(in a different convention)

G(x) =

∫
d4k

(2π)4
G̃(k)eik·x, (2.57)

where k · x ≡ k0t− ~k · ~x, satisfies

(k2
0 − ~k2)G̃(ω,~k) ≡ k2G̃(k) = 1. (2.58)

So we find

G(x) =

∫
d4k

(2π)4

1

k2
eik·x. (2.59)

However, this expression is ill-defined, because the integrand diverges at k2 ≡
k2

0 − ~k2 = 0.
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The ambiguity involved in giving this ill-defined quantity a precise meaning

corresponds to the ambiguity in choosing the boundary/initial condition for

the differential eq.

Let us single out the integral of k0

G(x) =

∫
d3~k

(2π)3
e−i

~k·~xg(~k), g(~k) =

∫ ∞
−∞

dk0

2π

1

k2
0 − ~k2

eik0t. (2.60)

The ambiguity resides in g(~k).

It turns out that the problem is better understood in terms of complex

analysis. The divergence of the integrand can be circumvented in the complex

plane of k0. That is, we imagine that k0 is originally a complex number,

although the integral of interest is an integral over the real line in the complex

plane of k0. The divergences of the integrand include a simple pole at k0 =

−|~k| and another simple pole at k0 = |~k|. We can circumvent the poles by

passing around them either from above or from below. There are 4 possible

combinations of choices for the 2 poles, each giving a different but well-defined

(finite) integral.

For a given choice of definition of the integral, we can evaluate the integral

using the residue theorem.

The contour in the complex plane of k0 we need here must include the

real axis of k0. To make a complete contour we need to add half a circle at

infinity either in the upper half plane or lower half plane. At infinity in the

UHP, k0 = ±∞ + i∞, while in the LHP, k0 = ±∞ − i∞. The difference

between the choices of UHP vs. LHP is thus eik0t = e±i∞t−∞t (for UHP) vs.

eik0t = e±i∞t+∞t (for LHP). Therefore, for t > 0, this exponential factor is 0

at infinity in the UHP, and for t < 0, it is 0 at infinity in the LHP.

Since what we want to compute is the integral over the real axis, the residue

theorem helps us only if the half circle at infinity has no contribution to the

integral. This critirium determines whether we should choose the half circle

in the UHP or LHP for the contour.

For example, what will we get if we decide to circumvent both poles of k0

by passing them from below (deforming the contour from the real axis to the

LHP around the poles)? Let us consider what the Green’s fx. is for t > 0 and

t < 0 separately. For t > 0, we should choose the contour to be the real axis

plus a half circle at infinity in the UHP, so that the contour integral is the

same as the integral over the real axis. Then the residue theorem tells us that

g(~k) =
2πi

2π

(
1

2|~k|
ei|
~k|t − 1

2|~k|
e−i|

~k|t

)
. (2.61)

Similarly, for t < 0, we choose the contour to be the real axis plus a half circle

at infinity in the LHP, so that the contour integral is the same as the integral
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over the real axis. The residue theorem now gives

g(~k) = 0, (2.62)

because neither of the poles is inside the contour. The fact that G(x−x′) = 0

for t < t′ tells us that this is the retarded Green’s fx.

If we had chosen to circumvent both poles from above, we would have

gotten the advanced Green’s fx. Other choices of circumventing the poles give

other types of solutions, e.g. retarded potential for positive freq. modes and

advanced potential for neg. freq. modes, which is what Feynman chose for

QED.

Having explained the conceptual problems, let us now evaluate the retarded

Green’s fx. more explicitly. Plugging (2.61) into (2.60), we get

G(x) =

∫
dkd cos θdφk2

(2π)3
e−ikr cos θ i

2k
(eikt − e−ikt), (2.63)

where we denoted |~k| by k, and defined θ w.r.t. ~x. One can easily integrate

over φ and θ, and find

G(x) =

∫
dk

(2π)2

1

2r
(eikr − e−ikr)(eikt − e−ikt). (2.64)

Finally, integrating over t and recall that this is for t > 0, the retarded Green’s

fx. is

G(~x, t) =

{
− 1

4π
1
r
δ(t− r) (t > 0),

0 (t < 0).
(2.65)

The sol. to the PDE

(∇2 − ∂2
t )φ = ρ (2.66)

is therefore

φ(~x, t) =

∫
d4x′G(x− x′)ρ(x′) =

∫
d3~x′

1

8π2

1

|~x− ~x′|
ρ(~x′, t− |~x− ~x′|). (2.67)

2.6.3 Diffusion Equation

The diffusion eq.

∂tu = ∂2
xu (2.68)

describes the change of temperature over space and time. For the class of

problems in which u(t = 0, x) = u0(x) is given at the initial time t = 0, we

can first find the solution for u(t = 0, x) = δ(x− x′), and then superpose the

solution for a generic initial condition u0(x).

By Fourier transform,

u(t, x) =

∫
dk

2π
ũ(t, k)eikx. (2.69)



2.7. LAPLACE TRANSFORM 25

The diffusion eq. implies that

∂tũ(t, k) = −k2ũ(t, k), (2.70)

which is solved by

ũ(t, k) = ṽ(k)e−tk
2

. (2.71)

At t = 0, we want

u(t, x) =

∫
dk

2π
ṽ(k)eikx = δ(x) =

∫
dk

2π
eikx. (2.72)

Therefore ṽ(k) = 1, and

u(t, x) =

∫
dk

2π
etk

2+ikx =
1

2
√
πt
e−x

2/(4t). (2.73)

If the source is located at x = x′, the solution is obtained by x→ (x− x′).
u(t, x) here plays a role

resembling Green’s fx. It

is sometimes called a

“boundary Green’s fx.”

Hence, for a generic initial condition, the solution is

u(t, x) =

∫
dx′u0(x′)

1

2
√
πt
e−(x−x′)2/(4t) =

1√
π

∫
dyu0(x+ 2

√
ty)e−y

2

. (2.74)

2.7 Laplace Transform

Laplace transform can be viewed as an application of Fourier transform to

functions f(t) defined for t > 0 (or t > t0), which is not necessarily decaying

sufficiently fast as t→∞ for f̃(k) to be well-defined.

For f(t) defined for t > 0 (f(t) is not defined for t < 0) and f(t)e−ct for

some c > 0 decaying to 0 sufficiently fast, the combination

Θ(t) =

{
1, t > 0,

0, t < 0.
f(t)e−ctΘ(t) (2.75)

is a function whose Fourier transform can be defined while the Fourier trans-

form of f(t) may be ill-defined. But the information contained in this combi-

nation is as much as f(t) itself. There is (almost) no loss of information to use

the Fourier transform of this combination to describe f(t) (except the value

limt→∞ f(t)).

Applying the formulas of Fourier transform,

f(t)e−ctΘ(t) =

∫ ∞
−∞

dk

2π
f̃(k)eikt, (2.76)

f̃(k) =

∫ ∞
0

dtf(t)e(−c−ik)t. (2.77)

Combining exponential factors in these equations, we find

f(t)Θ(t) =

∫ c+i∞

c−i∞

ds

2πi
F (s)est, (2.78)

F (s) =

∫ ∞
0

dtf(t)e−st, (2.79)
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where we renamed f̃(k) by F (s), and

s = c+ ik. (2.80)

These formulas (2.78) and (2.79) define Laplace transform.

2.7.1 Example

Find the Laplace transform for f(t) = 1. (When we talk about Laplace trans-

form, we always implicitly assume that f(t) is not defined for t < 0.) Applying

(2.79), we find

F (s) =

∫ ∞
0

dte−st =
1

s
. (2.81)

Let us also transform F (k) back to f(t) to check the validity of our formulas

f(t) =

∫
ds

2πi

1

s
est = 1, for t > 0. (2.82)

Here we used the residue theorem, adding a large semicircle to the left of

complex plane of s to complete the contour. (est → 0 for the semicircle on the

left.)

For t < 0, we must choose the semicircle on the right. Then the residue

theorem gives f(t) = 0.

2.8 Other Integral Transforms

In addition to Fourier and Laplace transforms, there are other types of integral

transforms.
See M&W p.109, “Other

Transform Pairs”.In general, an integral transform is a change of basis of the space of func-

tions. A complete basis for a space of functions V is a set of functions

{φn(x)}, which will be denoted {|φn〉}, that can be used to express any func-

tion f(x) ∈ V as a linear superposition

f(x) =
∑
n

fnφn(x). (2.83)

Typically we can find a dual basis {ψn(x)} such that∫
dxµ(x)ψ∗m(x)φn(x) = δmn. (2.84)

We call {φn} an orthonormal basis if ψn = φn.

Introducing the notation of inner product on V as

〈f |g〉 ≡
∫
dxµ(x)f ∗(x)g(x), (2.85)

eq. (2.83) can be expressed as

|f〉 = |φn〉〈ψn|f〉, (2.86)
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where n is summed over the basis and

fn = 〈ψn|f〉 ≡
∫
dxµ(x)ψn(x)f(x). (2.87)

2.9 Exercises

1. Prove the following identities.∫ x2
x1
dxf(x) dn

dxn
δ(x− x0) = (−1)n dn

dxn
f(x0), x1 < x0 < x2, (2.88)

δ(n)(~F (~x)) =
∑

k
1

| det(
∂Fi
∂xj

)|
δ(n)(~x− ~xk). (2.89)

2. Find the Fourier transform of the following fx’s:

(a) f(x) = d
dx
δ(x− x0).

(b) f(x) = x
x2+a2

.

(c) f(t) = e−t/T sin(ωt) for t > 0.

(d) f(x) = xne−αx for n = 0, 1, 2, · · · for x > 0.

(e) f(x) = g(ax)eibx if G(k) is the Fourier transform of g(x).

3. Prove Parseval’s equation (2.42) and convolution theorem (2.45).

4. Find the retarded Green’s function G which satisfies

(−∂2
t +∇2 −m2)G(x, x′) = δ(4)(x− x′), (2.90)

where m ∈ R can be interpreted as the mass of the particle in propaga-

tion.

5. Find the most general solution of the differential equation

(∂2
t − ∂2

x)φ(t, x) = 0 (2.91)

with the boundary condition

φ(t, 0) = φ(t, L) = 0 (2.92)

for φ(t, x) ∈ R.

6. Find the most general solution of the differential equation for given pa-

rameter a

(i∂t + ∂2
x + ∂2

y − a)φ(t, x, y) = 0 (2.93)

with the boundary conditions

φ(t, 0, y) = 0, ∂xφ(t, L, y) = 0, φ(t, x, y + 2πR) = φ(t, x, y).

(2.94)
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7. If the Laplace transform of f(t) is F (k), what is the Laplace transform

of d
dt
f(t)?

While Laplace transform

can be used to transform

a differential eq. into

an algebraic eq., just like

Fourier transform, Laplace

transform introduces the

initial condition at t = 0

explicitly.

8. Use Laplace transform to find the solution of the differential eq.

d2

dt2
X(t) = −ω2X(t). (2.95)

9. Find the Laplace transform of the following functions:

(a) δ(t− t0).

(b) sinωt.

(c) cosωt.

(d) tn.

(e) e−λt.

10. Find the inverse Laplace transform of:

(a) 1
(s−a)n

.

(b) 1
(s−a)2−b2 .

(c) 1
(s2+1)(s−1)

.
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Chapter 3

Sturm-Liouville Theory

“Structures are the

weapons of the mathe-

matician.” Bourbaki

3.1 Motivation

The purpose of this chapter is mainly to establish the concept of the following

table of analogy:

Linear Algebra Differential Equations Quantum Mechanics

vector (colume) function state (wave function)

v =


v1

v2

...

vn

 f(x) |ψ〉 (ψ(x))

linear space space of functions Hilbert space

{v ∈ Cn} {f(x) : BC} {|ψ〉}
inner product integration inner product

vTw ∈ C
∫
dxµ(x)f ∗1 (x)f2(x) 〈ψ1|ψ2〉

matrix differential operator operator

Mij D = a(x) d2

dx2
+ b(x) d

dx
+ c(x) O(x̂, p̂)

Hermitian matrix self-adjoint operator observable

M∗
ij = Mji D† = D O† = O

eigenvector eigenfunction eigenstate

Mv = λv Df = λf O|ψ〉 = λ|ψ〉

Except subtleties involved in the limit n → ∞ (n is the dimension of the

linear space), the analogy between linear and (linear) differential equations

is almost exact. This analogy will be very useful for our understanding of

differential equations.

30
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3.2 Linear Algebra: Review

Review of linear algebra:

• Linear space V :

If |α〉, |β〉 ∈ V , then a|α〉+ b|β〉 ∈ V for a, b ∈ C.

• {|α〉} is a basis of V if any state |ψ〉 ∈ V is a superposition
If α = 1, · · · , n and all

ψα’s are linearly indepen-

dent, the dimension of V
is n.

|ψ〉 =
∑
α

ψα|α〉. (3.1)

• Inner product of V :

The inner product I(|α〉, |β〉), which is often denoted 〈α|β〉, is a map
The notation 〈α|β〉 for in-

ner product is suggestive

of its properties. Define a

linear space V∗ = {〈ψ| :

|ψ〉 ∈ V} and call 〈ψ|
the Hermitian conjugate

of |ψ〉. Let the linear re-

lations in V∗ be defined

from a complex conjuga-

tion of those in V. That

is, a linear relation in V

|ψ〉 = a|α〉+ b|β〉

is mapped to

〈ψ| = a∗〈α|+ b∗〈β|

in V∗. Then the properties

(3.2), (3.3) are naturally

inferred from the notation

〈α|β〉. We can also gen-

eralize the notion of Her-

mitian conjugate to C as

complex conjugate. Then

(3.4) also follows from the

usual rule for Hermitian

conjugation of a product

(AB)† = B†A†.

from two elements of V to C. It should be linear and anti-linear in the

two arguments

I(|α〉, (a|β1〉+ b|β2〉)) = a〈α|β1〉+ b〈α|β2〉, (3.2)

I((a|α1〉+ b|α2〉), |β〉) = a∗〈α1|β〉+ b∗〈α2|β〉 (3.3)

and Hermitian

〈α|β〉∗ = 〈β|α〉. (3.4)

• D is a linear operator on V if it is a map that maps any state |ψ〉 ∈ V
to a state in V and

D(a|α〉+ b|β〉) = aD|α〉+ bD|β〉. (3.5)

• Eigenstates and eigenvalues:

Solutions (λ ∈ C, |ψ〉 ∈ V) of the equation

D|ψ〉 = λ|ψ〉 (3.6)

are called eigenvalues (λ) and eigenstates (|ψ〉) of D.

• Hermitian/Self-Adjoint operators:

The adjoint op. (denoted by D†) of D is defined by the requirement

〈α|D|β〉 = (D†|α〉)†|β〉 ∀|α〉, |β〉 ∈ V . (3.7)

D is self-adjoint if D† = D.

• For a finite dimensional linear space V , the eigenvalues λn are real, and

the eigenstates {|n〉} form a complete basis of V .
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3.3 ODE: Review

An ordinary differential equation (ODE) of order n

f(y(x), y′(x), y′′(x), · · · , y(n)) = 0 (3.8)

typically needs n initial conditions

y(0), y′(0), · · · , y(n−1)(0) (3.9)

to uniquely determine a solution.
ODE of order 1 are of

the form f(y, y′) = 0.

One can solve this alge-

braic equation to the form

y′ = g(y) and then it is

solved by integrating both

sides of

g−1(y)dy = dx.

Here we will only consider linear ODEs of order 2

Later we will also consider

inhomogeneous equations

where 0 on the RHS is re-

placed by a given function

d(x).

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = 0. (3.10)

The linearity of the equation implies that if y1(x) and y2(x) are two (linearly

independent) solutions, then

a1y1(x) + a2y2(x) (3.11)

is also a solution. The fact that this ODE is of order 2 implies that there are

only two independent parameters in the general solution, and so this is already

the most general solution.

There are several elementary ODE’s that every physicist is expected to be

able to solve.

•
a
d2

dx2
y + b

d

dx
y + cy = 0. (3.12)

This equation has translation symmetry and one should try the ansatz
Recall Fourier transform

and Fourier series.
y(x) = eαx, α ∈ C. (3.13)

This includes all the following possibilities: sin(kx), cos(kx), sin(kx)eαx,

etc.

•
ax2 d

2

dx2
y + bx

d

dx
y + cy = 0. (3.14)

This equation has scaling symmetry and one should try the ansatz

y(x) = xα, α ∈ C. (3.15)

• You are also expected to be able to solve those that can be put into the

forms above via simple change of variables.
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3.4 Space of Functions and Differential Oper-

ators

• A space of functions as a linear space.

• Differential operators as linear operators.

The first thing to note about a diff. eq. of the form
Apart from the linear-

space structure of the

space of functions, the

space of functions is

also equipped with the

structure of an algebra,

i.e., that of multiplication:

f1(x)f2(x) = f3(x).

However, the latter is not

relevant in the problem of

solving diff. eq’s.

Dφ = ρ (3.16)

is that this equation is formally the same as an equation in linear algebra, with

D = matrix (linear map), and |φ〉 and |ρ〉 being vectors.

We will use |·〉 to represent elements in a vector space V , so we rewrite

(3.16) as

D|φ〉 = |ρ〉. (3.17)

The space of functions is a linear space.

The differential operator D acts on a function to give another function,

and its action is linear:

D(a|f1〉+ b|f2〉) = aD|f1〉+ bD|f2〉. (3.18)

Thus D is a linear map acting on the linear space of functions. This is the

most salient feature of linear diff. eqs, and we will see that it is useful to view

it as a problem in linear algebra.
Feynman: “The same

equations have the same

solutions. 3.4.1 Functions on a Lattice

In a numerical analysis of an ODE using computer softwares, the continuous

domain is often approximated by a lattice. The diff. op. becomes a difference

operator. |φ〉 and |ρ〉 become columns with finite number of elements. One

can imagine that the original problem is the continuum limit of this problem

of linear algebra when the number of lattice sites goes to infinity.

The linear space of functions on a lattice has the natural basis in which each

basis vector |en〉 is the function which is 1 at the n-th point and 0 everywhere

else. A function can be expanded in this basis as |f〉 = |en〉fn, where fn is the

value of the function at the n-th point. (The continuum limit of fn is f(x).)

We have the following correspondence:

n↔ x, fn ↔ f(x),
∑

n ↔
∫
dx, δmn ↔ δ(x− x′), (3.19)

|f〉 = fn|n〉 ↔ f(x) =
∫
dx′f(x′)δ(x− x′), (3.20)

〈f |g〉 =
∑

n f
∗
ngn ↔

∫
dxf(x)∗g(x), (3.21)

|f〉〈g| = fmg
∗
n|m〉〈n|, fmg

∗
n ↔ f(x)g(x′)∗. (3.22)
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3.4.2 Change of Basis

One can also choose a different basis for the linear space V related to the

previous basis by a linear map M : |en〉 = |Ea〉Man. In the new basis, a

function is |f〉 = |Ea〉Fa, with Fa = Manfn In the continuum limit, it is

(n→ x, a→ k)
This is the Fourier trans-

form if u(k, x) ∝ eikx.F (k) =

∫
dx u(k, x)f(x). (3.23)

Thus, functions do not have to be represented as f(x) (in terms of the basis

δ(x − x′)). They are vectors in a linear space and how they look depends on

which basis you choose. (The linear space of fxs is infinite dimensional; we

will worry about convergence later.)

3.4.3 Eigenfunctions

Recall that the complete set of eigenvectors of a Hermitian matrix M consti-

tutes a basis of the linear space on which M acts. Recall also that one can

always choose this basis to be orthonormal.

Understanding that a diff. eq. is a problem in linear algebra, we can

apply techniques in linear algebra. If D is Hermitian, it is associated with a

convenient basis of the linear space V , i.e., its eigenvectors.

D|en〉 = λn|en〉. (3.24)

The number of eigenvectors equals the dimension of the linear space V .

Any two eigenvectors with different eigenvalues must be orthorgonal, because

0 = 〈em|Den〉 − (|D†em〉)†|en〉 = (λn − λm)〈em|en〉. (3.25)

For the subspace of V spanned by eigenvectors with the same eigenvalue, we

can always choose the eigenvectors to be orthonormal

〈em|en〉 = δmn. (3.26)

via Graham-Schmidt, Then we have the identity
M = |em〉Mmn〈en| is a

linear operator whose ac-

tion on a state is obvi-

ous from its notation. As

a matrix its elements are

Mmn. One can think

of |en〉 as the basis of

columns, and 〈en| as the

basis of rows.

|en〉〈en| = I, (3.27)

where I is the identity operator.

3.5 Graham-Schmidt Orthonormalization

The Graham-Schmidt Orthonormalization is a way to construct a complete

basis for a linear space. The space of functions is a linear space so we can use

this method to construct a complete basis of functions.
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As a linear space, the space of functions V is equipped with an inner product

〈φ1|φ2〉 =

∫
dxµ(x)φ∗1(x)φ2(x). (3.28)

Starting with an element in V , we can normalize it and call it φ0(x). It can

be chosen as the first element of the complete basis. Then we pick arbitrarily

another function φ1(x) which is linearly independent of φ0(x). We can project

out the part of φ1(x) that is proportional to φ0(x)

φ1(x)→ φ′1 ≡ φ1 − φ0〈φ0|φ1〉 (3.29)

so that it is now perpendicular to φ0: 〈φ0|φ′1〉 = 0. We can normalize it and

rename it as φ1(x), and include it in the orthonormal basis. Then we pick a

third function φ2(x) which is linearly independent of {φ0, φ1}, that is,

aφ0(x) + bφ1(x) + cφ2(x) = 0 ∀x (3.30)

only if a = b = c = 0. Again we project out the components of φ2(x) along φ0

and φ1

φ2(x)→ φ′2 ≡ φ2 − φ0〈φ0|φ2〉 − φ1〈φ1|φ2〉. (3.31)

You can check that the φ′2 is perpendicular to both φ0 and φ1:

〈φ0|φ′2〉 = 〈φ1|φ′2〉 = 0. (3.32)

Now we normalize φ′2 and rename it as φ2. The first 3 elements of the complete

basis are found.

The process of finding the (n+ 1)-th basis element goes on like this. Find

a function φn that is linearly independent of {φ0, · · · , φn−1}. Define

φ′n ≡ φn −
n−1∑
k=0

φk〈φk|φn〉. (3.33)

It is orthogonal to every element already in the basis {φ0, · · · , φn−1}. We can

normalize it, rename it as φn(x) and include it in the basis.

The construction guarantees that the set {φ0, φ1, · · · } is orthonormal. Usu-

ally we also adopt a systematic way to pick the n-th function so that the

“completeness” of the basis is more manifest. For instance, often we choose

φ0 to be constant and φn to be a polynomial of order n.

3.6 Sturm-Liouville Differential Operator

For the inner product defined by

〈f |g〉 =

∫
dxµ(x)f ∗(x)g(x), (3.34)
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where µ(x) is called the weight function, a generic 2nd order ordinary differ-

ential operator is Hermitian if it can be written in the form

D =
1

µ(x)

[
− d

dx
p(x)

d

dx
+
i

2

(
r(x)

d

dx
+

d

dx
r(x)

)
+ q(x)

]
, (3.35)

with real functions p(x), r(x), q(x), assuming suitable BC’s. This expression
What are the assumptions

on BC and p(x), r(x)?can be better understood by recalling the identity (MN)† = N †M †. If V is a

space of real fx’s, or fx’s with Neumann BC, we need r(x) = 0, and D is called

the Sturm-Liouville differential operator.

Eigenvectors φn of a Sturm-Liouville operator

D =
1

µ(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
, (3.36)

constitute a complete basis of the linear space of fxs V (on which D is self-

adjoint), assuming suitable choice of p(x), q(x), µ(x) as well as BC’s. (We

don’t need to consider eigenfx’s which do not belong to V .) It is complete in

the sense that any well behaved (piecewise continuous function with a finite

number of finite discontinuities) F can be approximated to arbitrary accuracy

by a series
∑

n anφn. That is,

lim
m→∞

∫ x1

x0

dxµ(x)

(
F (x)−

m∑
n=0

anφn(x)

)2

= 0. (3.37)

For example the periodic function f(x) = Θ(x) on (−π, π), equals the

series

f(x) =
1

2
+

2

π

∞∑
n=0

sin((2n+ 1)x)

2n+ 1
(3.38)

up to points at the discontinuities.

For an orthonormal basis φn, i.e., 〈φm|φn〉 = δmn, the coefficients an are
Recall that |φn〉〈φn| =

1. This can also be writ-

ten as
∑
n φn(x)φn(y) =

1
µ(x)δ(x − y), where the

Dirac delta fx is defined by∫
dyδ(x − y)f(y) = f(x)

for any well-behaved fx.

f .

an = 〈φn|F 〉 ≡
∫
dxµ(x)φ∗n(x)F (x). (3.39)

To be more rigorous, one should make some assumptions about the Sturm-

Liouville operator. (Discussions on the properties of eigenfx’s/eigenvalues of

Sturm-Liouville op’s is called the Sturm-Liouville theory.) A simple example

For a proof of the Sturm-

Liouville theorem, see W.

We will mention the proof

in Appl. Math. IV, after

Green’s fxs and calculus of

variations are introduced.

is to assume that p(x) > 0 and µ(x) > 0, and p(x) is differentiable, while µ(x)

and q(x) are continuous, and that the space of fx’s V should be defined as the

set of differentiable, square-integrable fx’s living on a finite interval [a, b] either

with homogeneous BC’s of the form αφ(a)+α′φ′(a) = 0 and βφ(b)+β′φ′(b) = 0,

or with the periodic BC. In this case it can be proven that the eigenvalues λi

are real and discrete, and the ordered set λ1 < λ2 < · · · → ∞ is unbounded

on one side. Furthermore, the number of zeros of the eigenfx’s φi is larger for

those with larger eigenvalues.



3.7. EXAMPLES 37

On the other hand, the nice properties (e.g. completeness of eigenfx’s) are

not limited to those satisfying all the conditions above. If the space on which

fx’s in V are defined is not compact, the index n is a continuous parameter and

the sum
∑

n should be replaced by an integral. The Kronecker delta above

shall be replaced by Dirac delta fx.

3.7 Examples

Here we construct a complete basis for the op. − d2

dx2
for various boundary

conditions on the interval [0, 1].

3.7.1 Periodic BC

For the periodic BC

f(1) = f(0), f ′(1) = f ′(0), (3.40)

the answer is the Fourier series

f(x) =
∞∑
n=0

An cos(2nπx) +
∞∑
n=1

Bn sin(2nπx). (3.41)

The eigenfx’s of ∂2
x have eigenvalues −(2nπ)2.

3.7.2 Dirichlet BC

For the Dirichlet BC

f(0) = f(1) = 0, (3.42)

the answer is

f(x) =
∞∑
n=1

An sin(nπx). (3.43)

The eigenvalues are −(nπ)2.

3.7.3 Neumann BC

For the Neumann BC

f ′(0) = f ′(1) = 0, (3.44)

the answer is

f(x) =
∞∑
n=0

An cos(nπx). (3.45)

The eigenvalues are −(nπ)2.



38 CHAPTER 3. STURM-LIOUVILLE THEORY

3.8 Inequalities

3.8.1 Bessel’s Inequality

For a positive definite inner product 〈f |f〉 ≥ 0, if |f〉 =
∑

n an|φn〉 for an

orthonormal basis |φn〉, then 〈f |f〉 ≥
∑′

n |an|2 for a sum
∑′ over a subset of

the basis. The meaning of the equality is simply that the inner product can

be represented in different ways. The equality of inner product in different

representations is called Parseval relation.

3.8.2 Schwarz Inequality

The Schwarz inequality is simply

||f || 2 ||g|| 2 ≥ |〈f |g〉|2, (3.46)

where ||f || 2 ≡ 〈f |f〉. This is as obvious as | cos θ| ≤ 1.

3.9 Theorems

For the Sturm-Liouville operator

D =
1

µ(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
, (3.47)

where ρ(x) and q(x) are continuous, p(x) is continuously differentiable, ρ(x)

and p(x) are positive definite, and q(x) is non-negative for the range α < x < β,

we have:

1. Let the eigenvalues be ordered

λ0 ≤ λ1 ≤ λ2 ≤ · · · , (3.48)

then 0 ≤ λ0 and limn→∞ λn =∞.

2. φn(x) (the eigenfunction with eigenvalue λn) has n zeros in (α, β).

3. Between any two consecutive zeros of φn(x), there must be at least one

zero of φm(x) if λm > λn.

4. If we increase p, q, or decrease ρ, or reduce the range (α, β), all eigen-

values increase.
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3.10 Exercises:

1. The ODE (
P (x)

d2

dx2
+Q(x)

d

dx
+R(x)− λS(x)

)
φ(x) = 0

can be viewed as an eigenvalue problem for a Sturm-Liouville op. D.

What are the fx’s µ(x), p(x), q(x) defining D?
The eigenvalue problem of

an op. D is to look for

solutions φ(x) of the eq.

(D − λ)φ(x) = 0 for any

λ ∈ R or C. The set of

values of λ is called the

spectrum.

2. For the eigenvalue problem

y′′(x) + λy(x) = 0, y(0) = y(L) = 0, (3.49)

verify the 4 properties in sec. 3.9.

3. Find the complete set of eigenfx’s and their eigenvalues for the operator
d2

dx2
with the following BC’s:

(a) f(0) = 0, f ′(1) = 0.

(b) f(0) + 2f ′(0) = 0, f(1) = 0.

Find the coefficients fn to expand a generic function f(x) in terms of

the eigenfunctions.

4. Find the complete set of eigenfx’s for the eigenvalue problem

(x+ 1)2y′′(x) + λy(x) = 0 (3.50)

with the boundary condition

y(0) = y(1) = 0. (3.51)

Find the coefficients fn to expand a generic function f(x) in terms of

the eigenfunctions.

5. Use Schwarz inequality to prove the uncertainty relation
Hint for Ex.5: 1. (A −
Ā) and (B − B̄) are both

Hermitian and satisfy the

same commutation rela-

tion. 2. AB = 1
2 (AB +

BA)+ 1
2 (AB−BA). Note

that the 1st term on the

RHS is Hermitian and the

2nd anti-Hermitian.

∆A∆B ≥ 1

2
. (3.52)

It holds for any state |ψ〉 if A and B are Hermitian op’s satisfying the

commutation relation

[A,B] ≡ AB −BA = i. (3.53)

Here ∆A2 is defined by 〈ψ|(A− Ā)2|ψ〉 with Ā ≡ 〈ψ|A|ψ〉.
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Chapter 4

Special Functions

4.1 Introduction

Some functions are special and arise naturally in elementary problems. Here

are a few possible reasons how some functions are “special”.

• It arises as part of the eigenfxs of the Laplace op.
More generally, variations

of this eq., say,

(∇2 − V (~r))φ + λφ = 0

for certain V ’s and

curved spaces that are

important for physi-

cists/mathematicians,

can also lead to study of

special functions.

∇2φ+ λφ = 0. (4.1)

The Laplace op. in flat space ∇2 =
∑

i ∂
2
i appears in almost every

elementary problem in physics (wave eq, diffusion eq, Schrödinger eq.,

etc.)

In Cartesian coordinates, ei
~k·~x is special. (And hence sin, cos are special.)

In spherical coordinates, Legendre polynormials are special.

• It has a geometrical meaning.
We will not expect any-

one to memorize or to be

able to derive all the equa-

tions listed below. The

purpose of listing all these

equations is to give you an

idea about what kind of

identities exist for a typ-

ical special function. In

the future, when you need

to use these properties of

a certain special function,

you will not panic and

know what kind of tools

you may have to solve the

problem at hand.

• It has some interesting algebraic properties.

• They form a complete basis for a certain space of functions.

4.2 Legendre Polynomials

Orthogonality: ∫ 1

−1

dxPm(x)Pn(x) =
2

2n+ 1
δmn. (4.2)

Examples:

Boundary condition:

Pn(1) = 1 ∀n.

P0 = 1 (4.3)

P1 = x (4.4)

P2 =
1

2
(3x2 − 1) (4.5)

P3 =
1

2
(5x3 − 3x) (4.6)

41
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General formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (4.7)

Generating function:

g(t, x) =
∞∑
n=0

Pn(x)tn =
1√

1− 2xt+ t2
. (4.8)

Recurrence relations:

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (4.9)

(1− x2)P ′n(x) = −nxPn(x) + nPn−1(x). (4.10)

Differential equation:

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (4.11)

4.3 Hermite Polynomials

Orthogonality: ∫ ∞
−∞

dxe−x
2

Hm(x)Hn(x) = 2nn!
√
πδmn. (4.12)

Examples:
The coefficient of the xn

term in Hn is 2n.H0 = 1 (4.13)

H1 = 2x (4.14)

H2 = 4x2 − 2 (4.15)

H3 = 8x3 − 12x (4.16)

Symmetry:

Hn(−x) = (−1)nHn(x). (4.17)

General formula:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

. (4.18)

Generating function:

e2xt−t2 =
∞∑
n=0

tn

n!
Hn(x). (4.19)

Recurrence relations:

Hn+1 = 2xHn − 2nHn−1 (4.20)

H ′n(x) = 2nHn−1(x) (4.21)

Differential equation:

y′′ − 2xy′ + 2ny = 0. (4.22)
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4.4 Laguerre Polynomial

Orthogonality: ∫ ∞
0

dxe−xLm(x)Ln(x) = δmn. (4.23)

Example:
Boundary condition:

Ln(0) = 1 ∀n. L0 = 1 (4.24)

L1 = 1− x (4.25)

L2 = 1− 2x+
1

2
x2 (4.26)

L3 = 1− 3x+
3

2
x2 − 1

6
x3 (4.27)

General formula:

Ln =
ex

n!

dn

dxn
(
xne−x

)
. (4.28)

Generating function:

g(x, z) =
∞∑
n=0

znLn =
e−

xz
1−z

1− z
. (4.29)

Recurrence relations:

(n+ 1)Ln+1 = (2n+ 1− x)Ln − nLn−1, (4.30)

xL′n(x) = nLn(x)− nLn−1(x), (4.31)

Differential equation:

xy′′ + (1− x)y′ + ny = 0. (4.32)

4.5 Bessel Functions

General formula:

Jm(x) =
∞∑
`=0

(−1)`x2`+m

22`+m`!(m+ `)!
. (4.33)

Normalization:∫ ∞
0

dx Jn(x) = 1.

Generating function:

From this we have

eix cos θ =

∞∑
n=−∞

ineinθJn(x).

ex(t−1/t)/2 =
∞∑

n=−∞

tnJn(x). (4.34)

Recurrance relation:

d

dx
(xmJm(x)) = xmJm−1(x). (4.35)

Differential equation:

x2y′′ + xy′ + (x2 −m2)y = 0. (4.36)
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Other identities:

J−m(x) = (−1)mJm(x), (4.37)

Jm(x) → (x/2)m

Γ(m+ 1)
, x→ 0, (4.38)

Jn(x+ y) =
∞∑

m=−∞

Jm(x)Jn−m(y), (4.39)

Jn(x) =
1

π

∫ π

0

dθ cos(x sin θ − nθ), (4.40)

Jm(x) →
√

2

πx
cos
(
x− mπ

2
− π

4

)
, x→∞. (4.41)

More identities: ∑∞
m=−∞ Jm(x) = 1, (4.42)∫ 1

0
dx x Jk(zkmx)Jk(zknx) = 1

2
J2
k+1(zkm)δmn, (4.43)∫∞

0
dr r Jm(kr)Jm(k′r) = 1

k
δ(k − k′), (4.44)

where zkm = m-th zero of Jk(x).

The defintion of Bessel function Jn can be extended to the case when the

index is real Jν , ν ∈ R.

These functions Jν(x) are sometimes called Bessel functions of the first

kind. There are also Bessel functions of the second kind Yν(x), which are also

called Neumann functions Nν(x). They can be defined by

Nν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
.

This is ill-defined for ν = integer. In that case we take the limit ν → n. Nν(x)

is the other independent solution of the same differential equation (4.36) with

m→ ν. Hankel functions are just a change of basis

H(1)
ν (x) = Jν(x) + iNν(x), H(2)

ν (x) = Jν(x)− iNν(x). (4.45)

The description above allows the argument x of the Bessel function Jν(x) to

be complex. When it is purely imaginary, we get the modified Bessel functions

Iν(x) = i−νJν(ix), Kν(x) =
π

2
iν+1H(1)(ix). (4.46)

They satisfy the differential equation

x2y′′ + xy′ − (x2 + ν2)y = 0. (4.47)

4.6 Other Special Functions

In this section we briefly introduce gamma function Γ(x), beta functionB(x, y),

and hypergeometric functions.
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4.6.1 Gamma Function and Beta Function

The gamma function can be defined as

Γ(x) =

∫ ∞
0

dt tx−1e−t. (4.48)

Using integration by parts, one can show from this that

Γ(x) = (x− 1)Γ(x− 1). (4.49)

For an integer n, Γ(n) = (n− 1)!.

Another useful property is

Γ(x)Γ(−x) = − π

x sin(πx)
. (4.50)

Beta function is defined by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (4.51)

4.6.2 Hypergeometric Function

Differential equation:

x(1− x)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0. (4.52)

A regular solution is

2F1(a, b; c;x) = 1 +
ab

1!c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 + . . . . (4.53)

Another independent solution is

x1−c
2F1(a+ 1− c, b+ 1− c; 2− c;x). (4.54)

Properties:

d
dx2F1(a, b; c;x) = ab

c 2F1(a+ 1, b+ 1; c+ 1;x), (4.55)

2F1(a, b; c;x) = Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
dt t

b−1(1−t)c−b−1

(1−tx)a
. (4.56)

The generalized hypergeometric functions are

pFq

[
a1, a2, · · · , ap
b1, b2, · · · , bq

;x

]
=
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
, (4.57)

where

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1)(a+ 2) · · · (a+ k − 1). (4.58)



46 CHAPTER 4. SPECIAL FUNCTIONS

4.7 Exercises:

1. Expand the function

f(x) =

{
+1, 0 < x < 1

−1, −1 < x < 0.
(4.59)

as an infinite series of Legendre polynomials Pn(x).

2. Evaluate the sum
Hint: Use the generating

function.

∞∑
n=0

xn+1

n+ 1
Pn(x). (4.60)

3. Use the Grahamm-Schmidt orthogonalization to work out the first few

Hermite polynomials Hn(x) for n = 0, 1, 2, assuming that Hn(x) is a

polynomial of order n of the form Hn(x) = 2nxn + · · · . (The measure of

integral is e−x
2
.)

4. (Fourier-Bessel transform)

Using (4.44), we define the Fourier-Bessel transform (or Hankel trans-

form)

f(r) =

∫ ∞
0

dk k Jn(kr)F (k), F (k) =

∫ ∞
0

dr r Jn(kr)f(r). (4.61)

Find F (k) for f(r) = e−ar/r.
Hint: Use the generating

function.
5. (Spherical Bessel function)

Try to solve the following differential equation

x2y′′ + 2xy′ + (x2 − n(n+ 1))y = 0 (4.62)

by using the ansatz y = xαJν(x) and y = xαYν(x). Show that the result

is

jn(x) =

√
π

2x
Jn+1/2(x), yn(x) =

√
π

2x
Yn+1/2(x). (4.63)

6. What linear homogeneous second-order differential equation has

xαJ±n(βxγ) (4.64)

as solutions? Give the general solution of

y′′ + x2y = 0. (4.65)

7. Find an approximate expression for the Gamma function Γ(−x) for large

positive x.
Use Stirling’s formula and

(4.50).
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