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ABSTRACT
This paper studies in-sample and out-of-sample tests for Granger causality
using Monte Carlo simulation. The results show that the out-of-sample tests
may be more powerful than the in-sample tests when discrete structural breaks
appear in time series data. Further, an empirical example investigating Taiwan’s
investment–saving relationship shows that Taiwan’s domestic savings may be
helpful in predicting domestic investments. It further illustrates that a possible
Granger causal relationship is detected by out-of-sample tests while the in-
sample test fails to reject the null of non-causality. Copyright © 2005 John
Wiley & Sons, Ltd.

key words Granger causality; out-of-sample forecast; forecast accuracy

INTRODUCTION

Granger causality tests have been used frequently to investigate the relationship between two or more
variables of interest. Recent research, however, has re-examined Granger’s original idea by arguing
that the standard in-sample implementations of Granger’s definition depart from the spirit of causal-
ity suggested by Granger (1969) in which ‘causality’ requires evidence of improved post-sample
forecasting. In Ashley et al. (1980), they argue: 

. . . a sound and natural approach to such [Granger causality] tests must rely on the out-of-sample
forecasting performance of models relating the original (non-prewhitened) series of interest.

This implies that out-of-sample forecasting performance may provide better information about
causality.

Among studies attempting to reconsider Granger causality in the context of post-sample forecasts,
McCracken (2004) derives the asymptotic distributions of several tests of equal forecast accuracy
between two nested models. Chao et al. (2001) construct an out-of-sample test for Granger causal-
ity. Clark and McCracken (2001) provide some evidence on the asymptotic and finite-sample behav-
iour of tests of equal forecast accuracy and encompassing for nested models. However, a question
remains to be answered: are in-sample or out-of-sample tests preferable? This is an important issue
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since people may find that there exist differences between in-sample and post-sample evidence in
empirical studies (see Clark and McCracken, 2001; Awad and Goodwin, 1998). Further, Chao et al.
(2001) report that an empirical illustration shows that the choice of in-sample versus out-of-sample
Granger causality tests can crucially affect the conclusions about the predictive content. Recently,
many empirical studies have begun to apply out-of-sample Granger causality tests. For instance, see
Rapach and Weber (2002, 2004) and Lettau and Ludvigson (2001).

However, it has been shown in Clark and McCracken (2001) that the in-sample Granger causal-
ity test is more powerful than all of the out-of-sample tests they examine in the Monte Carlo simu-
lations. This result is not surprising since the data generating processes they investigate are stationary.
Does this result imply that the out-of-sample test is not useful in nested model selection? The answer
may be negative. An important factor is neglected in the above simulation: the presence of under-
lying parameter instability.

Some recent papers start to consider the role of parameter instability under the context of out-of-
sample forecasts. For instance, Rossi (2003) develops optimal tests of the joint null hypothesis of
no (Granger) causality and parameter stability. Clark and McCracken (2003a) provide analytical 
and Monte Carlo evidence on how parameter instability affects tests of equal forecast accuracy and
encompassing. They find that the instability lowers the power of out-of-sample forecast tests 
relative to in-sample tests. Those papers, however, consider only the structural breaks in the Granger-
causal coefficients of interest. In contrast, Inoue and Kilian (2003) consider structural breaks in 
both Granger-causal coefficients and other non-Granger-causal coefficients, and conclude that the
presence of structural changes in non-Granger-causal coefficients does not favour out-of-sample 
tests of predictability. Their conclusion, however, comes from a very small set of out-of-sample
tests.1

We will examine whether the out-of-sample causality tests dominate in the presence of a specific
setting of parameter instability. This paper is related to the existing literature in the following sense:
on the one hand, as a complement to Rossi (2003) and Clark and McCracken (2003a), this paper
focuses on structural breaks in non-Granger-causal coefficients. On the other hand, complementary
to the work by Inoue and Kilian (2003), this paper investigates a larger set of out-of-sample tests.
The experimental designs in this study are very close to the designs in Clark and McCracken (2003b),
however, they focus on how to account for the weakness of the out-of-sample evidence on the Phillips
curve relative to the in-sample evidence. Instead, this paper investigates the size and power proper-
ties of out-of-sample and in-sample tests for Granger causality.

The results from my Monte Carlo simulation confirm the findings in Inoue and Kilian (2003) that
out-of-sample tests are not preferred when F-type equal MSE test and encompassing t-test are used.
However, a new encompassing test proposed by Clark and McCracken (2001) outperforms in-sample
tests when facing the presence of discrete structural breaks as discussed in this study. A two-stage
procedure to deal with the causality test is then suggested and evaluated.

The rest of the paper is structured as follows. The following section reviews a brief comparison
of in-sample and out-of-sample Granger causality tests. The third section presents the Monte Carlo
simulation design. The results and discussion are reported in the fourth section. Then we provide a
simple empirical example in the fifth section. A final section concludes.

1 Inoue and Kilian (2003) consider only two out-of-sample tests: an F-type equal MSE test and an encompassing t-test pro-
posed by Harvey et al. (1998).
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IN-SAMPLE AND OUT-OF-SAMPLE GRANGER CAUSALITY TESTS

Consider the following nested models:

(1)

(2)

It is clear that model 2 nests model 1 under the non-Granger-causality null: b22 = 0. An out-of-sample
Granger causality test means that the predictive ability of model 2 is better than that of model 1. For
instance, if we use the mean square prediction error (MSPE) as a measure of prediction perform-
ance, then MSPE(2) < MSPE(1) implies that x2t-1 Granger causes yt. In contrast, a conventional 
in-sample Granger causality test (GC test) simply uses an F-test for testing the null hypothesis: 
b22 = 0.

The out-of-sample forecast we consider here is a one-step-ahead prediction. The sample of obser-
vations {yt, x1t, x2t}T

t=1 is divided into in-sample and out-of-sample portions. There are R in-sample
observations: t = 1, . . . , R and P out-of-sample observations: t = R + 1, . . . , R + P. Obviously, 
R + P = T. A recursive scheme of estimation is used.

The following out-of-sample tests will be investigated and summarized in Table I:2

(a) The equal MSE tests: an F-type test (MSE-F) proposed by McCracken (2004), a t-test 
(MSE-T) proposed by Diebold and Mariano (1995), and the Granger and Newbold (1977) t-test
(MSE-REG).

(b) The encompassing tests: a t-test (ENC-T) proposed by Harvey et al. (1998), a regression-based
test (ENC-REG) proposed by Ericsson (1992), and a new test (ENC-NEW) developed by Clark
and McCracken (2001).

(c) The Chao et al. (2001) test (CCS).

SIMULATION DESIGN

Our simulation design is simply a generalization of the design in Clark and McCracken (2001). Con-
sider the following data generating process (DGP):3

(3)

where (uy,t, ux,t) are i.i.d. standard normal random variables. It is worth noting that the coefficients
(at, gt) are time-varying, which accounts for the parameter instability.

Letting qt = (at, gt)¢, we consider the following two designs:
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2 For the details of these tests, see Clark and McCracken (2001).
3 Note that this study intends to expand on the experiments in Clark and McCracken (2001). The settings of parameter values
follow Clark and McCracken (2001) with modifications of parameter instability. The DGPs are not economically motivated.
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4 We have also considered the DGP with two structural breaks as: qt = q0, for t = 1, . . . , , q = q1, for t = + 1, . . . , 

, and q = q2, for t = + 1, . . . , T. Here (a0, g0) = (0.2, 0.2); (a1, g1) = (0.5, 0,5); (a2, g2) = (0.8, 0.8). The simulation

results are similar to DGP2 and are available upon request.
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Table I. Out-of-sample tests

(a) The equal MSE tests

(b) The encompassing tests

(c) CCS test
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Further, the values of a0 and g0 are set as follows:
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In addition, rather than discrete breaks in the DGPs shown above, we consider the following sto-
chastic time variation in the parameters:

(DGP3)

where the parameter sequence qt is initialized at 0. This kind of data generating process is addressed
in Rossi (2003) as well.

To evaluate size, let b = 0, "t. To evaluate power, b is set at 0.1. It is clear that for DGP1, we
have the same settings as the DGP-I in Clark and McCracken (2001). The number of replications in
each experiment is 1000.

SIMULATION RESULTS AND DISCUSSION

Empirical size and power
Table II presents the empirical size results for three different data generating processes, using a
nominal size of 5%. We have considered various combinations of R (in-sample observations) and P
(out-of-sample observations). In most settings, both in-sample and out-of-sample tests have reason-
able finite-sample size properties with DGP1. It is worth noting that both tests have higher size dis-
tortions for DGP2.

We then report the empirical power results in Table III. According to Panel A in Table III, it is
clear that all out-of-sample tests have worse power than in-sample tests while DGP1 is used. More-
over, ENC-NEW has the best power over any other out-of-sample tests in all cases. These results
concur with Clark and McCracken’s (2001) findings. Therefore, according to the simulation results,
it seems that the in-sample GC test beats all of the out-of-sample tests, and it may be a more appro-
priate test to employ when there are no structural changes.

If we consider one breaking point in the data generating process (DGP2), Panel B in Table III
shows that there are seven out of nine cases where the ENC-NEW test has higher power than the
GC test.5 In the case of DGP3 (Panel C), however, the results reveal a better performance for the
in-sample tests over the out-of-sample tests in most cases. Therefore, it is suggested that the out-of-
sample tests are more powerful than the in-sample tests under the appearance of discrete structural
breaks, but not for the case of stochastic time variation.

Since we have shown that under discrete structural breaks, the out-of-sample tests may work better
than the in-sample tests, a further question may be appealing as well: how does the finding change
under different settings of P/R, the ratio of post-sample portion to in-sample portion? We therefore
present the power and size results for different values of P/R in Table IV. We can see that the power
improves as P/R increases without substantial changes of empirical size.
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5 While accounting for two break points, though not uniformly, we still get that most ENC-NEW tests are more powerful
than the GC tests. Moreover, since we focus on a (Granger) causal relationship from x to y, we simply assume that y does
not (Granger) cause x, i.e., there are no lags of y on the right-hand side. However, including lags of y on the right-hand side
does not change the results that out-of-sample tests are more powerful than in-sample tests when there exist discrete breaks.
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Size-adjusted power
In Table III, we have shown that under discrete structural breaks, the out-of-sample ENC-NEW test
may work better than the in-sample GC test in terms of empirical (actual) power. However, it is
worth noting that the ENC-NEW test sometimes has greater size than the GC test. It is, therefore,
of interest to investigate the size-adjusted power under discrete structural breaks (DGP2). Clearly,
the results in Table V indicate that the GC test has higher size-adjusted power than out-of-sample
tests in most cases.

Although the good performance of out-of-sample tests does not exist in terms of size-adjusted
power, this paper still focuses on the empirical (actual) size and power. The reason is as follows. As
shown in Clark and West (2004), in order to link the empirical study with the power property of
tests, it may be useful to explore the power that is not size-adjusted. This paper tries to shed some
light on what may be useful in conducting the empirical strategy. Considering unadjusted power and

Table II. Empirical size, one-step-ahead forecasts (nominal size = 5%)

(A) DGP1 R = 50 R = 100 R = 200

P = 40 80 100 P = 100 160 200 P = 120 160 200

GC 0.048 0.049 0.054 0.055 0.042 0.045 0.044 0.054 0.039
ENC-NEW 0.053 0.046 0.055 0.058 0.042 0.048 0.057 0.051 0.050
ENC-T 0.057 0.055 0.055 0.060 0.042 0.048 0.055 0.046 0.046
ENC-REG 0.047 0.053 0.052 0.059 0.037 0.046 0.059 0.041 0.049
MSE-F 0.042 0.049 0.049 0.054 0.036 0.043 0.054 0.039 0.050
MSE-T 0.051 0.056 0.050 0.059 0.041 0.044 0.058 0.040 0.044
MSE-REG 0.045 0.053 0.047 0.055 0.042 0.040 0.057 0.043 0.043
CCS 0.041 0.051 0.044 0.042 0.047 0.041 0.048 0.044 0.048

(B) DGP2 R = 50 R = 100 R = 200

P = 40 80 100 P = 100 160 200 P = 120 160 200

GC 0.094 0.110 0.106 0.122 0.101 0.103 0.114 0.102 0.108
ENC-NEW 0.136 0.141 0.129 0.173 0.138 0.133 0.145 0.140 0.173
ENC-T 0.111 0.121 0.117 0.135 0.108 0.115 0.119 0.095 0.125
ENC-REG 0.105 0.120 0.112 0.121 0.100 0.116 0.107 0.092 0.115
MSE-F 0.095 0.104 0.104 0.117 0.093 0.101 0.108 0.091 0.105
MSE-T 0.074 0.089 0.083 0.091 0.086 0.085 0.082 0.060 0.071
MSE-REG 0.061 0.084 0.079 0.084 0.079 0.081 0.073 0.060 0.066
CCS 0.159 0.202 0.189 0.209 0.203 0.215 0.186 0.208 0.228

(C) DGP3 R = 50 R = 100 R = 200

P = 40 80 100 P = 100 160 200 P = 120 160 200

GC 0.061 0.052 0.047 0.055 0.051 0.059 0.045 0.053 0.038
ENC-NEW 0.078 0.049 0.056 0.058 0.047 0.061 0.042 0.052 0.040
ENC-T 0.074 0.063 0.056 0.057 0.048 0.064 0.039 0.050 0.044
ENC-REG 0.073 0.052 0.053 0.054 0.052 0.063 0.036 0.048 0.046
MSE-F 0.068 0.048 0.048 0.054 0.048 0.057 0.040 0.051 0.045
MSE-T 0.076 0.060 0.048 0.068 0.047 0.051 0.034 0.052 0.050
MSE-REG 0.069 0.056 0.048 0.058 0.043 0.048 0.030 0.049 0.048
CCS 0.054 0.059 0.054 0.044 0.044 0.050 0.039 0.052 0.037
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size may help researchers be aware of the (exact) benefit and cost they may encounter in their empir-
ical study.

A two-stage procedure
According to this simple Monte Carlo simulation study, we may conclude that an out-of-sample test
is preferred when there are discrete structural breaks in non-Granger-causal coefficients. In contrast,
when the coefficients are stable or the instability is stochastically time-variant, the in-sample test
performs better. Thus, it may be intuitive to consider the following two-stage procedure to deal with
the causality test:

(1) First test whether there are discrete structural changes.
(2) If we reject the null of no structural breaks, an out-of-sample Granger causality test could be

applied; otherwise, an in-sample test may be preferred.

Table III. Empirical power, one-step-ahead forecasts (nominal size = 5%)

(A) DGP1 R = 50 R = 100 R = 200

P = 40 80 100 P = 100 160 200 P = 120 160 200

GC 0.190 0.250 0.269 0.366 0.429 0.497 0.520 0.560 0.615
ENC-NEW 0.188 0.244 0.252 0.331 0.410 0.482 0.442 0.516 0.580
ENC-T 0.157 0.222 0.238 0.283 0.375 0.441 0.337 0.422 0.516
ENC-REG 0.139 0.218 0.231 0.278 0.370 0.443 0.331 0.429 0.516
MSE-F 0.138 0.205 0.211 0.264 0.344 0.415 0.350 0.409 0.494
MSE-T 0.124 0.185 0.205 0.230 0.286 0.363 0.242 0.309 0.395
MSE-REG 0.123 0.175 0.204 0.217 0.279 0.349 0.234 0.305 0.392
CCS 0.090 0.163 0.203 0.197 0.272 0.351 0.218 0.281 0.351

(B) DGP2 R = 50 R = 100 R = 200

P = 40 80 100 P = 100 160 200 P = 120 160 200

GC 0.321 0.411 0.455 0.541 0.658 0.686 0.750 0.784 0.821
ENC-NEW 0.374 0.425 0.477 0.594 0.661 0.708 0.718 0.769 0.846
ENC-T 0.310 0.392 0.443 0.530 0.628 0.668 0.585 0.690 0.789
ENC-REG 0.305 0.392 0.432 0.519 0.625 0.668 0.589 0.692 0.785
MSE-F 0.295 0.371 0.404 0.500 0.573 0.629 0.565 0.635 0.756
MSE-T 0.223 0.311 0.355 0.379 0.490 0.555 0.393 0.488 0.612
MSE-REG 0.205 0.306 0.352 0.375 0.484 0.546 0.388 0.474 0.611
CCS 0.357 0.467 0.533 0.585 0.654 0.714 0.622 0.724 0.810

(C) DGP3 R = 50 R = 100 R = 200

P = 40 80 100 P = 100 160 200 P = 120 160 200

GC 0.143 0.218 0.237 0.279 0.368 0.422 0.444 0.477 0.521
ENC-NEW 0.147 0.217 0.241 0.273 0.346 0.408 0.382 0.432 0.483
ENC-T 0.136 0.213 0.224 0.245 0.331 0.395 0.295 0.377 0.430
ENC-REG 0.125 0.205 0.225 0.238 0.328 0.391 0.294 0.369 0.420
MSE-F 0.123 0.190 0.205 0.232 0.304 0.352 0.316 0.362 0.406
MSE-T 0.122 0.164 0.183 0.208 0.258 0.309 0.225 0.283 0.327
MSE-REG 0.106 0.160 0.180 0.200 0.252 0.304 0.215 0.277 0.329
CCS 0.098 0.148 0.178 0.166 0.238 0.292 0.195 0.250 0.294
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Ideally, we may expect to see that the above procedure gives the best power since it takes advan-
tage of both in-sample and out-of-sample tests. However, because the tests of structural changes in
the first stage have their own power–size property, it is unclear how well the procedure performs in
practice. We may further consider the following data generating process:6

Table IV. Empirical power and size (nominal size = 5%), DGP2

(1) Empirical power
R = 100
P = 20 40 60 80 100 120 140 160 180

GC 0.394 0.422 0.483 0.518 0.541 0.589 0.631 0.658 0.676
ENC-NEW 0.358 0.411 0.491 0.530 0.594 0.634 0.648 0.661 0.684
ENC-T 0.275 0.320 0.397 0.449 0.530 0.565 0.577 0.628 0.642
ENC-REG 0.266 0.320 0.387 0.426 0.519 0.565 0.575 0.625 0.643
MSE-F 0.304 0.331 0.377 0.411 0.500 0.537 0.535 0.573 0.606
MSE-T 0.227 0.257 0.292 0.302 0.379 0.440 0.442 0.490 0.515
MSE-REG 0.219 0.240 0.273 0.289 0.375 0.437 0.435 0.484 0.514
CCS 0.216 0.323 0.444 0.479 0.585 0.625 0.626 0.654 0.698

(2) Empirical power
R = 100
P = 20 40 60 80 100 120 140 160 180

GC 0.114 0.095 0.119 0.116 0.122 0.104 0.116 0.101 0.099
ENC-NEW 0.146 0.134 0.146 0.158 0.173 0.146 0.166 0.138 0.130
ENC-T 0.124 0.115 0.108 0.115 0.135 0.108 0.124 0.108 0.100
ENC-REG 0.115 0.103 0.104 0.102 0.121 0.105 0.122 0.100 0.104
MSE-F 0.135 0.111 0.102 0.104 0.117 0.094 0.111 0.093 0.087
MSE-T 0.120 0.100 0.079 0.084 0.091 0.074 0.073 0.086 0.076
MSE-REG 0.113 0.093 0.075 0.069 0.084 0.069 0.068 0.079 0.074
CCS 0.152 0.169 0.185 0.200 0.209 0.207 0.219 0.203 0.203

Table V. Size-adjusted power, one-step-ahead forecasts (size = 5%), DGP2

(A) DGP1 R = 50 R = 100 R = 200

P = 40 80 100 P = 100 160 200 P = 120 160 200

GC 0.229 0.286 0.341 0.364 0.549 0.541 0.575 0.633 0.726
ENC-NEW 0.209 0.260 0.286 0.322 0.510 0.523 0.519 0.618 0.654
ENC-T 0.205 0.249 0.272 0.310 0.464 0.523 0.434 0.571 0.656
ENC-REG 0.202 0.254 0.307 0.338 0.502 0.542 0.434 0.539 0.672
MSE-F 0.212 0.263 0.318 0.322 0.469 0.511 0.446 0.536 0.636
MSE-T 0.179 0.214 0.259 0.272 0.394 0.408 0.283 0.450 0.561
MSE-REG 0.183 0.222 0.270 0.269 0.405 0.421 0.287 0.447 0.557
CCS 0.143 0.225 0.266 0.316 0.415 0.450 0.375 0.443 0.524

6 I would like to thank a referee for suggesting the experiments I conduct here.
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(DGP4)7 Generate simulated data from DGP1, DGP2 and DGP3 with probability 1/3, 1/3 and
1/3, respectively

Clearly, in DGP4, we draw from a mixture of distributions in which one is stable (DGP1) and the
others are unstable (DGP2 and DGP3). We then compare the power (b = 0.1 as well) of the pro-
posed two-stage procedure (2STAGE) with naively (1) always using the in-sample test (GC) and (2)
always using the out-of-sample ENC-NEW test (OOS). In the first stage, we apply the Andrews and
Ploberger (1994) structural break tests with approximate asymptotic p-values proposed by Hansen
(1997). Five percent is chosen as the significant level to reject the null of no structural breaks. The
results are reported in Table VI.

According to Table VI, it is obvious that the proposed two-stage procedure may outperform the
naive in-sample and out-of-sample tests in most cases. And in all cases considered, the two-stage
procedure has not been the worst choice. Hence, we may conclude that the two-stage procedure
works well.

AN EMPIRICAL EXAMPLE

In this section, we use out-of-sample and in-sample causality tests to determine whether domestic
saving is useful in predicting domestic investment. Since Feldstein and Horioka’s (1980) seminal
paper, it is well known that there is a strong positive correlation between saving and investment rates
across countries. Their finding of a close saving–investment link was further confirmed by numer-
ous studies and interpreted as evidence of international capital immobility. Rather than running cross-
sectional regressions, we would like to provide time series evidence on the saving–investment
relationship by investigating Taiwan’s quarterly data.

Table VI. Empirical power and size (nominal size = 5%), DGP4

(1) Empirical power
R = 100
P = 20 40 60 80 100 120 140 160 180

GC 0.277 0.309 0.339 0.378 0.403 0.428 0.469 0.475 0.512
OOS 0.239 0.286 0.328 0.364 0.405 0.425 0.457 0.464 0.490
2STAGE 0.258 0.299 0.340 0.379 0.413 0.434 0.477 0.474 0.506

(2) Empirical power
R = 100
P = 20 40 60 80 100 120 140 160 180

GC 0.068 0.070 0.061 0.064 0.069 0.068 0.070 0.073 0.069
OOS 0.088 0.077 0.082 0.080 0.094 0.091 0.085 0.083 0.070
2STAGE 0.078 0.074 0.079 0.077 0.091 0.089 0.084 0.086 0.073

7 Alternatively, generating simulated data from DGP1 with probability 1/2 and from DGP2 with probability 1/2 gives similar
results.
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Our quarterly data, which covers 1961:3 to 2002:2 with a total of 164 observations, is Taiwan’s
private investments and private net savings. Data comes from the Macroeconomic Statistics Data-
base of the Directorate-General of Budget, Accounting and Statistics, Taiwan. All variables are in
logarithms.

First, the results of the augmented Dicky–Fuller tests suggest that both investments and savings
reject the hypothesis of unit roots.8 We then test for structural breaks in individual time series 
using Andrews and Ploberger’s (1994) test. In addition, we also test for common structural breaks
following Bai et al. (1998). Both tests suggest structural breaks in Taiwan’s investments and 
savings. In particular, the Sup-W statistics, break date and 90% confidence interval of break data in
the Bai et al. (1998) test are 17.50, 1974:1 and [1971:2, 1976:4], respectively. The common struc-
tural break of investments and savings in 1974:1 seems plausible because of the oil crisis in the
1970s.

Since there may exist structural breaks in our data, it is more appropriate to employ out-of-sample
tests to determine whether domestic saving Granger causes domestic investment. The in-sample and
post-sample portions are set to be R = 84 and P = 80, which makes P/R � 1.0. Moreover, the recur-
sive scheme of estimations is used. In order to make a comparison, we also employ the in-sample
GC test. The bivariate VAR model of investment and saving with five lags was chosen by use of the
Akaike information criterion (AIC). The details of the empirical model and the results are presented
in Table VII. Clearly, the in-sample GC test fails to reject the non-Granger causality while all out-
of-sample tests reject the null under either 5% or 10% significance levels. In other words, accord-
ing to Taiwan’s time series data, domestic savings may be helpful in predicting domestic investment.
Since we have already shown that under discrete structural breaks, out-of-sample tests may be more
powerful than in-sample tests, this example may have shown that a possible Granger causal rela-
tionship can be detected by out-of-sample tests while the in-sample GC test fails to reject the null
of non-causality.

Table VII. Empirical example: in-sample and out-of-sample tests for
Granger causality

Test statistics Critical values

In-Sample GC 1.77 3.11 (10%), 4.37 (5%), 9.02 (1%)
ENC-NEW 3.64** 2.35 (10%), 3.28 (5%), 5.52 (1%)
ENC-T 1.71** 1.09 (10%), 1.46 (5%), 2.17 (1%)
ENC-REG 1.48** 1.09 (10%), 1.46 (5%), 2.17 (1%)
MSE-F 1.22* 0.24 (10%), 1.45 (5%), 4.35 (1%)
MSE-T 0.31* 0.06 (10%), 0.37 (5%), 1.00 (1%)
MSE-REG 0.25* 0.06 (10%), 0.37 (5%), 1.00 (1%)
CCS 10.17*** 2.71 (10%), 3.84 (5%), 6.63 (1%)

log(I)t = a + S n
j=1 bj log(I)t-j + S n

j=1 gj log(S)t-j + et. Lags(n) is chosen to be 5 by the
Akaike information criterion (AIC). *, ** and *** denote the rejection of the null
under 10%, 5% and 1% significance level, respectively. The critical values of out-
of-sample tests come from Clark and McCracken (2001) and McCracken (2004).

8 Results for tests of unit roots and structural breaks are available upon request.
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CONCLUDING REMARKS

In this paper, we use a simple Monte Carlo simulation study to investigate a conjecture that the 
out-of-sample tests may be more powerful than the in-sample tests under the appearance of time-
varying parameters. The simulation results indicate that out-of-sample tests may work better than
in-sample tests in terms of empirical (actual) power when there are discrete structural breaks in non-
Granger-causal coefficients. However, we are also aware that this good performance of out-of-sample
tests does not hold in terms of size-adjusted power.

We then propose a two-stage procedure to deal with the causality test. (a) Test first whether there
are discrete structural changes. (b) If we reject the null of no structural breaks, out-of-sample Granger
causality tests could be applied; otherwise, in-sample tests may be more appropriate. A further Monte
Carlo study suggests that relative to naively always using in-sample tests or always using out-of-
sample tests, the two-stage procedure works well.

Guided by this two-stage procedure, we investigate the investment–saving relationship in Taiwan
by first conducting a test of structural breaks. We found that there may exist structural breaks in the
data, thus out-of-sample tests should be applied. The empirical results imply that Taiwan’s domes-
tic savings may be helpful in predicting domestic investments and have illustrated that a possible
Granger causal relationship may be detected by out-of-sample tests while the in-sample GC test fails
to reject the null of non-causality.
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