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Abstract

We consider pooling cross-section time series data for testing the unit root hypo-
thesis. The degree of persistence in individual regression error, the intercept and trend
coe3cient are allowed to vary freely across individuals. As both the cross-section and
time series dimensions of the panel grow large, the pooled t-statistic has a limiting
normal distribution that depends on the regression speci"cation but is free from nui-
sance parameters. Monte Carlo simulations indicate that the asymptotic results provide
a good approximation to the test statistics in panels of moderate size, and that the
power of the panel-based unit root test is dramatically higher, compared to perform-
ing a separate unit root test for each individual time series. ? 2002 Elsevier Science
B.V. All rights reserved.

JEL classi,cation: C12; C23

Keywords: ADF regression; Nonstationary panel; Panel unit root test; Pooled
t-statistics

1. Introduction

A large body of literature during the past two decades has considered
the impact of integrated time series in econometric research (cf. surveys
by Diebold and Nerlove, 1990; Campbell and Perron, 1991). In univariate
analysis, the Box–Jenkins (Box and Jenkins, 1970) approach of studying
di>erence-stationary ARMA models requires a consistent and powerful test
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for the presence of unit roots. In general, such tests have non-standard lim-
iting distributions; for example, the original Dickey–Fuller test (Dickey and
Fuller, 1979) and the subsequent augmented Dickey–Fuller (ADF) test statis-
tic (Dickey and Fuller, 1981) converge to a function of Brownian motion
under quite general conditions (Said and Dickey, 1984). The critical values
of the empirical distribution were "rst tabulated by Dickey (cf. Fuller, 1976).
Semi-parametric test procedures have also been proposed (i.e. Phillips, 1987;
Phillips and Perron, 1988), with improved empirical size and power properties
under certain conditions (cf. Diebold and Nerlove, 1990).

In "nite samples, these unit root test procedures are known to have limited
power against alternative hypotheses with highly persistent deviations from
equilibrium. Simulation exercises also indicate that this problem is particularly
severe for small samples (see Campbell and Perron, 1991). This paper con-
siders pooling cross-section time series data as a means of generating more
powerful unit root tests. The test procedures are designed to evaluate the null
hypothesis that each individual in the panel has integrated time series versus
the alternative hypothesis that all individuals time series are stationary. The
pooling approach yields higher test power than performing a separate unit
root test for each individual.

Some earlier work has analyzed the properties of panel-based unit root tests
under the assumption that the data is identically distributed across individu-
als. Quah (1990, 1994) used random "eld methods to analyze a panel with
i.i.d. disturbances, and demonstrated that the Dickey–Fuller test statistic has
a standard normal limiting distribution as both the cross-section and time se-
ries dimensions of the panel grow arbitrarily large. Unfortunately, the random
"eld methodology does not allow either individual-speci"c e>ects or aggre-
gate common factors (Quah, 1990, p. 17). Breitung and Meyer (1991) have
derived the asymptotic normality of the Dickey–Fuller test statistic for panel
data with an arbitrarily large cross-section dimension and a small "xed time
series dimension (corresponding to the typical microeconomic panel data set).
Their approach allows for time-speci"c e>ects and higher-order serial correla-
tion, as long as the pattern of serial correlation is identical across individuals,
but cannot be extended to panel with heterogeneous errors. More recent ad-
vances in nonstationary panel analysis include Im et al. (1995), Harris and
Tzavalis (1996) and Phillips and Moon (1999), among others.

What type of the asymptotics considered in the panel unit root test is
a delicate issue. Earlier work by Anderson and Hsiao (1982) consider a
stationary panel with "xed time series observations while letting the cross
sectional units grow arbitrarily large. Similar asymptotic method is used in
nonstationary panel by Breitung and Meyer (1991) and Harris and Tzavalis
(1996). Im et al. (1995) and Quah (1990, 1994) explore the case of joint
limit in which both time series and cross sectional dimension approach in"nity
with certain restrictions. The precise meaning regarding in what way the cross
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sectional and time series dimension approach in"nity has been clearly de"ned
in Phillips and Moon (1999). This article is one of the earlier research that
consider the joint limit asymptotics in which both N and T approach in"nity
subjecting to certain conditions such as

√
N=T → 0 in some model, and

N=T → 0 in others.
The panel-based unit root test proposed in this article allows for individual-

speci"c intercepts and time trends. Moreover, the error variance and the pat-
tern of higher-order serial correlation are also permitted to vary freely across
individuals. Our asymptotic analysis in Section 3 indicates that the proposed
test statistics have an interesting mixture of the asymptotic properties of sta-
tionary panel data and the asymptotic properties of integrated time series data.
In contrast to the non-standard distributions of unit root test statistics for a
single time series, the panel test statistics have limiting normal distributions,
as in the case of stationary panel data (cf. Hsiao, 1986). However, in con-
trast to the results for stationary panel data, the convergence rate of the test
statistics is higher with respect to the number of time periods (referred to as
“super-consistency” in the time series literature) than with respect to the num-
ber of individuals in the sample. Furthermore, whereas regression t-statistics
for stationary panel data converge to the standard normal distribution, we
"nd that the asymptotic mean and variance of the unit root test statistics vary
under di>erent speci"cation of the regression equation (i.e. the inclusion of
individual-speci"c intercepts and time trends).

For practical purposes, the panel based unit root tests suggested in this
paper are more relevant for panels of moderate size. If the time series di-
mension of the panel is very large then existing unit root test procedures
will generally be su3ciently powerful to be applied separately to each indi-
vidual in the panel, though pooling a small group of individual time series
can be advantageous in handling more general patterns of correlation across
individuals (cf. Park, 1990; Johansen, 1991). On the other hand, if the time
series dimension of the panel is very small, and the cross-section dimension
is very large, then existing panel data procedures will be appropriate (cf.
MaCurdy, 1982; Hsiao, 1986; Holtz-Eakin et al., 1988; Breitung and Meyer,
1991). However, panels of moderate size (say, between 10 and 250 indi-
viduals, with 25–250 time series observations per individual) are frequently
encountered in industry-level or cross-country econometric studies. For panels
of this size, standard multivariate time series and panel data procedures may
not be computationally feasible or su3ciently powerful, so that the unit root
test procedures outlined in this paper will be particularly useful.

The remainder of this paper is organized as follows: Section 2 speci"es the
assumptions and outlines the panel unit root test procedure. Readers who are
interested mainly in empirical application can skip the rest of the paper. Sec-
tion 3 analyzes the limiting distributions of the panel test statistics. Section 4
brieIy discusses the Monte Carlo simulations. Concluding remarks regarding
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the limitations of the proposed panel unit root test are o>ered in Section 5.
All proofs are deferred to the appendix.

2. A panel unit root test

2.1. Model speci,cations

We observe the stochastic process {yit} for a panel of individuals
i= 1; : : : ; N , and each individual contains t= 1; : : : ; T time series observations.
We wish to determine whether {yit} is integrated for each individual in the
panel. As in the case of a single time series, the individual regression may in-
clude an intercept and time trend. We assume that all individuals in the panel
have identical "rst-order partial autocorrelation, but all other parameters in
the error process are permitted to vary freely across individuals.

Assumption 1.
(a) Assume that {yit} is generated by one of the following three models:

Model 1: Kyit = 	yit−1 + 
it .
Model 2: Kyit = �0i + 	yit−1 + 
it .
Model 3: Kyit = �0i + �1it + 	yit−1 + 
it , where −2¡	6 0 for

i= 1; : : : ; N .

(b) The error process 
it is distributed independently across individuals and
follows a stationary invertible ARMA process for each individual,


it =
∞∑
j=1

�ij
it−j + �it :

(c) For all i= 1; : : : ; N and t= 1; : : : ; T ,

E(
4
it)¡∞; E(�2it)¿B�¿ 0; and E(
2

it) + 2
∞∑
j=1

E(
it
it−j)¡B
¡∞:

Assumption 1(a) includes three data generating processes. In Model 1, the
panel unit root test procedure evaluates the null hypothesis H0: 	= 0 against
the alternative H1: 	¡ 0. The series {yit} has an individual-speci"c mean
in Model 2, but does not contain a time trend. In this case, the panel test
procedure evaluates the null hypothesis that H0: 	= 0 and �0i = 0, for all i,
against H1: 	¡ 0 and �0i ∈R. Finally, under Model 3, the series {yit} has an
individual-speci"c mean and time trend. In this case, the panel test procedure
evaluates the null hypothesis that H0: 	= 0 and �1i = 0, for all i, against the
alternative H1: 	¡ 0 and �1i ∈R.
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As in the case of a single time series, if a deterministic element (e.g. an
intercept or time trend) is present but not included in the regression procedure,
the unit root test will be inconsistent. On the other hand, if a deterministic
element is included in the regression procedure but is not present in the
observed data, the statistical power of the unit root test will be reduced. See
Johansen’s (1992) discussion on the interactions of the unit root test and
various deterministic speci"cations. Campbell and Perron (1991) outline a
method of ascertaining which deterministic elements should be included in
the test procedure. For notational simplicity, dmt is used to indicate the vector
of deterministic variables and �m is used to indicate the corresponding vector
of coe3cients for a particular model m= 1; 2; 3. Thus, d1t = ∅ (the empty set);
d2t = {1} and d3t = {1; t}.

Assumption 1(b) is standard; individual time series may exhibit serial cor-
relations. The "nite-moment conditions of Assumption 1(c) correspond to the
conditions for the weak convergence in Phillips (1987) and Phillips-Perron’s
(Phillips and Perron, 1988) unit root tests. In our panel unit root test we de-
"ne a ratio of the long-run variance to innovation variance (cf. Eq. (6)), the
boundedness conditions in Assumption 1(c) ensure this ratio remains "nite
for every individual in the panel as the cross-section N becomes arbitrarily
large.

2.2. Test procedures

Our maintain hypothesis is

Kyit = 	yit−1 +
Pi∑
L=1

�iLKyit−L + �midmt + �it ; m= 1; 2; 3: (1)

However, since pi is unknown, we therefore suggest a three-step proce-
dure to implement our test. In step 1 we carry out separate ADF regressions
for each individual in the panel, and generate two orthogonalized residuals.
Step 2 requires estimating the ratio of long run to short run innovation stan-
dard deviation for each individual. In the "nal step we compute the pooled
t-statistics.

2.2.1. Step 1: Perform ADF regressions and generate orthogalized
residuals

For each individual i, we implement the ADF regression

Kyit = 	iyit−1 +
Pi∑
L=1

�iLKyit−L + �midmt + �it ; m= 1; 2; 3: (1′)

The lag order pi is permitted to vary across individuals. Campbell and Perron
(1991) recommend the method proposed by Hall (1990) for selecting the
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appropriate lag order: for a given sample length T , choose a maximum lag
order pmax, and then use the t-statistics of �̂iL to determine if a smaller lag
order is preferred. (These t-statistics have a standard normal distribution under
the null hypothesis (�iL = 0), both when 	i = 0 and when 	i ¡ 0.

Having determined autoregression order pi in (1′), we run two auxiliary
regressions to generate orthogalized residuals. Regress Kyit and yit−1 against
Kyit−L (L= 1; : : : ; pi) and the appropriate deterministic variables, dmt , then
save the residuals ê it and v̂it−1 from these regressions. Speci"cally,

ê it = Kyit −
Pi∑
L=1

�̂iLKyit−L − �̂midmt (2)

and

v̂it−1 =yit−1 −
Pi∑
L=1

�̃iLKyit−L − �̃midmt :

To control for heterogeneity across individuals, we further normalize ê it and
v̂it−1 by the regression standard error form Eq. (1′).

ẽ it =
ê it
�̂�i
; ṽit−1 =

v̂it−1

�̂�i
; (3)

where �̂�i is the regression standard error in (1′). Equivalently, it can also be
calculated from the regression of ê it against v̂it−1

�̂2
�i =

1
T − pi − 1

T∑
t=pi+2

(ê it − 	̂iv̂it−1)2: (4)

2.2.2. Step 2: Estimate the ratio of long-run to short-run standard
deviations

Under the null hypothesis of a unit root, the long-run variance for Model
1 can be estimated as follows:

�̂2
yi =

1
T − 1

T∑
t=2

Ky2
it + 2

PK∑
L=1

w PKL

[
1

T − 1

T∑
t=2+L

KyitKyit−L

]
: (5)

For Model 2, we replace Kyit in (5) with Kyit − Kyit , where Kyit is the
average value of Kyit for individual i. If the data include a time trend (Model
3), then the trend should be removed before estimating the long-run variance.
The truncation lag parameter PK can be data dependent. Andrews (1991) sug-
gests a procedure to determine PK to ensure the consistency of �̂2

yi. The sample
covariance weights w PKL depend on the choice of kernel. For example, if the
Bartlett kernel is used,

w PKL = 1 − L
PK + 1

:
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Now for each individual i, we de"ne the ratio of the long-run standard
deviation to the innovation standard deviation,

si =�yi=��i: (6)

Denote its estimate by ŝi = �̂yi=�̂�i. Let the average standard deviation ratio
be SN = (1=N )

∑N
i=1 si, and its estimator ŜN = (1=N )

∑N
i=1 ŝi. This important

statistic will be used to adjust the mean of the t-statistic later in step 3, see
Eq. (12).

Before presenting step 3, we make two remarks. First, as one referee
pointed out, a natural estimate of �2

yi under the null hypothesis is �̂2
�i=(1 −∑pi

i=1 �̂iL)
2, and since �̂2

�i is a consistent estimator for �̂2
�i under the null hy-

pothesis, ŝi may well be estimated by |1−∑pi
i=1 �̂iL|. Secondly, it is important

to emphasize that both the size and the power properties of the panel unit root
test are enhanced by using "rst-di>erences (or demeaned "rst-di>erences)
to estimate the long-run variance. Under the null hypothesis of a unit root,
Schwert (1989) found that the long-run variance estimate based on "rst-
di>erences had much smaller bias in "nite samples than the long-run variance
estimate based on the residuals in level regression, and the same advantage
occurs here too.

2.2.3. Step 3: Compute the panel test statistics
Pool all cross sectional and time series observations to estimate

ẽ it = 	ṽit−1 + �̃it ; (7)

based on a total of NT̃ observations, where T̃ =T − Pp − 1 is the average
number of observations per individual in the panel, and Pp ≡ 1

N

∑N
i=1 pi is

the average lag order for the individual ADF regressions. The conventional
regression t-statistic for testing 	= 0 is given by

t	 =
	̂

STD(	̂)
; (8)

where

	̂=

∑N
i=1

∑T
t=2+pi ṽit−1ẽ it∑N

i=1

∑T
t=2+pi ṽ

2
it−1

; (9)

STD(	̂) = �̂�̃


 N∑
i=1

T∑
t=2+pi

ṽ2
it−1



−1=2

; (10)
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�̂2
�̃ =


 1
NT̃

N∑
i=1

T∑
t=2+pi

(ẽ it − 	̂ṽit−1)2


 : (11)

Under the hypothesis H0: 	= 0, the asymptotic results in the next section
indicates that the regression t-statistic (t	) has a standard normal limiting
distribution in Model 1, but diverges to negative in"nity for Models 2 and
3. Nevertheless, it is easy to calculate the following adjusted t-statistic:

t∗	 =
t	 − NT̃ ŜN �̂−2

�̃ STD(	̂)!∗
mT̃

�∗
mT̃

; (12)

where the mean adjustment !∗
mT̃

and standard deviation adjustment !∗
mT̃

can
be found in Table 2 for a given deterministic speci"cation (m= 1; 2; 3) and
time series dimension T̃ . (Table 2 also includes quick-and-dirty choices of lag
truncation parameter PK for each time series dimension T̃ .) We show in Sec-
tion 3 that this adjusted t-statistic t∗	 obeys the standard normal distribution,
asymptotically.

3. Asymptotic properties

De"ne the following sample statistics for each individual:

"1iT =
1

�2
�i(T − pi − 1)

T∑
t=pi+2

v̂i; t−1ê it ; (13)

"2iT =
1

�2
�i(T − pi − 1)2

T∑
t=pi+2

v̂2
i; t−1; (14)

"3iT =
1

�2
�i(T − pi − 1)

T∑
t=pi+2

ê2
it : (15)

Next, de"ne the following two ratios for each individual:

#1iT =
(T − pi − 1)�2

�i

T̃ �̂2
�i

; (16)

#2iT =
(T − pi − 1)2�2

�i

T̃
2
�̂2
�i

: (17)
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Given the above de"nitions, the statistics of interest in (9), (11) and (8) can
be rewritten, respectively, as

	̂=
N−1∑N

i=1 #1iT "1iT

T̃N−1
∑N

i=1 #2iT "2iT
; (18)

�̂2
�̃ =

1
N

[
N∑
i=1

#1iT "3iT − 2	̂
N∑
i=1

#1iT "1iT + T̃ 	̂
2

N∑
i=1

#2iT "2iT

]
; (19)

t	 =
N−1=2 ∑N

i=1 #1iT "1iT

�̂�̃[N−1
∑N

i=1 #2iT "2iT ]1=2 : (20)

In contrast to Harris and Tzavalis (1996) and Im et al. (1995), our unit root
test is based on the t	 statistic, obtained from a pooled regression (7). Har-
ris and Tzavalis (1996) work with pooled least squares estimator 	̂ directly.
Moreover, the asymptotic property of 	̂ is investigated rather di>erently in
that the time series dimension is "xed while the cross sectional dimension
increases to in"nity. Im et al. (1995) also base their unit root test on the
t-statistics, but it is the average of the t-statistics from individual ADF re-
gressions rather than the pooled t-statistics considered here.

It is easy to determine the limiting behaviors of "3iT ; #1iT and #2iT . Under
the null, Kyit = 
it , is an invertible ARMA process. As T → ∞, and as long as
the ADF lag order pi in (1) increases at an appropriate rate T�, 0¡�6 1

4 ; ê it
should well approximate �it . Hence (T −pi − 1)−1∑ ê2

it → �2
�i in probability.

It follows that "3iT ; #1iT and #2iT all converge to one in probability. For easier
reference in the sequel, we state the following theorem without proof.

Theorem 1. Given assumption 1 and pi = 0 (T�), 0¡�6 1
4 ; for all i. Under

H0; "3iT → 1; #1iT → 1; and #2iT → 1 in probability; as T → ∞.

Weak convergence of "1iT and "2iT are well documented in the literature
(e.g. Said and Dickey, 1984; Phillips and Perron, 1988). Results are summa-
rized in the following theorem.

Theorem 2. Given conditions in Theorem 1; "1iT → siWm1i; "2iT → s2i Wm2i ;
where m= 1; 2; 3; is the model index; and Wm1i =

∫ 1
0 Umi(r) dBi(r); Wm2i =∫ 1

0 U
2
mi(r) dBi(r); Bi(r) is independent Brownian motion; U1i =Bi; U2i and

U3i are demeaned and detrended Brownian motions; respectively.

Note that distributions of Wm1i and Wm2i depend on the deterministic spec-
i"cation but not on the particular values of model parameters. All moments
of Wm1i and Wm2i exist. Speci"cally, the mean and variance of Wm1i and
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Table 1
Asymptotic moments

Model (m) !m1 �2
m1 !m2 �2

m2

1. No intercepts or trends 0 1=2 1=2 1=3
2. Individual-speci"c intercepts −1=2 1=12 1=6 1=45
3. Individual-speci"c intercepts & trends −1=2 1=60 1=15 11=6300

Wm2i can be computed following tedious yet straightforward algebra, and are
displayed in Table 1.

For each of the three deterministic speci"cations (m= 1; 2; 3); the sample
statistics "1iT and "2iT are independent across individuals i, for each time
series dimension T . Those interesting sample statistics de"ned in (18)–(20)
are of the form N−1∑n

i=1 #hit"hiT ; h= 1; 2; which is asymptotically equivalent
to N−1∑n

i=1 "hiT due to Theorem 1. It is natural to consider applying a
LLN to each panel average N−1∑n

i=1 "hiT and a CLT to the normalized sum
N−1=2∑n

i=1 "hiT and then use these results to derive the limiting distributions
of the panel unit root test statistics, t∗	 and t	.

To gain more intuitions, consider the sequence limit of q̂	 =N−1=2∑n
i=1 "1iT

and Ĥ 		 =N−1∑n
i=1 "2iT . Under model 1, Ĥ

−1=2
		 q̂	 is a Studentized LM test

for the unit root, which is asymptotically equivalent to the t	 statistic. Suppose
that we "rst let T → ∞. From Theorem 2, we have q̂	 → N−1=2∑N

i=1 siW11i.
Since W11i is a zero mean, independent sequence across individuals with
E(W11i) = 0:5, we can expect to derive the asymptotic normality provided
the Lindeberg condition holds. Hence, q̂	 = N(0; 0:5V ), as N→∞, where
V = limN→∞ N−1∑N

i=1 s
2
i . A LLN is also expected to work for Ĥ 		. Since

E(W12i) = 0:5, we have Ĥ 		 → 0:5V . Combining these results, we deduce

that Ĥ
−1=2
		 q̂	 =d t	 ⇒ N(0; 1). There are some complications when applying

the above arguments to model 2, however. This is owing to the fact that
E(W21i) = − 1

2 and E(W22i) = 1
6 . Hence t	 does not converge to a standard

normal distribution. Similar problems arise in Model 3 too. As a result, some
sort of adjustment is required. For this, we de"ne E("1iT ) ≡ !1iT and its
consistent estimator as

!̂1iT =
ŝi
#1iT

!∗mT̃ : (21)

Then (12) can be rewritten as

t∗	 =
N−1=2∑N

i=1 #1iT ("1iT − !̂1iT )

�∗
mT̃
�̂�̃[N−1

∑N
i=1 #2iT "2iT ]1=2 : (22)

As proved later in Theorem 5, this adjusted t-statistics, t∗	 converges to a
N(0; 1). The mean and standard deviation adjustment, !∗

mT̃
and �∗

mT̃
, to be
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used in empirical work are determined from Monte Carlo simulations, as
discussed in Section 4 below. Formal de"nitions are given as follows.

De,nition. Let y∗t be a standard Gaussian random walk, i.e. y∗t =y∗t−1 + �∗t ,
where �∗t ∼ i.i.d. N(0; 1). Following the test procedure described in Section
2 for a given deterministic speci"cation (m= 1; 2; 3), let T̃ observation on y∗t
be used to generate "∗m1T as de"ned in (13). Then de"ne !∗

mT̃
≡ E("∗m1T ), and

�∗
mT̃

as an arbitrary positive sequence which converges �m1=!m2 as T̃ → ∞.

By the construction of E("∗m1T ), the mean adjustment !∗
mT̃

converges to !m1

as T̃ → ∞. We did not specify particular values of �∗
mT̃

for "nite T̃ → ∞,
because only the limit of the sequence is relevant for the asymptotic analysis.

While the foregoing discussions help to speculate the asymptotic results,
they do not handle the case in which both T and N approach in"nity jointly.
Recently, there is growing research interest in studying the asymptotics of
nonstationary panel with both N and T in"nity simultaneously, e.g. Quah
(1990) and Im et al. (1995), among others. Technically, when N and T goes
to in"nity, asymptotic analysis should be based on the LLN and CLT for
triangular arrays. Theorems 3, 4 and 5 below are proved along this line. By
triangular arrays we mean that the cross sectional dimension N is an arbitrary
monotonically increasing function of T . We shall use the notation NT instead
of N to emphasize the fact that NT increases with respect to T .

Theorem 3. Suppose that
(a) Kyit = 
it ;
(b) assumption 1(b) and (c) hold;
(c) Pi = 0(T�); 0¡�6 1

4 ; for all i;
(d) limNT→∞ N−1

T

∑NT
i=1 s

2
i =V exists. Then; N−1=2

T

∑NT
i=1 "1iT =d N−1=2

T

∑NT
i=1

#1iT "1iT ⇒ N(0; 0:5V ); as
√
NT =T → 0. Suppose further that

(e) limNT→∞ N−1
T

∑NT
i=1 s

4
i exists. Then N

−1
T

∑NT
i=1 #2iT "2iT →p 0:5V; and t	 ⇒

N(0; 1).

Theorem 3 states that the asymptotic normality holds as long as
√
NT =T →

0. This is particularly relevant for a typical microeconomic panel date set
because the time series dimension T is allowed to grow slower than the
cross sectional dimension NT . Other divergence speeds such as NT =T → 0,
and NT =T → constant, are su3cient, but obviously not necessary. The panel
with no individual speci"c e>ects studied by Quah (1990) falls within the
territory of Theorem 3. Our result that

√
NT =T → 0 is an improvement over

Quah’s condition that NT =T → constant.
When individual-speci"c e>ects are introduced in Model 2 and 3, we re-

quire faster growth rate in T to achieve the asymptotic normality, as the
following theorem shows.
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Theorem 4. Suppose that
(a) yit generated from Model 2 or 3;
(b) condition (b)–(d) in Theorem 3 hold; under 	= 0; N−1=2

T

∑NT
i=1 #1iT ("1iT−

si!m1) ⇒ N(0; �2
m1V ); as

√
NT =T → 0. In addition; suppose

(c) the truncation lag parameter PK increases at some rate T,; where
,∈ (0; 1); then N−1=2

T

∑NT
i=1 #1iT ("1iT − !̂1iT )⇒N(0; �2

m1V ); as
NT =T → 0.

It is useful compare Theorem 4 with Theorem 3. From the "rst part
of Theorem 4, N−1=2

T

∑NT
i=1 #1iT ("1iT − si!m1) ⇒ N(0; �2

m1V ), if there is no
individual-speci"c e>ects as in Theorem 3, then !11 = 0, and N−1=2

T

∑NT
i=1 #1iT

"1iT ⇒ N(0; �2
m1V ); as

√
NT =T → 0. On the other hand, since !m1 
= 0 under

Models 2 and 3, mean adjustment is required and we want to make sure
that such a demeaning method does not inIuence the asymptotic distribu-
tion. The su3cient condition is that N−1=2

T

∑NT
i=1 #1iT (si!m1 − !̂1iT ) ⇒ 0. But

!̂1iT = si!m1 + Op(T−1=2), thus the second term of (A.4.3) in Appendix A will
not converge to zero unless NT =T→ 0. In contrast to the case of no indi-
vidual speci"c e>ect (as in Theorem 3), we now need faster growth rate in
time series dimension in order to establish the asymptotic normality for the
adjusted t-statistic.

Some special cases are of interest. Assume that individual regression er-
ror �it is i.i.d. for each i over T , but heteroskedasticity is present across
individuals, i.e. �2

�i 
=�2
�j. Then we still require NT =T → 0 to establish the

asymptotic normality. In this case, even si = 1, for all i, the convergence
speed of !̂1iT = #−1

1iT !
∗
mT̃

continues to be dominated by #1iT = 1 + Op(T−1=2),
and hence !̂1iT =!m1 + Op(T−1=2). The reason is clearly due to the het-
eroskedastic error across individuals, and that �̂�i =��i + Op(T−1=2). If we
further assume away the heteroskedasticity such that �2

�i =�
2
�j, then we have

the advantage to pool all observations to estimate the common variance so
that �̂� =�� + Op(T−1=2N−1=2

T ). Thus, the mean adjustment term will vanish
under the condition that

√
NT =T → 0.

The foregoing discussions suggest that the relative divergence speed of NT
and T is largely determined by whether there are individual-speci"c e>ects in
the panel or not. When there is no individual-speci"c e>ect, we can establish
asymptotic normality under quite general error process with slower growth
rate in T . On the other hand, the inclusion of individual-speci"c e>ects re-
quires faster growth rate in T even the individual regression error is a very
favorable i.i.d. process.

Theorem 5. In addition to the conditions in Theorem 4; if limNT→∞ N−1
T∑NT

i=1 s
4
i exist; then N

−1
T

∑NT
i=1 #2iT "2iT →p !m2V; and t∗	 → N(0; 1):
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The inIuence of extending the time dimension T compared with extend-
ing the cross-section N can be further clari"ed by examining the asymptotic
distribution of 	̂.

	̂ ≈ N
(

1
T̃
!m1S
!m2V

;
1

NT̃
2

�2
m1

!2
m2V

)
: (23)

First, the Eq. (23) indicates that the variance of 	̂ delta falls at rate
O(N−1T−2). The higher convergence rate with respect to T is referred to
as “super-consistency” in the time series literature. Intuitively, the presence
of a unit root causes the variation of the “signal” yit−1 to grow arbitrarily
large while the variation of the noise 
it remains constant. Thus, an increment
in the time series dimension T adds more variation to the sample than an
increment in the cross-section dimension N .

Second, the inclusion of individual-speci"c intercepts and time trends
(Models 2 and 3) causes a downward bias in 	̂ (i.e., !m1¡ 0 for m= 2; 3).
The downward bias vanishes as the time series dimension T grows large (so
that 	̂ converges to 0 asymptotically), but is not inIuenced by the cross-section
dimension N . Thus, in contrast to the case of stationary panel data, the pres-
ence of a unit root causes the regression speci"cation to inIuence the asymp-
totic distribution of the panel estimate.

Third, since an increment in the cross-section dimension N reduces the
variance of 	̂ but not its downward bias, the regression t-statistic diverges to
negative in"nity for Models 2 and 3. In other words, adding an individual
to the panel reduces the variance of 	̂ around a non-zero mean, so that the
regression t-statistic increasingly rejects the null hypothesis at conventional
signi"cance levels. Consequently, it is necessary to use the estimated long run
versus short run standard deviation ratios ŝi and the adjustment factor !∗mT to
demean the individual sample statistics. As the panel grows large, N=T → 0
ensures that the sum of individual di>erences between the estimated mean
!̂1iT and the true mean !1iT does not inIuence the limiting distribution.

The suggested test procedure requires that the data is generated indepen-
dently across individuals. As in stationary panel data models, this assump-
tion can be somewhat relaxed to allow for a limited degree of dependence
via time-speci"c aggregate e>ects by subtracting the cross sectional averages
Py t =

1
N

∑n
i=1 yit from the observed date. (cf. Hsiao, 1986). The removal of

cross-section averages from the data is equivalent to including time-speci"c
intercepts in the regression models above, which does not a>ect the limit-
ing distributions of the panel unit root test (see Levin and Lin, 1992 for
further details). It is appropriate under the assumption of a single aggre-
gate common factor which has an identical impact on all individuals in the
panel, however, Quah and Sargent (1992) have recently proposed a method
of identifying multiple common factors in panel data; their method may be
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Table 2
Mean and standard deviation adjustmentsa

T̃ PK !∗
1T̃

�∗
1T̃

!∗
2T̃

�∗
2T̃

!∗
3T̃

�∗
3T̃

25 9 0.004 1.049 −0:554 0.919 −0:703 1.003
30 10 0.003 1.035 −0:546 0.889 −0:674 0.949
35 11 0.002 1.027 −0:541 0.867 −0:653 0.906
40 11 0.002 1.021 −0:537 0.850 −0:637 0.871
45 11 0.001 1.017 −0:533 0.837 −0:624 0.842
50 12 0.001 1.014 −0:531 0.826 −0:614 0.818
60 13 0.001 1.011 −0:527 0.810 −0:598 0.780
70 13 0.000 1.008 −0:524 0.798 −0:587 0.751
80 14 0.000 1.007 −0:521 0.789 −0:578 0.728
90 14 0.000 1.006 −0:520 0.782 −0:571 0.710

100 15 0.000 1.005 −0:518 0.776 −0:566 0.695
250 20 0.000 1.001 −0:509 0.742 −0:533 0.603
∞ — 0.000 1.000 −0:500 0.707 −0:500 0.500

aNotes: The adjustment factors !∗
1T̃

and �∗
1T̃

are used to adjust the mean and standard de-
viation of the panel unit root test statistic de"ned in Eq. (12) for a given regression model
(m= 1; 2; 3), average time series dimension T̃ , and lag truncation parameter PK . In all cases, the
standard error of the estimated mean adjustment is less than 0.007, and the standard error of
the estimated standard deviation adjustment is less than 0.011.

useful for removing more complex contemporaneous correlation from the
data.

4. Monte Carlo simulations

In this section, we brieIy discuss the results of three Monte Carlo experi-
ments. The "rst set of simulations were used to determine appropriate values
of the mean and standard deviation adjustments, !∗mT and �∗mT , used in the
adjusted t-statistic given in Eq. (12) for a particular deterministic speci"ca-
tion (m= 1; 2; 3) and time series dimension T̃ . The lag truncation parameter
PK was selected according to the formula PK = 3:21T 1=3. Due to computational
limitations, the ADF lag length pi was set to the true value of zero rather
than being individually estimated. At each replication, Gaussian random num-
bers with unit variance were used to generate 250 independent random walks
of length T̃ + 1 (i.e. a panel of dimensions N = 250 and T = T̃ + 1), and
this data was used to construct the sample statistics given in Eqs. (7)–(11)
above. Based on 25,000 replications, the adjustment factor !∗

mT̃
was estimated

by the mean value of t	=N T̃ ŜN �̂
−2
� STD(	̂) and the adjustment factor �∗

mT̃
was

estimated by the standard deviation of t	 − NT̃ ŜN �̂−2
� STD(	̂). The resulting

estimates of !∗
mT̃

and �∗
mT̃

are given in Table 2. In all cases, the standard
error of the estimated mean adjustment is less than 0.007, and the standard
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error of the estimated standard deviation adjustment is less than 0.011. As
T̃ grows large, Table 2 indicates that the adjustment factors converge to the
asymptotic values predicted by Table 1 and Theorems 3–5.

The second set of simulations examines the empirical size properties of the
panel unit root test procedure under alternative deterministic speci"cations and
panel dimensions. For a given replication, Gaussian random numbers with
unit variance were used to construct N independent random walks with T
time periods each; then the data was used to calculate the adjusted t-statistic
using the simulated values of !∗

mT̃
, and �∗

mT̃
, and the test was performed using

the critical values of the standard normal distribution at nominal sizes of 1,
5 and 10 percent. Based on 10,000 Monte Carlo replications, the empirical
size for each model speci"cation and set of panel dimensions are given in
Table 3. The standard error of the estimated empirical size is less than 0.003
in all cases. Table 3 indicates that in panels with a moderate number of
individuals, the nominal size slightly underestimates the empirical size. For
larger panels, the di>erence between nominal and empirical size falls within
the range of the Monte Carlo sampling error, consistent with the prediction
of asymptotic normality given in Theorems 3–5.

Finally, the empirical power properties of the panel unit root test proce-
dure were analyzed. For a given replication, the data was generated by the
process yit = 0:9yit−1 + �it , (i.e. 	= − 0:10) where the disturbances �it are
i.i.d. Gaussian random numbers with unit variance. This data was used to
calculate the adjusted t-statistic as in the previous Monte Carlo experiment,
and the test was performed using the critical values of the standard normal
distribution at nominal sizes of 1, 5 and 10 percent. Based on 10,000 Monte
Carlo replications, the empirical power for each model speci"cation and set
of panel dimensions are given in Table 4. For purposes of comparison, Table
4 also includes the empirical power of the Dickey–Fuller test for a single
time series (N = 1). The standard error of the estimated empirical power is
less than 0.01 in all cases.

The middle panel of Table 4 illustrates the power advantages of performing
unit root tests with panel data. In the absence of individual-speci"c e>ects
(m= 1), the power of the standard Dickey–Fuller test is quite low for short
time series (T6 50), whereas very high power can be achieved by perform-
ing a joint test for a small number of independent time series (N¿ 10). If
the model allows for individual-speci"c intercepts and trends, the standard
Dickey–Fuller test has very low power even for relatively long time series
(T ¡ 100), whereas substantial power can be achieved by using the panel
unit root test procedure with a panel of moderate dimensions. (i.e. N = 10
and T = 50, or N = 25 and T = 25).

Maddla and Wu (1999) have done various simulations to compare the
performance of competing tests, including IPS test, LL test and the
Fisher’s test. Care must be taken to interpret their results. Strictly speaking,
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Table 3
Empirical size propertiesa

Model T̃ N = 10 N = 25 N = 50 N = 100 N = 250

m= 1 25 0.128 0.112 0.107 0.106 0.101
50 0.131 0.112 0.110 0.105 0.099

100 0.130 0.114 0.110 0.100 0.099
250 0.127 0.117 0.109 0.110 0.100

m= 2 25 0.104 0.101 0.099 0.098 0.098
50 0.096 0.098 0.098 0.104 0.099

100 0.100 0.103 0.097 0.106 0.105
250 0.097 0.100 0.095 0.092 0.097

m= 3 25 0.102 0.103 0.100 0.100 0.099
50 0.103 0.104 0.102 0.098 0.102

100 0.108 0.107 0.100 0.101 0.097
250 0.105 0.102 0.099 0.105 0.106

m= 1 25 0.067 0.061 0.054 0.054 0.049
50 0.071 0.061 0.055 0.053 0.050

100 0.068 0.059 0.057 0.050 0.050
250 0.067 0.058 0.056 0.053 0.050

m= 2 25 0.049 0.050 0.048 0.048 0.047
50 0.046 0.045 0.049 0.054 0.049

100 0.050 0.047 0.049 0.052 0.048
250 0.048 0.048 0.045 0.048 0.050

m= 3 25 0.051 0.051 0.049 0.051 0.049
50 0.052 0.049 0.051 0.049 0.054

100 0.052 0.054 0.053 0.053 0.051
250 0.049 0.049 0.051 0.052 0.052

m= 1 25 0.014 0.014 0.010 0.011 0.010
50 0.015 0.013 0.010 0.010 0.011

100 0.014 0.012 0.013 0.011 0.011
250 0.014 0.011 0.012 0.012 0.010

m= 2 25 0.008 0.009 0.008 0.009 0.008
50 0.008 0.008 0.009 0.0‘0 0.009

100 0.009 0.008 0.009 0.009 0.010
250 0.010 0.010 0.009 0.009 0.009

m= 3 25 0.011 0.009 0.010 0.011 0.008
50 0.011 0.010 0.010 0.010 0.010

100 0.011 0.009 0.009 0.011 0.009
250 0.009 0.010 0.010 0.011 0.011

aNote: Top, middle and lower panel correspond to the ten percent, "ve percent and one
percent level test, respectively.

comparisons between the IPS test and LL test are not valid. Though both tests
have the same null hypothesis, but the alternatives are quite di>erent. The al-
ternative hypothesis in this article is that all individual series are stationary
with identical "rst order autoregressive coe3cient, while the individual "rst
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Table 4
Empirical power propertiesa

Model T̃ N = 1 N = 10 N = 25 N = 50 N = 100 N = 250

m= 1 25 0.46 1.00 1.00 1.00 1.00 1.00
50 0.75 1.00 1.00 1.00 1.00 1.00

100 0.99 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00 1.00

m= 2 25 0.15 0.35 0.59 0.82 0.98 1.00
50 0.21 0.65 0.93 1.00 1.00 1.00

100 0.31 0.98 1.00 1.00 1.00 1.00
250 0.76 1.00 1.00 1.00 1.00 1.00

m= 3 25 0.14 0.25 0.38 0.53 0.73 0.96
50 0.23 0.57 0.83 0.96 1.00 1.00

100 0.37 0.96 1.00 1.00 1.00 1.00
250 0.82 1.00 1.00 1.00 1.00 1.00

m= 1 25 0.27 0.99 1.00 1.00 1.00 1.00
50 0.51 1.00 1.00 1.00 1.00 1.00

100 0.92 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00 1.00

m= 2 25 0.08 0.22 0.43 0.68 0.93 1.00
50 0.12 0.49 0.86 0.99 1.00 1.00

100 0.18 0.96 1.00 1.00 1.00 1.00
250 0.60 1.00 1.00 1.00 1.00 1.00

m= 3 25 0.08 0.16 0.24 0.37 0.59 0.90
50 0.13 0.42 0.72 0.93 1.00 1.00

100 0.24 0.92 1.00 1.00 1.00 1.00
250 0.71 1.00 1.00 1.00 1.00 1.00

m= 1 25 0.05 0.91 1.00 1.00 1.00 1.00
50 0.17 1.00 1.00 1.00 1.00 1.00

100 0.49 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00 1.00

m= 2 25 0.02 0.06 0.16 0.37 0.73 1.00
50 0.03 0.17 0.58 0.94 1.00 1.00

100 0.05 0.74 1.00 1.00 1.00 1.00
250 0.27 1.00 1.00 1.00 1.00 1.00

m= 3 25 0.02 0.04 0.09 0.16 0.31 0.72
50 0.04 0.17 0.46 0.80 0.98 1.00

100 0.08 0.74 0.99 1.00 1.00 1.00
250 0.43 1.00 1.00 1.00 1.00 1.00

aNote: Top, middle and lower panel correspond to the ten percent, "ve percent and one
percent level test, respectively.

order autoregressive coe3cients in IPS test are allowed to vary under the
alternative. If the stationary alternative with identical AR coe3cients across
individuals is appropriate, pooling would be more advantageous than Im et
al. average t-statistics without pooling. Also note that the power simulations
reported in Maddla and Wu (1999) are not size-corrected.
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5. Conclusion

In this paper, we have developed a procedure utilizing pooled cross-section
time series data to test the null hypothesis that each individual time series
contains a unit root against the alternative hypothesis that each time series is
stationary. As both the cross-section and time series dimensions of the panel
grow large, the panel unit root test statistic has a limiting normal distribution.
The Monte Carlo simulations indicate that the normal distribution provides
a good approximation to the empirical distribution of the test statistic in
relatively small samples, and that the panel framework can provide dramatic
improvements in power compared to performing a separate unit root test for
each individual time series. Thus, the use of panel unit root tests may prove
to be particularly useful in analyzing industry-level and cross-country data.

The proposed panel based unit root test does have its limitations. First, there
are some cases in which contemporaneous correlation cannot be removed by
simply subtracting the cross sectional averages. The research reported in this
paper depends crucially upon the independence assumption across individuals,
and hence not applicable if cross sectional correlation is present. Secondly,
the assumption that all individuals are identical with respect to the presence
or absence of a unit root is somewhat restrictive. Readers are referred to Im
et al. (1995) for a panel unit root test without the assumption of identical
"rst order correlation under the alternative.
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Appendix A.

Proof of Theorem 3. For each T; {"̃1iT ; i= 1; 2; : : : ; NT} a zero-mean, inde-
pendent sequence, where "̃1iT ≡ "1iT − !1iT . Part one of the proof is ac-
complished in three steps. The following results are used in the subsequent
proof.

sup
i
!1iT = Op(T−1) (A.3.1)
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and

sup
i

(�2
iT − 0:5s2i ) = Op(T−1); �2

iT ≡ E("̃
2
1iT ) ≡ �2

iT : (A.3.2)

In step 1, we prove that N−1=2
T "̃1iT obeys the central limit theorem. For this,

we need to ensure the following Lindeberg condition holds (Billingsley, 1986,
pp. 368–369):

NT∑
i=1

(
NT∑
i=1

�2
iT

)−1 ∫
"̃

2
1iT I{

|"̃1iT |¿�
(

NT∑
i=1
�2
iT

)1=2} dP→ 0; as T → ∞:

It is well-known that the su3cient condition for the Lindeberg condition is

E|"̃1iT |2+	 ¡∞; for some 	¿ 0 and all i= 1; : : : ; NT : (A.3.3)

Straightforward but tedious algebra leads to result similar to (A.3.1) and
(A.3.2), supi[E|"̃1iT |4 − (15=4)s4i ] = Op(T−1). Hence there exists some T such
that (A.3.3) holds for all i, and the Lindeberg condition is ful"lled. We have
from the CLT that

N−1=2
T

NT∑
i=1

"̃1iT =N−1=2
T

NT∑
i=1

("1iT − !1iT ) ∼ AN(0; 0:5V );

V = lim
NT→∞

N−1
T

NT∑
i=1

s2i : (A.3.4)

In step 2, we show that N−1=2
T

∑NT
i=1 "1iT also obeys the central limit theorem.

Using (A.3.1),

N−1=2
T

NT∑
i=1

("1iT − !1iT ) =N−1=2
T

NT∑
i=1

"1iT + N−1=2
T

NT∑
i=1

!1iT : (A.3.5)

From (A.3.1), The second term in (A.3.5) 6 (
√
NT =T )(1=NT )

∑NT
i=1 TOp(T−1)

6 (
√
NT =T )M , since TOp(T−1) is a bounded sequence for all i. It follows

that N−1=2
T

∑NT
i=1("1iT −!1iT ) and N−1=2

T

∑NT
i=1 "1iT are asymptotic equivalent as√

NT =T → 0.
In the "nal step, we prove the asymptotic equivalence between N−1=2

T

∑NT
i=1

"1iT and N−1=2
T

∑NT
i=1 #1iT "1iT . The strategy is to show that the di>erence be-

tween them converges to zero in probability. To do so, we consider the
sequence of triangular array, {(#1iT − 1)"1iT}, and verify the condition in
Theorem 6:2 of Billingsley (1986, p. 81). De"ne ciT = E[(#1iT − 1)"1iT ] and
22
iT = var[(#1iT −1)"1iT ]. The required condition is that there exists a sequence

vT such that v−1
T

√∑NT
i=1 2

2
iT → 0. In fact, putting vT =N 1=2

T works.
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Since 22
iT 6E[(#1iT − 1)2"2

1iT ],

v−1
T

√√√√ NT∑
i=1

22
iT 6

{
N−1
T

NT∑
i=1

E[(#1iT − 1)2"2
1iT ]

}1=2

=

{
N−1
T T−1

NT∑
i=1

E[T (#1iT − 1)2"2
1iT ]

}1=2

6

{
MN−1

T T−1
NT∑
i=1

E("2
1iT )

}1=2

;

because T (#1iT − 1)2 is bounded in probability. It follows that{
MN−1

T T−1
NT∑
i=1

E("2
1iT )

}1=2

6

{
MN−1

T T−1
NT∑
i=1

[0:5s2i + Op(T−1)]

}1=2

6

{
0:5MN−1

T T−1
NT∑
i=1

s2i +MN−1
T T−2

NT∑
i=1

TOp(T−1)

}1=2

:

It is seen that the last term converges to zero, hence

N−1=2
T

NT∑
i=1

[(#1iT − 1)"1iT ] − N−1=2
T

NT∑
i=1

ciT →p 0:

However,

N−1=2
T

NT∑
i=1

ciT = N−1=2
T

NT∑
i=1

E[(#1iT − 1)"1iT ]

=

√
NT
T

1
NT

NT∑
i=1

E[
√
T (#1iT − 1)"1iT ]

6M

√
NT
T

1
NT

NT∑
i=1

E("1iT )

6M

√
NT
T

1
NT

NT∑
i=1

Op(1=T )
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6MM ′
√
NT
T

1
NT

1
T

NT∑
i=1

TOp(1=T )

6MM ′√NT =T 3=2 → 0:

This completes proving the "rst part of theorem 3.
For the second part of the proof, we verify that the condition of LLN

for triangular array holds (Billingsley, 1986, p. 81). Since {"2iT ; i= 1; 2; : : :}
is an independent sequence with mean supi[E("2iT ) − 0:5s2i ] = Op(T−1), and
supi[Var("2iT )− 1

3s
4
i ] = Op(T−1), if the required condition [

∑NT
i=1 var("2iT )]1=2=

vT → 0 holds for some positive sequence {vT}, then

v−1
T

NT∑
i=1

["2iT − E("2iT )] →p 0: (A.3.6)

Put vT =NT . Assumption 3(e) ensures that [
∑NT

i=1 var("2iT )]1=2=vT → 0, hence
(A.3.6) follows.

But

N−1
T

NT∑
i=1

E("2iT )6N−1
T

NT∑
i=1

[0:5s2i + Op(T−1)]

= 0:5N−1
T

NT∑
i=1

s2i + T−1N−1
T

NT∑
i=1

TOp(T−1) → 0:5V:

Desired result follows from combining this result with #2iT → 1 in Theorem
1. Finally, since �̂�̃ → 1; t	 ⇒ N(0; 1) follows immediately.

Proof of Theorem 4. Since {"̃1iT ; i= 1; 2; : : :}; "̃1iT ≡ "1iT − !1iT , is a zero
mean, independent sequence across individuals such that supi(!1iT − si!m1) =
Op(T−1) and supi(�

2
iT − s2i �2

m1) = Op(T−1); �2
iT ≡ Var("̃1iT ), where m= 2 or

3, is the model index. Analogous to the proof in Theorem 3, the Lindeberg
condition holds, and the CLT implies that(

NT∑
i=1

�2
iT

)−1=2 NT∑
i=1

"̃1iT =

(
N−1
T

NT∑
i=1

�2
iT

)−1=2

N−1=2
T

NT∑
i=1

"̃1iT ⇒ N(0; 1); or

N−1=2
T

NT∑
i=1

"̃1iT ⇒ N(0; �2
m1V ):

Now, N−1=2
T

∑NT
i=1("1iT−!1iT )6N−1=2

T

∑NT
i=1("1iT−si!m1)+N

−1=2
T

∑NT
i=1 Op(T−1).

Since N−1=2
T

∑NT
i=1 Op(T−1) → 0, as

√
NT =T → 0, we conclude that N−1=2

T

∑NT
i=1

("1iT − si!m1) ⇒ N(0; �2
m1V ). Similar to the proof in Theorem 3, we can also
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prove that

N−1=2
T

NT∑
i=1

#1iT ("1iT − si!m1) ⇒ N(0; �2
m1V ): (A.4.1)

For the second part of Theorem 4, consider replacing !m1 in (A.4.1) with its
consistent estimate !̂1iT . Write

N−1=2
T

NT∑
i=1

#1iT ("1iT − !̂1iT ) =N−1=2
T

NT∑
i=1

#1iT ("1iT − si!m1)

+N−1=2
T

NT∑
i=1

#1iT (si!m1 − !̂1iT ): (A.4.2)

We know that the "rst term in (A.4.2) converges to a normal distribution. The
asymptotic behavior of the second term is of interest. Note that ŝi = �̂yi=�̂�i
is a bounded sequence for all i, due to �̂�i =��i + Op(T−1=2) and �̂yi =�yi +
Op(T−1=2), c.f. Andrews (1991). Since !∗

mT̃
=!m1 + Op(T−1) by construction

and #1iT = 1 + Op(T−1=2); !̂1iT = ŝi=#1iT !∗mT̃ = si!m1 + Op(T−1=2).
Now rewrite the second term in (A.4.2) as

N−1=2
T

NT∑
i=1

#1iT (si!m1 − !̂1iT )

=N−1=2
T

NT∑
i=1

(#1iT − 1)(si!m1 − !̂1iT ) + N−1=2
T

NT∑
i=1

(si!m1 − !̂1iT )

6N−1=2
T

NT∑
i=1

Op(T−1=2)Op(T−1=2) + N−1=2
T

NT∑
i=1

Op(T−1=2): (A.4.3)

The "rst term in (A.4.3) → 0, as
√
NT =T → 0. However, the second term

requires that NT =T → 0. Complete the second part of Theorem 4.

Proof of Theorem 5. {"2iT ; i= 1; 2; : : :} is an independent sequence with
supi[E("2iT ) − s2i !m2] = Op(T−1), and supi[Var("2iT ) − s4i �2

m2] = Op(T−1). Ap-
plying the LLN as in the proof of Theorem 3, N−1

T

∑NT
i=1 "2iT − N−1

T

∑NT
i=1

E("2iT ) →p 0. But N−1
T

∑NT
i=1 E("2iT )6N−1

T

∑NT
i=1 [s2i !m2 +Op(T−1)] =!m2N−1

T∑NT
i=1 s

2
i + T−1N−1

T

∑NT
i=1 TOp(T−1) → !m2V .
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The standard deviation adjustment �∗
mT̃

→ �m1=
√
!m2 by construction, and

�̂�̃ → 1, we have t∗	 ⇒ N(0; 1).
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