Financial Intermediaries, Asset Transformation, and Liquidity

Yiting Li and Jia Jing Lin
Dept. of Economics, National Taiwan University

September 2012

Road map of the talk

- Motivations:
- assets' liquidity and their characteristics
- the role for financial intermediaries
- The environment:
- markets; assets; banks
- private information
- Types of equilibria
- banks' portfolios
- asset liquidity and prices
- welfare implications for banks

Motivations

Imperfect recognizability of an asset's authenticity or true value weakens its usefulness as a payment instrument or collateral.

- During 2007-2008, asset-backed securities became hard to serve as collateral, due to the complexity in these assets that hinders investors to verify their true value.
- Some banknotes ceased to circulate since they were threatened by counterfeits by the 1850s in the U.S.

Motivations

- Akerlof (1970): goods with lemons problem \rightarrow market failure
- there is a role for middlemen to facilitate trades
- This paper: assets with imperfect recognizability \rightarrow market failure \rightarrow liquidity \rightarrow output

Can financial intermediaries improve aggregate liquidity and welfare in an economy with private information?

Objectives

- frictions: the quality of real assets is private information.
- liquidity: the role of assets in payments.
(Lagos (2010), Rocheteau (2011), Li and Rocheteau (2010))

To provide a theory of asset liquidity and explore implications for

1. the relationship between assets' characteristics, liquidity, and asset prices;
2. the effects of banks on liquidity and welfare.

Features of banks

- Asset transformation

- banks' portfolios are public information;
- deposits and bank equity: recognizable means of payment.
- Banks have no informational advantages over individuals - price-quantity schedules in the asset market: screening assets' quality.

Main insights

Can banks' screening eliminate the private information problem?

\searrow
no
to signal, good assets may
be held but not spent
\downarrow
good assets are subject to an endogenous liquidity constraint
\downarrow
lower aggregate liquidity

Related literature

- Liquidity constraints:

Kiyotaki and Moore (2005, 2008), Lester et al. (2008), Li and Rocheteau (2010), Tomura (2010).

- The recognizability of assets:

Lester et al. (2008), Green and Weber (1996), Nosal and Wallace (2007), Rocheteau (2011).

- Bank liabilities serve as payments:

Gorton and Pennacchi (1990), Williamson (1999).

The environment

- Each period contains a DM and a CM
- DM: decentralized market
- CM: competitive market
- Two types of agents: Buyers and Sellers

Trades

DM: buyers and sellers meet bilaterally and randomly

- the buyer makes a take-it-or-leave-it offer
- output: x_{1}
- assets transferred from buyer: $\left(y_{a}, y_{d}, y_{e}\right)$
- buyers: utility $u_{1}\left(x_{1}\right)$; sellers: disutility $c_{1}\left(x_{1}\right)$

Trades

CM: all agents consume and produce

- each buyer is endowed with A^{E} units of real assets
- one-period-lived assets
- the private signal about the quality of A^{E}
- production technology: $x_{2}=h$
- banks open
- portfolio choices: deposits and bank equity
- an asset market opens in late CM

In DM, buyers use assets to make payments
\triangleright deposits and bank equity
\triangleright real assets may be subject to private information problem
\Rightarrow private information regarding means of payment

Time sequence

Private information

The quality of real assets:

- The expected value of bad assets is lower than that of good assets.

Agents' problem in the CM

The value function of a buyer is

$$
W^{b}\left(a, d, e ; k_{j}\right)=\max _{x_{2}, h a^{\prime}, d^{\prime}, e^{\prime}}\left\{x_{2}-h+\beta V_{j,+1}^{b}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)\right\}
$$

s.t. $x_{2}+d^{\prime}+q_{e} e^{\prime}=h+k_{j} a+(1+i) d+k_{e} e+q_{a}^{j,+1}\left(A^{E}-a^{\prime}\right)$

- k_{j} : dividends of asset $j, j \in\{h, \ell\}$; k_{e} : dividends of bank equity; q_{e} : the price of bank equity;
- i : deposit interest rate; $q_{a}^{j,+1}$: price of asset $j,+1$.
- $V_{j,+1}^{b}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)$: buyer's value function in the DM of period $t+1$.

Value function in the DM

$\left(x_{1}, y_{a}, y_{d}, y_{e}\right)$: the quantity of outputs and transfers of assets.

- The buyer's value function is,

$$
V_{j}^{b}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)=S_{j}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)+k_{j} a+(1+i) d+k_{e} e+W^{b}(0,0,0)
$$

- $S_{j}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)$: buyer's surplus from trade in the DM
- $S_{j}\left(a^{\prime}, d^{\prime}, e^{\prime}\right) \equiv u_{1}\left[x_{1}\left(y_{a}, y_{d}, y_{e}\right)\right]-k_{j} y_{a}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)$

$$
-(1+i) y_{d}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)-k_{e} y_{e}\left(a^{\prime}, d^{\prime}, e^{\prime}\right)
$$

Portfolio choices

- All buyers choose the same d and e;

$$
\begin{array}{r}
\frac{1-(1+i) \beta}{\beta} \geq \xi S_{h, 2}(a, d, e)+(1-\xi)\left\{\eta\left[S_{h, 2}(a, d, e)+(1-\eta) S_{\ell, 2}(a, d, e)\right]\right\} \\
" \quad "=" \text { if } d>0 \\
\frac{q_{e}-k_{e} \beta}{\beta} \geq \xi S_{h, 3}(a, d, e)+(1-\xi)\left\{\eta\left[S_{h, 3}(a, d, e)+(1-\eta) S_{\ell, 3}(a, d, e)\right]\right\} \\
"=" \text { if } e>0
\end{array}
$$

- q_{a}^{j} : determined by banks' problem in the asset trade.

$$
\begin{aligned}
& \frac{q_{a}^{h}-k_{h} \beta}{\beta} \geq S_{h, 1}(a, d, e) \quad "=" \text { if } a_{h}>0 . \\
& \frac{q_{a}^{\ell}-k_{\ell} \beta}{\beta} \geq S_{\ell, 1}(a, d, e) \quad "=" \text { if } a_{\ell}>0 .
\end{aligned}
$$

Banks' flow of funds

- Source of funds: deposits, equity, and dividends from bank assets
- Use of funds: investments, dividend and interest payments
- Flow of funds in period t is

$$
k_{e} E+(1+i) D+q_{a}^{h} \Omega_{h}^{\prime}+q_{a}^{\ell} \Omega_{\ell}^{\prime}=D^{\prime}+q_{e} E^{\prime}+\left(k_{h} \Omega_{h}+k_{\ell} \Omega_{\ell}\right) .
$$

- Ω_{j} : the quantity of asset j banks hold in period t.

Banks' problem in the asset market

Banks want to buy ω_{j} units of asset j, at the price $q_{a}^{j}, j=h, \ell$

$$
\begin{array}{r}
\max _{q_{a}^{h}, q_{a}^{\ell}, \omega_{h}, \omega_{\ell}} \xi\left[-q_{a}^{h} \omega_{h}+\beta k_{h} \omega_{h}\right]+(1-\xi)\left[-q_{a}^{\ell} \omega_{\ell}+\beta k_{\ell} \omega_{\ell}\right] \\
\text { s.t. } \quad q_{a}^{h} \omega_{h}+\beta V_{h}^{b}\left(a_{h}, d, e ; k_{h}\right) \geq \beta V_{h}^{b}\left(A^{E}, d, e ; k_{h}\right), \\
\\
q_{a}^{\ell} \omega_{\ell}+\beta V_{\ell}^{b}\left(a_{\ell}, d, e ; k_{\ell}\right) \geq \beta V_{\ell}^{b}\left(A^{E}, d, e ; k_{\ell}\right) \\
q_{a}^{h} \omega_{h}+\beta V_{h}^{b}\left(a_{h}, d, e ; k_{h}\right) \geq q_{a}^{\ell} \omega_{\ell}+\beta V_{h}^{b}\left(a_{\ell}, d, e ; k_{h}\right) \\
q_{a}^{\ell} \omega_{\ell}+\beta V_{\ell}^{b}\left(a_{\ell}, d, e ; k_{\ell}\right) \geq q_{a}^{h} \omega_{h}+\beta V_{\ell}^{b}\left(a_{h}, d, e ; k_{\ell}\right) \tag{5}\\
q_{a}^{h}, q_{a}^{\ell} \geq 0, \omega_{h} \leq A^{E}, \omega_{\ell} \leq A^{E} .
\end{array}
$$

- Condition (1)-(2): participation constraints.
- Condition (3)-(4): incentive compatibility constraints.

Algorithm to find an equilibrium

Strategy to pin down equilibrium:

1. conjecture a possible portfolio
2. check if the portfolio optimizes agents' and banks' problems in the CM
3. agents' and banks' portfolio choices; market clearing conditions $\rightarrow a_{h}, a_{\ell}, d, e, q_{a}^{h}, q_{a}^{\ell}, q_{e}, i, k_{e}$
4. bargaining in the DM \rightarrow terms of trade: $\left(x_{1}, y_{a}, y_{d}, y_{e}\right)$

Types of equilibria

- Banks solve the private information problem:

1. banks buy all of good assets and zero or some bad assets
2. banks buy all of bad assets and zero or some good assets

- Banks do not solve the private information problem:

3. banks buy more good assets than bad ones
4. banks buy more bad assets than good ones
5. banks buy the same quantity of good and bad assets \Rightarrow real assets which serve as payments in the DM are threatened by private information problem

Buyers' offer without private information

Any offer made by a buyer who does not sell all of real assets to banks is,

$$
\begin{array}{r}
\max _{x_{1}^{j}, y_{2}^{j}, y_{d}^{j}, y_{e}^{j}}\left[u_{1}\left(x_{1}\right)-k_{j} y_{a}-(1+i) y_{d}-k_{e} y_{e}\right] \\
\text { s.t. }-c_{1}\left(x_{1}\right)+k_{j} y_{a}+(1+i) y_{d}+k_{e} y_{e} \geq 0 \\
y_{a} \leq a_{j}, \quad y_{d} \leq d, \quad y_{e} \leq e
\end{array}
$$

Any offer made by a buyer who sells all of his real assets to banks is,

$$
\begin{array}{r}
\max _{x_{1}^{-j}, y_{d}^{-j}, y_{e}^{-j}}\left[u_{1}\left(x_{1}\right)-(1+i) y_{d}-k_{e} y_{e}\right] \\
\text { s.t. }-c_{1}\left(x_{1}\right)+(1+i) y_{d}+k_{e} y_{e} \geq 0 \\
y_{d} \leq d, \quad y_{e} \leq e
\end{array}
$$

Proposition 1 (Asset prices)

When banks buy all one type of assets, deposits, bank equity and real assets have the same liquidity, and $\frac{k_{e}}{q_{e}}=1+i$.

1. If banks buy all good assets, then $q_{a}^{h}>q_{a}^{\ell}$.
2. If banks buy all bad assets and $\frac{\sigma_{\ell} k_{\ell}}{\sigma_{h} k_{h}}>1$, then

$$
q_{a}^{\ell}>q_{a}^{h}-\beta\left(k_{h}-k_{\ell}\right)
$$

where $\sigma_{j} \equiv \frac{u_{1}^{\prime}\left(x_{1}^{j}\right)}{c_{1}^{\prime}\left(x_{1}^{\prime}\right)}-1$. Moreover, when k_{h} is large enough such that $\frac{\sigma_{\ell} k_{\ell}}{\sigma_{h} k_{h}}<1$, then banks buy good assets at a higher price, i.e., $q_{a}^{h}>q_{a}^{\ell}$.

Buyers' offer under private information

Any offer made by a buyer with good assets is such that

$$
\begin{array}{r}
\max _{x_{1}^{h}, y_{a}^{h}, y_{d}^{h}, y_{e}^{h}}\left[u_{1}\left(x_{1}\right)-k_{h} y_{a}-(1+i) y_{d}-k_{e} y_{e}\right] \\
\text { s.t. }-c_{1}\left(x_{1}\right)+k_{h} y_{a}+(1+i) y_{d}+k_{e} y_{e} \geq 0, \\
u_{1}\left(x_{1}\right)-k_{\ell} y_{a}-(1+i) y_{d}-k_{e} y_{e} \leq u_{1}\left(x_{1}^{\ell}\right)-c_{1}\left(x_{1}^{\ell}\right), \\
y_{a} \leq a_{h}, y_{d} \leq d, y_{e} \leq e . \tag{9}
\end{array}
$$

- In eqm, condition (7) holds with equality because buyers make take-it-or-leave-it offers;
- condition (8) holds with equality to prevent imitating.

Proposition 2 (The pecking-order payment arrangement)

The buyer h 's offer, $\left(x_{1}^{h}, y_{a}^{h}, y_{d}^{h}, y_{e}^{h}\right)$, has the following properties:

- If $(1+i) d+k_{e} e<c_{1}\left(x_{1}^{*}\right)$, then

$$
\begin{gathered}
y_{d}^{h}=d \\
y_{e}^{h}=e
\end{gathered}
$$

And $\left(x_{1}^{h}, y_{a}^{h}\right)$ satisfies

$$
\begin{aligned}
k_{h} y_{a}^{h}= & c_{1}\left(x_{1}^{h}\right)-(1+i) d-k_{e} e \\
u_{1}\left(x_{1}^{\ell}\right)-c_{1}\left(x_{1}^{\ell}\right)= & u_{1}\left(x_{1}^{h}\right)-c_{1}\left(x_{1}^{h}\right) \\
& +\left(1-\frac{k_{\ell}}{k_{h}}\right)\left[c_{1}\left(x_{1}^{h}\right)-(1+i) d-k_{e} e\right]
\end{aligned}
$$

where $x_{1}^{\ell}=\min \left\{x_{1}^{*}, c_{1}^{-1}\left[k_{\ell} a_{\ell}+(1+i) d_{\ell}+k_{e} e_{\ell}\right]\right\}$.
Moreover, if $a_{h}>0$, then $x_{1}^{h}<x_{1}^{\ell}$ and $y_{a}^{h}<a_{h}$.

Proposition 2 (con't)

- If $(1+i) d+k_{e} e>c_{1}\left(x_{1}^{*}\right)$, then

$$
\begin{aligned}
x_{1}^{h} & =x_{1}^{*} \\
k_{h} y_{a}^{h}+(1+i) y_{d}^{h}+k_{e} y_{e}^{h} & =c_{1}\left(x_{1}^{*}\right) \\
y_{a}^{h} & =0 .
\end{aligned}
$$

Proposition 3 (The liquidity-price relationship)
When banks do not remove private information problems, good assets are subject to liquidity constraints, and the asset prices are such that $q_{a}^{h}<q_{a}^{\ell}+\beta\left(k_{h}-k_{\ell}\right)$.

Welfare

eqli.1: banks buy all of good assets, and no bad ones;
eqli.2: banks buy all of bad assets, and no good ones;
eqli.3: banks buy some of good and bad assets.

Conclusion

- Prices of risky real assets are affected by assets' contributions to trades.
- Good assets face an endogenous liquidity constraint under private information.
\triangleright bank liabilities are preferred means of payment
\triangleright to signal, good real assets may be held but not spent.
- Banks can improve aggregate liquidity and welfare by providing recognizable assets, even if they are not able to verify assets' quality.
- When bank liabilities are backed with high quality real assets, the economy achieves the highest welfare.

