¡iº¶¡j | ¡i¤ý¨È¨k±Ð±ÂµÛ§@¥Ø¿ý¡j | ¡i¤w¼Æ¦ì¤Æ¤§µÛ§@¡j | ¡@ | ¡@ | ¡@ | ¡@ | ¡@ | ¡@ | ¡@ | ¡@ | |||
¡@ | ¡@ | ¡@ | |||||||||||
¤ý¨È¨k±Ð±Â¾ú¦~½×¤å¤¤^¤åºKn»PÃöÁä¦r | ¡@ | ¡@ | |||||||||||
¡@ | ¡@ | ||||||||||||
¾Ç¸¹ | ¬ã¨s¥Í¤¤¤å¦W | ²¦·~¾Ç¦~ | ¥Xª©¦~«× | ½×¤å¤¤¤å¦WºÙ | ½×¤å^¤å¦WºÙ | «ü¾É±Ð±Â | °|®Õ¦WºÙ | ¨t©Ò¦WºÙ | ¾Ç¦ìÃþ§O | ¤¤¤åÃöÁä¦r | ^¤åÃöÁä¦r | ½×¤å¤¤¤åºKn | ½×¤å^¤åºKn |
R89625005 | ªôÎ}¶v | 94 | 0 | ¤g¦×®Û»P¤s¦×®ÛºØ¶¡¶ù±µ¤§¬ã¨s | Study on Interspecific Grafts of Cinnamomum osmophloeum and Cinnamomum insulari-montanum | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªLÀô¹Òº[¸ê·½¾Ç¬ã¨s©Ò | ºÓ¤h | ¤g¦×®Û,¤s¦×®Û,¶ù±µ¿Ë©M©Ê,¥ú¹¡©MÂI,¥ú¸ÉÀvÂI | Cinnamomum osmophloeum,Cinnamomum insulari-montanum,graft compatibility,light saturation point,light compensation point | ¥»¬ã¨s§Q¥Î¤Á±µ¤Î¦X±µ¨âºØªK±µ¤è¦¡¡A¥H¤g¦×®Û¬°±µÁJ¡B¤s¦×®Û¬°¯z¤ì¶i¦æºØ¶¡¶ù±µ¡Aµ²ªGÅã¥Ü¶ù±µ¦¨¬¡²vÀH¶ù±µ¤ë¥÷¤Î¤èªk¦³«Ü¤j®t²§¡A¨âºØ±µªk©ó3~4¤ë®É¶ù±µ¦¨¬¡²v³Ì°ª¡A12~1¤ë¤Î5~6¤ë¶ù±µ¦¨¬¡¤Î¿Ë©M²v³Ì§C¡A¤£¿Ë©M¼xª¬«h¥H10~12¤ëµo¥Í²v³Ì°ª¡C ¿Ë©M¶ù±µ]¥ú¦X§@¥Î¯S©ÊÀHµÛ¥Íªø´Á³vº¥«ì´_¥¿±`¡A¦b3Ó¤ë¥Í®É¡A¤Á±µ¡B¦X±µ]¤§·t©I§l²v¡B¥ú¸ÉÀvÂI¡B²b¥ú¦X§@¥Î³t²v§¡¤£¤Î¤g¡B¤s¦×®ÛºI·F]¡]¹ï·Ó²Õ¡^¡A¦ý¦Ü12Ó¤ë¥Í®É¡A¤GªÌ¤w¬Û·í±µªñ¡AÅã¥Ü¶ù±µ«áÀH¥Íªø´Á©µªø¡A¥Í²zª¬ºA³vº¥«ì´_¥¿±`¡C¶ù±µ¿Ë©M¤ÎºI·F]®ð¤Õ¤º¥~¤G®ñ¤ÆºÒ¿@«×¤ñ§¡ÀHµÛ¥ú«×¼W¥[¦Ó³vº¥´î¤Ö¡A·í¥ú«×¹F¨ì200£gmol photon m-2 s-1 ®ÉÁͽw¡A¨Ã©T©w¦b0.5~0.7¶¡¡C¿Ë©M¶ù±µ]¤§¸ºñ¯Àa¡Bb§t¶q¦b±µ«áªì´Á´£°ª¡A»PºI·F]¦³ÅãµÛ®t²§¡A¦ýÀHµÛ¥Íªø®É¶¡¼W¥[¡A¶ù±µ]¤§¸ºñ¯À§t¶q³vº¥´î¤Ö¡A¦Ü12Ó¤ë¥Í®É»PºI·F]¤wµLÅãµÛ®t²§¡C¦X±µªk¦]¤Á±¸û¤Á±µ³æ¯Â¡A¦]¦¹Â¡¶Ë¸û¨Î¡A¤£¿Ë©M®è¥ç¸û¤Ö¡A¤Á±µ«h¤Ï¤§¡C¦X±µ]¦b3Ó¤ë¥Í®É¨ä¥~³¡¤w§¹¥þ¡¶Ë¡A¦ý¨ä¿é¾É²Õ´¤À¤Æ©|¤£§¹¾ã¡A¤Á±¤W¤´¦³³¡¥÷Ãa¯j¼h´Ý¯d¡A¦Ü12Ó¤ë¥Í®É¿é¾É²Õ´¤À¤Æ¡A¤wµLÃa¯j¼h´Ý¯d¡C¤Á±µ]¦b3Ó¤ë¥Í®É¨ä±µ¦X³¡¥¼§¹¥þ¡¶Ë¡A¤º³¡¿é¾É²Õ´¥ç©|¥¼¤À¤Æ§¹¥þ¡A¾î¤Á±¤W¦³©úÅ㤧Ãa¯j¼h¦s¦b¡A¦Ü12Ó¤ë¥Í®É¨ä¿é¾É²Õ´Áö¤w§¹¥þ¤À¤Æ¡A¦ý¤´¦³³¡¤ÀÃa¯j¼h¦s¦b¡A¨ä¤¤³¡¤À¬O¤ÁÁJ¶´¥Ö³¡´Ý¯d©Ò³y¦¨¡C ¶ù±µ¤£¿Ë©M¼xª¬¦b¶ù±µ«á³°Äò¥X²{¡A¥Dn¬°µÞªÞ±ß¡B¥Íªø½wºC¡BÁJ±ø¶À¤Æ¡B±µ¦X³¡±µ¦X·L®z¡A¸¤ù¶À¤Æ¡B¸¯ßÃC¦âÅܲ`¡B¸¥ýºÝ¬\¦º±¼¸¨¡B´Ó®è°I®z³vº¥¦º¤`µ¥¡C¶ù±µ¤£¿Ë©M®è¤§¥§¡²b¥ú¦X¯à¤O¡B·t©I§l²v¡B¸ºñ¯Àa¡Bb¤ÎÁ`¶q§¡©úÅã¸û¨ä¥L]¤ì§C¡A¥ú¸ÉÀvÂI¤Î¥ú¹¡©MÂI«o¸û°ª¡AÅã¥Ü¤£¿Ë©M¶ù±µ]¿é¾É²Õ´¡¶Ë¤£§¹¾ã¡A¥Í²z¨ü¡A´Ó®è±N³vº¥°I®z¦º¤`¡C¥Ñ¤Á±Æ[¹î¡A¤Á±µ¤£¿Ë©M¤§Ãa¯j¼h¦s¦b©úÅã¡A¶´¥Ö³¡²Õ´¥ç©úÅ㦳§á¦±¤Î¤À¤Æ¤£¨}±¡§Î¡A¦X±µ¤£¿Ë©M«h¦³²§±`ªº¤ì½è³¡Á¡¾À²Õ´¦s¦b¡A¶´¥Ö³¡¤]¤À¤Æ¤£¨}¡C |
The cut grafting method and
splice grafting method were used in this study, Cinnamomum osmophloeum was
used as scion and Cinnamomum insulari-montanum was used as stock in this
study. The experimental results showed that the survival rate varied with the
time and method of grafting, for example, from March to April, Both grafting
methods had the highest survival rate; while from December to January and
from May to June, both Methods yielded the lowest survival rate and
compatibility; the incompatibility was highest when grafting was conducted
from October to December. For the compatibility grafts, the photosynthesis characteristics returned to normal along with growing time; when it was 3-month old, the dark respiration rate, light compensation point and net photosynthesis rate of cu grafting and splice grafting were lower than those non-grafting seedlings of both C. osmophloeum and C. insulari-montanum; until they were 12-month old, the grafts and non-graft seedling become comparable, this indicated that the extended growth and back to normal state of the physiological conditions of grafts. The CO2 ratio from inside and outside of the stomata of both the compatibility grafts and non-graft seedlings decreased with increasing light intensity, when light intensity reached 200£gmol photon m-2 s-1,and become stable around 0.5~0.7. For the compatibility grafts, the contents of both chlorophyll a and b increased at beginning but decreased with growing time, and there was significant difference between compatibility grafts and non-graft seedlings; the chlorophyll contents decreased with time; and there was no significant difference between compatibility grafts and non-graft seedling when they were 12-month old. Overall, the splice grafting method yielded better healing condition and less incompatibility. The vessels of cut grafts did not show sign of differentiation and necrotic layer was obvious when they were 3-month old. After 12 months, the vessels of cut grafts were completely differentiated, however, fragments of necrotic layer still existed. On the other hand, the splice grafts healed very well when they were 3-month old, although parts of necrotic layer still remained, with partially the differentiated vascular bundles. After 12 months, the vessels were differentiated with no necrotic layer. After grafting, the external characteristics of graft incompatibility showed gradually, which included late sprouting, slow growth, yellow leaf, weak tissue union, dark vein and withering leaf. For the incompatibility cut grafts, the necrotic layer was obvious and the phloem was twisted and incompletely differentiated. The incompatibility splice grafts also showed signs such as abnormal thin-wall xylem tissue and incompatibility phloem. On the average, incompatibility grafts were low in net photosynthesis rate, light compensation point, light saturation point and the amount of chlorophyll. |
R92625026 | ¸¦°®e | 94 | 0 | ¶ð¶ð¥[¦a°Ï¤TºØªL«¬¤gÄ[»G´Ó»Ä¤§¯S©Ê | Character of Soil Humic Acids at Three Forest Types in Ta-Ta-Chia Area. | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªLÀô¹Òº[¸ê·½¾Ç¬ã¨s©Ò | ºÓ¤h | »G´Ó»Ä,¤gÄ[¦³¾÷½è,´Ó¥Í,13C-NMR | humic acid,soil organic matter,vegetation,13C-NMR | ¤£¦P´Ó¥Í±ø¥ó¤U¥Í¦¨ªº¤gÄ[¦³¾÷½è²Õ¦¨¦¨¥÷¤´Â¤£²M·¡¡C¥»¬ã¨s¥Øªº¦b¤F¸Ñ¤£¦P´Ó¥Í±ø¥ó¤U¡A¤gÄ[»G´Ó»Ä¤§¯S©Ê®t²§¡C¥»¬ã¨s¿ï¨ú¶ð¶ð¥[¦a°Ï¡]Taiwan Long-Term Ecological Research, LTER¡^»OÆW¤G¸ªQ¡]Pinus taiwanensis Hay., Taiwan red pine, TP¡^¡B»OÆWÅK§ü¡]Tsuga chinensis var. formosana Li & Keng, Taiwan hemlock, TH¡^¤Î¥É¤s½b¦Ë¡]Yushania niitakayamensis (Hay.) Keng f., Yushan cane, YC¡^¤TºØ¤£¦PªL«¬¤U¤gÄ[¶i¦æ¬ã¨s¡A¤ñ¸û¨ä¤gÄ[ª«²z¤Æ¾Ç°ò¥»©Ê½è¡B¤gÄ[¦³¾÷½è¤Î»G´Ó»Äµ¥²Õ¦¨®t²§¡Aµ²ªGÅã¥Ü¤TºØ¤gÄ[»ÄÆPÈ¡]pH¡^¤¶©ó 3 ~ 4 ¤§¶¡¬°±j»Ä©Ê¤gÄ[¡A¥Ñ©ó»Ä©Ê´ËªL¤gÄ[¤Î±j¯P²O¬~§@¥Î³y¦¨¥i¥æ´«©ÊÆQ°ò¶§Â÷¤l§t¶q·¥§C¡A¦Ó¤gÄ[¦³¾÷ºÒ§t¶qÁͶաG»OÆWÅK§ü¡Ö»OÆW¤G¸ªQ¡Ö¥É¤s½b¦Ë¡C©TºA13C-NMR¤ÀªRµ²ªG«ü¥X¤£¦P¾ðºØ·sÂA´ÓÅé¡]ÂA®Ú¡B¹àªK¡BÂA¸¡^¦³¾÷©x¯à°ò¬Û¹ï¦Ê¤À¤ñ§t¶q¤£¦P¡A¤TºØ¾ðºØ§¡¥HÅÖºû¯À¡B¥bÅÖºû¯À¬°¥Dn¦¨¤À¡A¦ý¬O¡A»OÆW¤G¸ªQ¤Î»OÆWÅK§ü§t¸û¦hªº¤ì½è¯À¡A¦Ó¥É¤s½b¦Ë¸û¤Ö¡A¦³¾÷©x¯à°ò§t¶qÁͶլ°¡GO-alkyl-C> alkyl-C> N-alkyl-C> acetal-C> aromatic-C> phenolic-C≈ carboxyl-C¡C»OÆW¤G¸ªQ¤Î»OÆWÅK§üOa¼hÅÖºû¯À¤Î¥bÅÖºû¯À¬Û¹ï§t¶q°ª©ó¥É¤s½b¦Ë¡A¦b°ª¤s´ËªL¤gÄ[¸Ì»OÆWÅK§üªL«¬¤Uªº¤gÄ[¦³¾÷½è¤£©ö¤À¸Ñ¡A¤TºØªL«¬¤U´ÓÅé¤À¸ÑÃø©öµ{«×¬°¡]¥Ñ©ö¦ÜÃø¡^¡G¥É¤s½b¦Ë¡Ö»OÆW¤G¸ªQ¡Ö»OÆWÅK§ü¡C¥Ñ¤¸¯À¤ÀªR±oª¾»OÆW¤G¸ªQ¤Î»OÆWÅK§üHA¨ã¦³¸û°ªªºH/CȤÎO/CÈ¡C¤Ï¤§¡A¥É¤s½b¦Ë¤gÄ[¦³¾÷½è®e©ö¤À¸Ñ¡A¥É¤s½b¦ËHA¤§H/CȤÎO/Cȸû§C¡CFTIR¤ÀªRµ²ªG«ü¥X¤£¦PªL«¬¤U»G´Ó»Ä¡]humic acids, HAs¡^¦³¾÷©x¯à°ò²Õ¦¨¬Û¹ï¦Ê¤À¤ñ§t¶q¤£¦P¡A¦ý³£§t¦³¯×ªÕ±Ú¡BªÚ»±Ú¤Î¦hÁÞÃþµ²ºc¡C¥t¥~¡A¦b¦³¾÷©x¯à°ò¬Û¹ï§t¶qÁͶդW¡A»OÆW¤G¸ªQ¤Î»OÆWÅK§ü§¡¬°¡Galkyl-C> O-aklyl-C≈ N-alkyl-C> aromatic-C> carboxyl-C> acetal-C> phenolic-C¡C¥É¤s½b¦Ë¬°¡Galkyl-C> aromatic-C> O-aklyl-C≈ N-alkyl-C> carboxyl-C> acetal-C> phenolic-C¡C¥»¬ã¨s»{¬°¤TºØªL«¬¤U¤gÄ[¦³¾÷½è¤À¸ÑÃø©öµ{«×¡]¥Ñ©ö¦ÜÃø¡^¡G¥É¤s½b¦Ë¡Ö»OÆW¤G¸ªQ¡Ö»OÆWÅK§ü¡C | Compositions of soil organic matter developed form various vegetations remain unclear. The aims of this study were to investigate the different characteristics of humic acid from various vegetations in temperate rain forest, Ta-Ta-Chia, central Taiwan. Three forest types were selected for this study, such as Taiwan red pine (Pinus taiwanensis Hay., Taiwan red pine, TP), Taiwan hemlock (Tsuga chinensis var. formosana Li & Keng, Taiwan hemlock, TH), and Yushan cane (Yushania niitakayamensis (Hay.) Keng f., Yushan cane, YC). The soil physical and chemical properties, soil organic matters, and humic acid constituents were characterized. Soil pH ranged from 3 to 4. Low exchangeable cations caused by acidic and intense leaching of forest soils. Total organic carbon contents showed the trend as: TH > TP> YC. From CP/MAS 13C soild-state NMR analyses, the constituents of organic functional groups showed the various with respect to different plants and tissues, including fresh twigs, leaves and roots. Cellulose and semi-cellulose are the major components of plant tissues. However, the TP and TH comprise more lignin than that of YC. The contents of different functional groups in plant tissues showed the trends as follows: O-alkyl-C > alkyl-C >N-alkyl-C > acetal-C > aromatic-C > phenolic-C ≈ carboxyl-C. The Oa horizon in TP and TH contain more cellulose and semi-cellulose than that of the YC. The debris of Taiwan hemlock forest type is not that easy decompose under the alpine forest soil environments. The decomposition rate of plant tissues of three forest types showed the trends: YC > TP > TH. From elemental analyses, the humic acids fractionated from the TH and TP forest types soils contain more H/C and O/C atomic ratios (i.e., aliphatic carbon) than that of YC forest type, indicating the slow decomposition of TH and TP plant tissues. On the other hand, the YC showed low H/C and O/C atomic ratios, indicating easier decompose of YC plant tissues. From Fourier Infrared (FTIR) spectrometry analyses, the humic acids showed different aliphatic, aromatic and polysaccharide contents. From CP/MAS 13C soild-state NMR analyses of soil humic acids, the TH and TP contain more residual cellulose and semi-cellulose contents than that of YC forest types due to slow decomposition rate. The semi-quantitative of organic functional groups of the TH and TP showed the following trends: alkyl-C > O-alkyl-C ≈ N-alkyl-C > aromatic-C > carboxyl-C > acetal-C > phenolic-C, however, the YC humic acids showed the different trends: alkyl-C > aromatic-C > O-alkyl-C ≈ N-alkyl-C > carboxyl-C > acetal-C > phenolic-C. In general, we suggest that the degree of debris decomposition in three forest types are YC > TP > TH. |
D86625005 | ¦¶ÄRµÓ | 94 | 0 | ¤û¼Ì¡BÉN¼Ì¤Î¼Ì¾ð¤§±Ú¸s¿ò¶ÇÅܲ§¤Î¬ÛÃöºØÄݤ§¿Ë½tÃö«Y¬ã¨s | Study on the population genetic of Cinnamomum kanehirae, Cinnamomum micranthum and Cinnamomum camphora and phylogeny among their related spcies | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªLÀô¹Òº[¸ê·½¾Ç¬ã¨s©Ò | ³Õ¤h | ¤û¼Ì,ÉN¼Ì,¼Ì¾ð,¼ÌÄÝ,¼Ì¬ì,µá«ß»«¼Ì,¿ò¶ÇÅܲ§,²³æ§Ç¦C«½Æ,¸ºñÅéDNA,¿Ë½tÃö«Y,¤À¤lÅܲ§¼Æ¤ÀªR,±Ú¸s¿ò¶ÇÅܲ§¤ÀªR,¸s¹Î¤ÀªR | Cinnamomum kanehirae,Cinnamomum micranthum,Cinnamomum camphora,genus Cinnamomum,Lauraceae,Machilus philippinse,genetic variation,ISSR,cp DNA ,phytogenetics,AMOVA,POPGENE,cluster | ¤û¼Ì¡BÉN¼Ì»P¼Ì¾ð¬°¼Ì¬ì¼ÌÄݤº§ÎºA¬Ûªñªº¬ÛÃöºØ¡A¤TªÌ¦bªÅ¶¡¤À¥¬¤W¡A¼s¯U¤£¦P¡C¥»¬ã¨s¥ÎISSR¤À¤l¼Ð»xÀË´ú¤TªÌ¤§±Ú¸s¿ò¶Çµ²ºc¡A¨Ã¥HNTSYS¶i¦æ¸s¹Î¤ÀªR¤Î¥D¦¨¤À¤ÀªR¨Ã¥HPOPGENE¤ÎAMOVA³nÅé¤ÀªR¨ä±Ú¸sµ²ºc¤ÎÅܤè¡C ¼Ì¾ð¬°¼sªx¤À¥¬ºØ¡A¼Ì¾ð¥xÆW¦a°Ï¤§¼Ì¾ð»P¤j³°¦a°Ï¤§¼Ì¾ð¤jP§Î¦¨2Ó¸s¹Î³sµ²¡A¦A»P«í¬K¥b®q¦a°Ï¤§ºØ·½Ápµ²¡A¨Ã¥H¤é¥»¯[²y¦a°Ï¥Û«®®q¤§¼Ì¾ð§@¬°¹ï·Ó¡CÅܲ§¼Æ¤ÀªR¡]ANOVA¡^¡Cµ²ªGÅã¥Ü¤j³°²£¡B¥xÆW²£»P¤é¥»¥Û«®®q¤§¼Ì¾ð¶¡Åܤ覨¤À¬°45.40¢H¡A¦Ó°Ï°ì¤º±Ú¸s¶¡¤§Åܤ覨¤À¬°26.64 ¢H¡A±Ú¸s¤ºÓÅé¶¡ªºÅܤ覨¤À¬°27.96¢H¡C¼Ì¾ðºØ¤ºªº¿ò¶Çª[²§«×¬°0.2564¡A´N±Ú¸s¤À¤Æ«Y¼Æ¡]Gst¡^¨Ó¬Ý¡A¬°0.4881¡A°ò¦]¬yÂà¡]Nm¡^ªº¼ÆÈ¬°0.5244¡A°ò¦]¬yªº¼ÆÈ«h§C©ó1¡AÅ㨣¨â©¤¤§¼Ì¾ð±Ú¸s¶¡¦s¦³¥æ¬y»Ùê¡C ÉN¼Ì¬°°Ï°ì©Ê¤À¥¬ºØ¡A¥»¬ã¨s§Q¥Î¥xÆW¦a°Ï¤§ÉN¼Ì¤Î¤j³°¼sªF¦a°Ï¤§ÉN¼Ì¬°§÷®Æ¶i¦æ¤ÀªR¡Aµ²ªG¦b¸s¹Î¤ÀªR¤Î¥D¦¨¤À¤ÀªR¤W³£¥i©úÅã¤À¦¨2Ó¸s»E¡G²Ä1¸s¬O¥xÆWÉN¼Ì¡A²Ä2¸s¬°¤j³°¼sªF¦a°ÏªºÉN¼Ì¡C¦bPOPGENE¤§¿ò¶Ç¶ZÂ÷¤ÀªR¤W¼sªF¦a°ÏÉN¼Ì»P¥xÆW¦a°Ï¤§ÉN¼Ì¬Û¦ü©Ê«Y¼Æ·¥§C¦b0.5445¦Ü0.4316¤§¶¡¡A¨â°Ï°ì¶¡¤§¬Û¦ü©Ê«Y¼Æ¤w§C©óºØ¶¡ªº¬Û¦ü©Ê«Y¼Æ¤§È¡C¥xÆW¦a°Ï¤§ÉN¼Ì±Ú¸s±Ú¸s¤À¤Æ«Y¼Æ¡]Gst¡^¬°0.3021¡A¦b°ò¦]¬yÂà¡]Nm¡^ªº¼ÆÈ¬°1.1548¡A°ò¦]¬yªº¼ÆÈ°ª©ó1¡AÅ㨣¥xÆW¤§ÉN¼Ì¾ð±Ú¸s¶¡¤£¦s¦³¥æ¬y»Ùê¡C±N¤j³°ºØ·½ÉN¼Ì¾ð©M¥xÆWºØ·½ªºÉN¼Ì·í§@2°Ï°ì¶i¦æÅܲ§¼Æ¤ÀªR¡]AMOVA¡^¡A¨Ì¾Ú°Ï°ì¶¡¡B°Ï°ì¤º±Ú¸s¶¡¤Î±Ú¸s¤ºÓÅé¶¡µ¥¤ÀªR¤TÓµ¥¯Å¤§Åܤ覨¤À¡Cµ²ªG¤j³°²£¤§ÉN¼Ì¡B¥xÆW²£ÉN¼Ì¶¡Åܤ覨¤À¬°56.37%¡A¦Ó°Ï°ì¤º±Ú¸s¶¡¤§Åܤ覨¤À¬°13.19 %¡A±Ú¸s¤ºÓÅé¶¡ªºÅܤ覨¤À¬°30.44%¡C ¤û¼Ì¬°¥xÆW¯S¦³ºØ¡A¦bNTSYS³nÅ骺¸s¹Î¤ÀªR¤Î¥D¦¨¤À¤ÀªR¤W³£¥i©úÅã¤À¦¨2Ó¸s»E¡G1¸s¬O¥xÆW¤û¼Ì¡A¥t1¸s¤j³°¼sªF¦a°ÏªºÉN¼Ì¡C¦b¥xÆW¤û¼Ì±Ú¸sµLªk°Ï¤À¦UÓ±Ú¸s¡C¦ý¥xÆW¦a°Ï¤§¤û¼Ì±Ú¸sªº¬Û¦ü©Ê«Y¼Æ»P¦a²z¶ZÂ÷¤À¥¬¨ÃµL¥¿¬ÛÃö¡C±Ú¸s¤À¤Æ«Y¼Æ¡]Gst¡^¬°0.3490¡A°ò¦]¬yÂà¡]Nm¡^ªº¼ÆÈ¤W¬°0.9328¡A°ò¦]¬yªº¼ÆÈ«h§C©ó1¡AÅã¥Ü¤û¼Ì±Ú¸s¶¡¥i¯à¦]ªñ¦~¨Ó¤H¬°¶}±Ä¦Ó¾ÉP±Ú¸s´î¤Ö¡A¦U±Ú¸s¶¡¤w¦³¥æ¬y»Ùê²£¥Í¡C ¦bPOPGENE¤ÀªR¤û¼Ì¡BÉN¼Ì©M¼Ì¾ð¿Ë½tÃö«Y¡A¥H¤û¼Ì»P¼Ì¾ð¨âªÌ¤§¿ò¶Ç¶ZÂ÷¶È¬°0.0997¨Ó±À½×¡A¦LÃÒÃåЦw¤G¡]1952¡^¥Hºëªo¦¨¤À¤ÀªR¡A»{¬°¤û¼Ì¥Ñ¼Ì¾ðºtÅܦӨӪºµ²ªG¬Û²Å¡CcpDNA©Ò«Ø¥ßªº¾ðª¬¹Ï¤Î¶ZÂ÷¯x°}³£Åã¥Ü¥X¡A¥»¬ã¨s©Ò¨Ï¥Îªº¥xÆW¦a°Ï¤§ÉN¼Ì»P¤j³°¼sªF¦a°Ï¤§ÉN¼Ì¦³µÛ·¥¤jªº®t²§¦s¦b¡C ¥xÆW¦a°Ï¤§¼ÌÄÝ´Óª«¥H¸ºñÅéDNA¤¤¤§2¤ù¬q¡]PetD-PetB¡BTrnS-TrnT¡^©w§Çµ²ªGÅã¥Ü¡A¬ù²¤¥i±N¼ÌÄݰϤÀ¦¨¼Ì²Õ¤Î¦×®Û²Õ¡A¨ä¤À¤lÃÒ¾Ú»P¶Ç²Î¤§¤ÀÃþ³B²z¤jP²Å¦X¡C¦A¥H¸ºñÅéDNA¤¤¤§3Ó¤ù¬q¡]PetD-PetB¡BTrnV-TrnM¡BTrnS-TrnT¡^©w§Çµ²ªG¥H¤ÎKimura¡¦s 2-parameter distance¿ò¶Ç¶ZÂ÷Åã¥Ü¡Aµá«ß»«¼Ì¡]Cinnamomum philippinense¡^À³§ïÁõ¬°·©·£ÄÝ¡A¾Ç¦WÀ³¬°µá«ß»«·£¡]Machilus philippinensis Merr.¡^¡C¦Ó¹T±ùÄÝ©M·©·£Äݤ§¿ò¶Ç¶ZÂ÷¸ûªñ¡C¥B¦bNJªk¤ÎMPªkªº¤ÀªK¹Ï³£±N¹T±ùÄÝ»P¾aªñ¡A¦ý¦b§ÎºA¤W¨âÄݤ´¦³«Ü¤jªº®t²§ÂI¡A·©·£ÄݬO¤£¬OÀ³¨Ö¦b¹T±ùÄݤ§¤U¤´¦³«Ý°Óºe¡C ¥¼¨Ó¦bÀÀ©w«O¨|¤è°w»P«O¨|±¹¬I®É¡Aµ²ªGÅã¥Ü¤TªÌªº¤è¦¡¬Ò¤£¦P¡C¤û¼Ì¬°©T¦³ºØ¡A¥DnÅܲ§¦s¦b©ó±Ú¸s¤º¡A°ª¹F90%¥H¤W¡A¦Ó¤À¥¬½d³òµy¤jªºÉN¼ÌÀ³Äݰϰì©Ê¤À¥¬¡A¨ä¥DnÅܲ§¦¨¥÷¦b±Ú¸s¤º¤Î±Ú¸s¶¡¦U¥e¬ù¤G¤À¤§£¸¡A¤]´N¬O¤@¥bªºÅܲ§¦s¦b±Ú¸s¤º¡A¥t¤@¥b¦s¦b±Ú¸s¶¡¡C¦Ó¼Ì¾ð¬°¼sªx¤À¥¬ºØ¡A«h¨ä¤j¦hªºÅܲ§¬O¦s¦b©ó±Ú¸s¶¡¡A¬ù¬°±Ú¸s¤ºÅܲ§ªº2¿¤§¦h¡C¼Ì¾ðÀ³¥H«O¯d¦h¼Æªº±Ú¸s©M±Ú¸s¤º¤Ö¼Æªº³æ®è¡F¦ÓÉN¼Ì«h¬O±Ú¸s¼Æ¶q¤Î±Ú¸s¤º¤]n¦³¬Û·íªº¼Æ¶q¡A¦ý¬O¤û¼Ì«hÀ³¸Ó«O¦s¤Ö¼Æ±Ú¸s¤º¤j¶qªº³æ®è¡C |
Cinnanamomum kanehirae, C.
micranthum and C. comphora are morphologically related species. The distribution patterns of the three
are different from each other, i.e. C. kanehiraeis an endemic species and
confined only in Taiwan Island, where as C. micranthum regional which reaches
its areas not only to Taiwan but also to southern China. C. camphora has the
most widely distribution areas of the three which is native to Japan, Korea
and Indochina peninsula. The
study used ISSR, cpDNA techniques to analyzed genetic variation and
phylogenetic relationship of the three species as well as the other species
in the family to obtain better understanding of their variation pattern and
taxonomic position. The populations of C. camphora from Taiwan and China had formed two different regins according to NTSYS cluster and PCO analyses. Variation component of the species among the areas of Taiwan, China and Okinawa was 45.4% While among population within region 26.64% and among individual within populations 27.96%. POPGENE analysis showed that genetic diversity of the species was 0.2564, Gst 0.4881, Nm0.5244, indicating that gene flow barrier existed in the populations. Two distinct groups of the C. micranthum populations were identified based on the analyses of both cluster and PCO, i.e. Taiwan group and China group. Similarity indices between the two ranged from 0.4316 to 0.5445 suggesting two groups were different from each other. The Chinese populations had long been misidentified as C. micranthum, and need to use new epithet. Gst and Nm values of the Taiwanese populations were 0.3021, 1.1548, respectively, indicating gene exchanged among populations was freely and without any difficulty. Variaties components of the species was as follows: between areas ¡]Taiwan and China¡^56.3%, among populations within area 13.19% and among individuals within population 30.44%. On the contrasty, there was as differentiaties among the populations of the endemic Cinnamomum kanehirae, i.e. no dististinct groups could be identified according to NTSYS cluster and PCO analyses. Farthermore, the SI differentes among the populations of the species did not related with their geographical distances. Nm value of the species was 0.9328(<1), suggesting gene exchange had become diffcult partly because of human disturbance. The results of POPGENE analysis revealed that genetic distance between C. kanehirae and C camphora was only 0.0997, indicating high relationship between the two. The data highly supported the proposed by Fujita (1952) that C. kanehirae was derived from C. camphora based on essential oil study. On the other hand, cpDNA analysis showed that the so called ¡¨C. micranthum¡¨ of the Guan dong origin was quite different from the species of Taiwan with the same epiphyte, suggesting the mainland ¡§species ¡¨ was the other species rather than C. micranthum. Non-coding segment cpDNA PetD-petB, TrnV-TrnM and TrnS-TrnT and Kimura¡¦s 2-parameter distance were used to study the phonology of Cinnamomum philippinese and the relationship between genera Persea and Machilus. The dendrology of both NJ and MP methods revealed that Cinnamomum philippinse was closer to Machilus than to Cinnamomum genetically. Therefore the species was suggested to put under the genus Machilus. The result of the same cpDNA study also indicated that Machilus and Persea were different. Based on the AMOVA analysis, variation patterns of C. kanehirae, C. micranthum and C. camphora were quite different. Variation of C. kanehirae mainly exists in individuals within population, estimated more than 90%, whereas that of C. micranthum almost equally in terms of within and among populations. The variation among the populations of C. camphora was almost 2 times of the individuals within population. Conservation strategy for these three species is accordingly suggested to adopt different ways. |
R93342012 | Á§¦iÖs | 94 | 0 | ¥ÍºA®È¹Cªº¬üÄR»P«s·T¢w¢w¥H·ËÀY¡B±ö®p¡B²M¹Ò»P¯óÀ¬°¨Ò | The beauty and the sorrow of eco-tourism ¢w taking HsiTou, MeiFeng, ChingChing, and TsaoLing for examples | ¤ý¨È¨k | »OÆW¤j¾Ç | ·s»D¬ã¨s©Ò | ºÓ¤h | ¥ÍºA®È¹C,·ËÀY,±ö®p,²M¹Ò,¯óÀ | eco-tuorism,HsiTou,MeiFeng,ChingChing,TsaoLing | ¦]À³¥xÆW¬F©²ªº¬Fµ¦¡A¥xÆW¦U®È¹C¦a°Ï¤]³vº¥¥Hµo®i(©ÎÂ૬¬°)¥ÍºA®È¹C¬°¥Ø¼Ð¡A¥H´Á¯à¦X²z§Q¥Î¦ÛµM¸ê·½¡BºûÅ@Àu¬üÀô¹Ò¡A¶i¦Ó¹F¨ì¥ÃÄò¸gÀ窺²×·¥²z·Q¹Ò¬É¡CµM¦Ó¡A©Î¥Ñ©ó¬F©²¬Fµ¦¥¢·í©Î¥Ñ©ó°ê¥ÁÀô«O¯À½è§C¸¨¡A³\¦h¼Ðº]¬°¥ÍºA®È¹C¦a°ÏªºÆ[¥ú´ºÂI¡Aº¥¦¸¨ü¨ì¤H¬°¦¾¬V»P¯}Ãa¡A¨Ï¸Ó®È¹C¦a°Ï¼É°_¼É¸¨¡B¹Ø©Rµu´î¡F¾¨ºÞ¦p¦¹¡A¦³¨Ç¾ú®É¤w¤[ªº®È¹C¦a°Ï«o¤´¯àºû«ù¦Û¨ªº¸ê·½»PÀô¹Ò¡C¨s³º°ÝÃD¥X¦bþ¸Ì¡H¥»²`«×±Ä³X³ø¾É«KµÛ²´©ó¦¹¡AÂÇ¥xÆW¤Ö¼Æ¨ã³Æ¥ÃÄò¸gÀç¼ç½èªº¥ÍºA®È¹C¦a°Ï¨Ó°µ¤ñ¸û¡AÆ[¹î¥ÍºA®È¹C±a¨Óªº¬üÄR»P«s·T(¥¿t±¼vÅT)¡A±q¤¤±À´ú¥X¤@¨ÇºÝÙ¡C ¥»²`«×±Ä³X³ø¾É¥H·ËÀY¡B±ö®p¡B²M¹Ò©M¯óÀ¬°±Ä³X¹ï¶H¡A¹ï¤ñ±´°Q¥ÍºA®È¹C¦b¥xÆWµo®iªº¹Lµ{¤¤¡A¨s³º¬Oþ¨Ç¦]¯À¼vÅTµÛ®È¹C¦a°Ïªº¥¼¨Ó(¨Ò¦p¥ÍºA³Q¯}Ãaªºµ{«×)¡A¥H¤Î¦b¥½¬qµy·LÂI¥X¥ÍºA®È¹C¦a°Ïn«ùÄòªø¤[¡A¥²¶·¥õ¿àþ¨Ç±ø¥ó¦]¤l¡C¬ã¨sµ²ªGµo²{¡A¥D¾É¤@¥ÍºA®È¹C¦a°Ïµo®i°_¸¨ªºÃöÁä¦]¯À¡A°£¤FºÞ²z³æ¦ìÄY®æªººÞ¨î¥~¡A³Ì«nªº«K¬O·í¦a©~¥Áªº¦V¤ß¤O¥H¤Î¬Ã±¤¸ê·½ªº¨M¤ß¡A¤£¬°µu¼È§Q¯q¦Ó¤Àµõ¡C ¥H¥ÍºA®È¹C¥²¶·ÝÅU©~¥Á§Q¯q¡B´L«·í¦a¤å¤Æ»P¦ÛµMÀô¹Ò¡A¤O¨D±N¹ïÀô¹Òªº½ÄÀ»°¨ì³Ì§C«×µ¥©w¸q¨Ó¬Ý¡A·ËÀY¦bºûÅ@¦ÛµMÀô¹Ò»P°§C®È¹C¹ïÀô¹Òªº½ÄÀ»¤O³o¨â¤è±¦¨®Ä´´µM¡AµM¦Ó¦bÝÅU©~¥Á§Q¯q³oÂI¥i¯à´N¥²¶·°hÅý(©ó¬O¥x¤j¦h¦¸»P©~¥Á¨ó½Õ·¾³q)¡F±ö®p¦P¼Ë¦bºÞ²z¤è±ºÙ±j¡A¦ý¥Ñ©ó±ö®pªº©~¥Á¦hÄÝì¦í¥Á¡A¥ÍºA®È¹C¶}©ñµ¹ì¦í¥Á¬Û·í¦hªº¤u§@¾÷·|¡AºÞ²z³æ¦ì»P©~¥Áªº§Q¯q¬Æ¤Ö½Ä¬ð¡A¦]¦¹¦b³o¤T¶µ«ü¼Ð¤W³£©|ºÙ¨}¦n¡AµM¦Ó±ö®p¥ç¦³¨ä¤ÑµM¦]¯À(¸ê·½ªºÂ×´I«×)¤Wªº¨î¡C¥t¥~¡A²M¹Ò¦b³o¤T¤è±¬Òªí²{¤£¨Î¡A¦ÛµMÀô¹Ò¯}Ãaµ{«×ÄY«¡A¥Á±J·~ªÌ¤]¦h¥H¦Û¨§Q¯q¦Ò¶q¦Ó©¿²¤·í¦a©~¥Áªº»Ý¨D¡A¬O¥|ӥͺA®È¹C¦a°Ï¤¤¸ûÃø¦³Âà¾÷ªº¤@Ó¦a°Ï¡F¯óÀ«h¦]¨j±q¾_¨a³Ð¶Ë¸Ì¯¸°_¡A¥¿È¦Ê¼o«ÝÁ|¤§¾÷¡A©|¶·¤@¬q®É¶¡Æ[¹î¡A¦A¥[¤W¨äºÞ²z³æ¦ì¡B®ÈÀ]·~ªÌ´X¥G³£¬O·í¦a©~¥Á¡A¦bºûÅ@¦ÛµMÀô¹Ò»PºûÅ@©~¥Á§Q¯q¤W¦³©Ò½Ä¬ð¡A¥¼¨Óªºµo®iºÝ¬Ý¨¤¦â§êºtªº®³®º»P¥¿Å¡C ¨ä¦¸¡A¥ÍºA®È¹Cªº¬üÄR»P«s·T¤]¥i±q³o¨Ç¼vÅT¦]¤l¤¤¬Ý¥XºÝÙ¡A¤@ӮȹC¦a°Ïn¯àµo®i¡A¨Ì¾aªº´N¬O·í¦a©~¥Á¦³«O¦s·í¦a²M¬üÀô¹Ò»P±y»·¤å¤Æªº¦Ûı¡A¶i¦Ó¦Û°Ê¦Ûµo¹B§@¡A°t¦XºÞ²z³æ¦ì±j¦Ó¦³¤OªººÞ²zµ¦²¤¡A©¼¦¹¤§¶¡¸g¤@¦Aªº·¾³q¹F¨ì©M¿Ó¿Ä¬¢¡A¬°·í¦a±a¨Óªø´Áªº§Q¯q¡A³o¬O¥ÍºA®È¹Cªº¬üÄR¡F¤Ï¤§¡A¥ÍºA®È¹Cªº«s·T«h®õ¥b¦b©óºÞ²zªÌ¡B·í¦a©~¥Á¬°¨Dµu´Á§Q¯q¦ÓÄ묹§óÃø±oªº»ùÈ¡AºÞ²z³æ¦ì§âÃö¼eÃP¡B·í¦a©~¥Á«h¦]§Q¯q¤À°t¤£§¡µ¥ì¦]¦Ó¤¬°«¡A¾ÉP¤º¯ÓÄY«¡B«d®z¦ÛµM¸ê·½µ¥§x¹Ò¡C |
|
R90625040 | ©P§»¬è | 93 | 0 | ³ß¾ð²Õ´°ö¾i»P³ß¾ðÆP§t¶q¤§¬ã¨s | Tissue Culturesof Camptotheca acuminate Decaisne and Camptothecin contents | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ³ß¾ð,²Õ´°ö¾i,³ß¾ðÆP | Camptotheca acuminate Decaisne,tissue cultures,camptothecin | ³ß¾ð¡]Camptotheca
acuminate Decaisne¡^´I§tcamptothecin»P10-Hydroxycamptothecinµ¥¥Íª«ÆP¦¨¤À¡C ¥HF¬°°ö´ÞÅ黤¾É¡¦X²Õ´µ²ªGÅã¥Ü¡GF¦bMS°ò¦°ö¾i°ò¤¤²K¥[IBA 0.5mg/l»PBA 4mg/l¡B Picloram 0.5mg/l»PKinetin 4mg/l¡BNAA 4mg/l»PBA 2mg/l¤Î³æ¿W²K¥[NAA 1mg/l¤§³B²z¤U¡A¥i¥H±o¨ì¸û¨ÎªºÂ¡¦X²Õ´¥Íªø¡A¨ä¤¤¥HNAA 4mg/l»PBA 2mg/l²Õ¦X©Ò»¤¾É¥X¡¦X²Õ´¸û¬°ÃP³n¥B¥Íªø§Ö³t¡A¥i§@¬°Äa¯B°ö¾i¸ÕÅ窺§÷®Æ¡C¦b¦hªÞÅ黤¾É¤è±¡A¥HMS°ò¦°ö¾i°ò²K¥[IBA 0.5 mg/l»PBA 0.5mg/lªº»¤¾É®ÄªG³Ì¨Î¡C®Úªº»¤¾É«h¥HMS°ò¦°ö¾i°ò²K¥[IBA 2 mg/l®ÄªG³Ì¨Î¡C §Q¥Î³ß¾ð¡¦X²Õ´²ÓM«Ø¥ßÄa¯B°ö¾i¨t²Î¡A¿ï¾Üsalicylic acid¡Bchitin¡Bjasmonic acid¡Bmethyl jasmonateµ¥¥|ºØ»¤µo¾¯¡A¨Ó±´°Q¨ä10-hydroxycamptothecin¥Í²£ªº¼vÅT¡C²K¥[100£gM salicylic acid©óMS²GºA°ö¾i°ò¤¤¡A¸g7¤Ñ°ö¾i«á10-Hydroxycamptothecin²£¶q887.5£gg/g¡C¦Ó¥[¤JchitinÄa¯B3ml/25ml¦ÜMS²GºA°ö¾i°ò¤¤®É¡A10-Hydroxycamptothecin§t¶q¥i¹F2502.7£gg/g®ÄªG¸û¨Î¡C¥t¥~jasmonic acid¿@«×¬°100£gM10-Hydroxycamptothecin¤§§t¶q¥i¹F10246£gg/g¡A¬°¥|ºØ»¤µo¾¯·í¤¤®ÄªG³Ì¬°ÅãµÛ¡C¦Ó·ímethyl jasmonate¿@«×¬°200£gM®É¡A10-Hydroxycamptothecin¤§§t¶q¥i¹F3836.6£gg/g¡C |
The happy tree (Camptotheca
acuminate Decaisne) is one of the plants containing many alkloids, famous as
camptothecin and 10-hydroxycamptothecin. An experiment of embryo in vito was conducted to induce callus from the happy tree. The results showed that the callus grew well under all MS medium treatments of 0.5 mg/l IBA + 4 mg/l BA, 0.5 mg/l picloram + 4 mg/l kinetin, 4 mg/l NAA + 2 mg/l BA, and 1 mg/l NAA, However, the callus obtained from the treatment of 4 mg/l NAA + 2 mg/l BA was soft and facilitated to be used as a material for the suspension culture experiment. In the multiple buds induce culture, the best result was obtained on the MS medium adding 0.5 mg/l IBA + 0.5 mg/l BA. The adventitious roots occurred best on the MS medium with 2 mg/l IBA in the culture. Four elicitor of salicylic acid, chitin, jasmonic acid and methyl jasmontate were selected to investigate 10-hydroxycamptothecin production from the happy tree using obtained callus suspension culture. The best productions of 10-hydroxycamptothecin were 887.5, 2579.5, 10246, 3836.6£gg/g under the treatments of 100 £gM salicylic acid, 3 ml/25ml chitin, 100 £gM jasmocin acid and 200 £gM methyl jasmonate, respectively, after a week incubation. Obviously, jasmonic acid has the best effect in inducing 10-hydroxycamptothecine production from the callus suspension culture. |
R91625037 | ÂŨتâ | 93 | 0 | ¤õ¿N¸ñ¦a¤G¸ªQ»P®ê¥ÖòR¸¤ù¤§¤À¸Ñ | Foliage Decomposition of Pinus taiwanensis and Quercus variabilis at Post-fire region | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤õ¿N¸ñ¦a,¤G¸ªQ,®ê¥ÖòR,¤À¸Ñ | Post-fire region,Pinus taiwanensis,Quercus variabilis,Decomposition | ¥»¬ã¨s¿ï¾Ü³Ó¥ú¦a°Ï¤õ¿N¡]2002¦~5¤ë11¤é¡^¸ñ¦a¤¤¤H¤uªL¤º¨âºØ¥Dn¾ðºØ¤G¸ªQ¡]Pinus
taiwanensis Hayata¡^»P®ê¥ÖòR¡]Quercus variabilis
Blume¡^¡A§Q¥ÎªK¸¥]ªk¬ã¨s³¥¥~¸¤ù¤À¸Ñ¤Î¾i¤Àªº°ÊºAÅܤơA¦P®É¤ñ¸û¤£¦P®I¸m¼ËÂI¤Î®I¸m¤è¦¡¡C¥t¥~¡A±Ä¥Î¹êÅç«Ç°ö¾i¤èªk¬ã¨s¤£¦P·Å«×¡B¤ô¤À¤Î¤gÄ[¹ï®ê¥ÖòR¤Î¤G¸ªQ¸¤ù¤À¸Ñªº¼vÅT¡C µ²ªGÅã¥Ü¡A¼Ë°Ï¤¤©Ò¿ï¨ú¤§¤TÓ¼ËÂI¦b¤gÄ[°ò¥»²z¤Æ©Ê½è¤W¦³¨Ç³\ªº®t²§¡C®ü©Þ1830¤½¤Ø¤§¤õ¿N¸ñ¦a¨ã¦³¸û°ªªºpHÈ¤ÎÆQ°ò¶§Â÷¤l¡A¦ý¦³¾÷½è§t¶q«h¸û§C¡CCPMAS 13C NMRªº¤ÀªRÅã¥Ü¦U¼ËÂI¤¤¤gÄ[¤§¦³¾÷ºÒ©x¯à°ò·¥爲¬Û¦ü¡A§¡¥HAromatic-C爲³Ì¦h¡A¨ä¦¸爲O-alkyl-C¡C¬ã¨s¤¤©Ò¿ï¥Îªº®ê¥ÖòR¤Î¤G¸ªQ¸¤ù°ò¥»©Ê½è¨ã¦³©úÅ㪺®t²§¡A¨ä¤¤®ê¥ÖòR¤§´á§t¶qn°ª©ó¤G¸ªQ¡A¦Ó¤G¸ªQ¤§¤ì½è¯À§t¶q«h°ª©ó®ê¥ÖòR¡CCPMAS 13C NMR¤ÀªRªí¥Ü¥X¤GºØ¸¤ù¤§¦³¾÷ºÒ©x¯à°ò¤]«D±`¬Ûªñ¡A§¡¥HO-alkyl-C爲¥D¡A±µªñ©ó40%¡C³¥¥~ªK¸¥]¤À¸Ñªk«hÅã¥Ü¥X¡A¦b¤£¦P³B²zªº¤èªk¤§¤U®ê¥ÖòR»P¤G¸ªQ¤@¦~¤§¤À¸Ñ¶q¹F¨ì60-80%¡A¤À¸Ñ¥b°I´Á爲2-7Ó¤ë¡C¬Û¦P¤è¦¡¤U¡A®ê¥ÖòR¤À¸Ñ³t²v§Ö©ó¤G¸ªQ¡F®I¤J¤gÄ[«áªº¤À¸Ñ³t²v«h§Ö©ó¸m©ó¦aªíªº³B²z¤è¦¡¡F1830¤½¤Ø³Bªº¤À¸Ñ³t²v«h§C©ó1730¤½¤Ø³B¡C¸¤ù¤À¸Ñ¹Lµ{¤¤¡A¦UºØ¾i¤À§¡ÀH®É¶¡¦Ó·l¥¢¡A¦ý·l¥¢µ{«×¦U¦³¤£¦P¡A¦b®ê¥ÖòR¤¤爲P>Mg>>K>Na>C>N>Ca¡A¦Ó¦b¤G¸ªQ¤¤爲P>Mg>K>Ca>Na>C>N¡C13C NMRµ²ªGÅã¥Ü¡A¸¤ù¦b¤À¸Ñ¹Lµ{¤¤¤£¦Pªº¦³¾÷ºÒ©x¯à°ò°ò¥»²Õ¦¨¤£ÅÜ¡C ¹êÅç«Çªº¤À¸Ñ°ö¾i¸ÕÅç«hÅã¥Ü¡A·Å«×¡B¤ô¤À¤Î¤gÄ[¹ï¸¨¸¤À¸Ñ§¡¦³«nªº¼vÅT¡C·Å«×±q5¢J¤É°ª¨ì25¢J®É¡A®ê¥ÖòR¤À¸Ñ¼W¥[49 %¡A¤G¸ªQ«h¼W¥[68 %¡C·í¤ô¤À±q25 %¼W¥[¨ì40 %®É¡A®ê¥ÖòR¤À¸Ñ°§C60 %¡A¤GªQ¸°§C30 %¡C®ê¥ÖòR»P¤G¸ªQ¦b1730¤½¤Ø³B¤§¤gÄ[¤¤ªº¤À¸Ñ³t²v¨äÅãµÛ§Ö©ó1830¤½¤Ø³B¤§¤gÄ[¡C¸¨¸¤À¸Ñ¬O¤@Ó¨ü±±©ó¦h«¦]¯Àªº¹Lµ{¡A¤£¦P¦]¯À¹ï¤À¸Ñ¹Lµ{ªº¼vÅTµ{«×¤Î«n©Ê«h¦³«Ý§ó¶i¤@¨Bªº¬ã¨s¡C |
The objective of this study was to investigate the decompositions and nutrient dynamics of oak(Quercus variablilis Blume) and pine (Pinus taiwanensis Hayata) leaves in a burned site using the litterbag method. The effects of site and buried type on leaf decomposition were also conducted. In the laboratory, the impacts of incubation temperature, soil moisture and type of leaf decomposition were simultaneously considered.Results showed that soil basic physicochemical properties differed from the selected three sites. In the high elevation site, pH value and base cation contents were higher than the other sites, but low organic carbon content was observed. Soil organic carbon functional groups in all sites were similar and dominated by aromatic-C and O-alkyl-C from the results of CPMAS 13C NMR. In the leaf decomposition, oak leaf had higher N and low lignin content than those of pine. Both leaves of oak and pine comprised mainly of O-alkyl-C. According to the results in situ, oak and pine leaves decomposed 60-80% after one year and had a half decomposition time of 2 to 7 months. Results also indicated that oak leaf decomposed faster than pine leaf, leaves decomposed quickly buried in the soil and in the low elevation site. Nutrients released from the leaves during the decomposition varied with time and tree species.Laboratory incubation results showed that high temperature and low soil moisture could result in high decomposition rate of oak and pine leaves. |
R90625038 | §d¬P½÷ | 93 | 0 | ·ËÀYÀçªL°Ï¼ç¦b±Y¶ò¦a©Y±¤gÄ[¯S©Ê¤§¬ã¨s | Study on the soil characteristics of potential landslide area at Chitou Compartment | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¥xÆW§ü,¬h§ü,±Y¶ò¦a,³e¤J¸ÕÅç | Taiwania cryptomerioides Hay,Cryptomeria japonica,landslide ,standard penetration test (SPT) | ¥»¬ã¨s©ó·ËÀYÀçªL°Ï¿ï©w¾D¤g¥Û¬yÄY«¯}Ãaªº¤j¾Ç§|¤§¥xÆW§ü»P¬h§ü¦U³]¸m¤TӼ˰ϡC©ó2002¦~7¤ë23¤é¤Î2003¦~7¤ë20¤é¤À§O¦b¨CӼ˰Ϥ§¤W©Y¬q¡B¤¤©Y¬q¤Î¤U©Y¬q¦U¨ú¤Ó¼ËÂI¡A¨CÓ¼ËÂI±Ä¶°0~15 cm¡B15~30 cm¤Î30~60 cm¤T¼h¤£¦P²`«×¤§¤gÄ[¡A¶i¦æ¤gÄ[½è¦a¡B¶§Â÷¤l¥æ´«®e¶q¡]CEC¡^»PºÒ´á¤ñ´ú©w¡Cµ²ªG¡G¤gÄ[½è¦a¡B¶§Â÷¤l¥æ´«®e¶q¡]CEC¡^»PºÒ´á¤ñ´ú©w¦b¦P¤@¦~§¡µLÅãµÛ®t²§¡C¦Û2002¦~5¤ë¦Ü2004¦~3¤ë¡A¨C¨âÓ¤ë¦b¨CӼ˰Ϥ§¤W©Y¬q¡B¤¤©Y¬q¤Î¤U©Y¬q¦U¨ú¤TÓ¼ËÂI¡A¶i¦æÂ²©ö³e¤J¸ÕÅç¡Cµ²ªG¡G¥xÆW§üªL¦a¦b¤W©Y¬q¤Î¤¤©Y¬q¤§NcȬۦü¡A¦ý¤U©Y¬q¤§NcÈÅܰʫh§¡¸û¤j¡C³s¦~³e¤J¸ÕÅç½Õ¬dµ²ªG¡A¥xÆW§üªL¦a¤U©Y¬qÅܰʳ̤j¡C¬h§üªL¤§¤Õ»Ø«×¬Ò¸û¦P©Y¬q¤§¥xÆW§üªL¬°°ª¡F¨âªL¦a¤gÄ[®e«ÀH¤gÄ[²`«×¼W¥[¦Ó¼W¥[¡A¦Ó¤Õ»Ø«×ÀH¤gÄ[²`«×¼W¥[¦Ó´î¤Ö¡C°£¤F¤Ö¼Æ¼Ë°Ï¡ANcȧ¡»P®e«¡B¤Õ»Ø«×»PÄt¥Û¤ñ§e²{ÅãµÛ¬ÛÃö¡A¥ç§YÄt¥Û¤ñ¶V°ª¡ANcȤ]¶V°ª¡F¦Ó¤Õ»Ø«×¶V°ªNcÈ«h¶V§C¡C¥xÆW§üªL¦a¤¤Ät¥Û«¶q¦Ê¤À¤ñ¥H¤¤©Y¬q³Ì¦h¡A¦Ó¦b¤£¦P©Y¬q¤£¦P¤gÄ[²`«×¤¤Ät¥Û«¶q¦Ê¤À¤ñ¡A¦b¥xÆW§üªL¦a¤£¦P²`«×¬ÒµLÅãµÛ®t²§¡A¦Ó¦b¬h§üªL¦a¥H15-30¢Q ¤¤³Ì¦h¡C | Two sampling sites with severe landslide damage in Chitou Compartment were selected for this study. They were Taiwania cryptomeria stand and Cryptomeria japonica stand from Da-Shuie moat. Five sampling points were selected from each of the upper slope, middle slope and lower slope for each sampling site at July 23 2002 and July 20 2003. There was no significant difference in terms of soil texture, CEC, and C/N ratio within the same year for the soil samples collected from 0-15 cm, 15-30 am and 30-60 cm.Three sampling points were selected from each slope to conduct standard penetration test (SPT) for each sampling site from May 2002 to March 2003. The Nc values at the upper and middle slopes were similar in Cryptomeria stand, but varied a lot at the lower slope. The Nc value varied the most at the lower slope in Taiwania and Cryptomeria stands from the continuous SPT. Porosity in Cryptomeria stands is more than in Taiwania stands. The bulk density increases with soil deeper but porosity decreases with soil deeper in both stands. The percentage of gravel weight was the most at the middle slope in Taiwania and Cryptomeria stands. In terms of the percentage of gravel weight in different soil depths at different slopes in each sampling site, there was no difference in Taiwania stand, but with the greatest in 15-30 cm in Cryptomeria stand. |
P90625010 | ¸´A´A | 93 | 0 | ª÷ªù¦a°ÏªL¬Û§ï¨}¦¨ªG±´°Q | Study of Stand Regeneration in Kinmen Island | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ³yªL,¤ì³Â¶À,ªL¬Û§ï¨},ª÷ªù,´Ó³Q | vegetation,stand improvement,Kinmen,beefwood,Afforestation | ¥»¤å«Y±´°Qª÷ªù¦a°Ï¦b¤ì³Â¶À(Casuarina
equisetifolia)³yªL¦aªL¬Û§ï¨}¤§¦¨ªG¡A¥]¬A§ó·s¾ðºØ¿ï¾Ü¡B§ó·s¤è¦¡¤Î¼¾¨|ºÞ²zµ¥¤u§@¤§±´°Q¡A¨Ã©ó³¯¥J¤s¦a°Ï³]¸m¤gÄ[¤Î´Ó¸s½Õ¬d°Ï¡A¶i¦æ¤ì³Â¶À³yªL¦a¤§¤gÄ[¯S©Ê½Õ¬d¡A¥H¤Î¼Ì¾ð¡B¥úþ¾ð¡B¤ì³Â¶À¯ÂªL¤§´Ó¸sµ²ºc¡A¥HÁA¸Ñ¥Dn³yªL¾ðºØ¤§¤ÑµM§ó·s¦¨ªG¡C ¸g¥Ñ¤gÄ[½Õ¬d¤Î¸ÕÅ礧µ²ªG¡Aª÷ªù³¯¥J¤s¦a°Ï¤§¤gÄ[¯S©Ê¤è±¡A°£¤gÄ[»Ä¤Æ°ÝÃD¤Î¤gÄ[¤§¤À¸Ñ§@¥Î©ô²±¥~¡A¸ÕÅç°Ï¤§¤gÄ[ªÎ¤O©Ê½è©|ºÙ¨}¦n¡A¦]¦¹¡A§ï¨}¸ÕÅç°Ï¤§¤gÄ[»ÄÆP©Ê¤ÎºÒ´á¤ñ¡A±N¦³§U©óªL¬Û§ï¨}¤§´£¤É¡Cª÷ªù¤ì³Â¶À³yªL¦a¥Ø«eªL¬Û§ó·s¾ðºØ¥H¼Ì¾ð(Cinnamomum camphora)¡B¥úþ¾ð(Fraxinus formosana)¡B·¬»(Liquidambar formosana)¬°¥D¡A¨ä¥L¸gÀÙ¾ðºØ¤´À³Ä~Äò§@¸ÕÅç¡A¦b§ó·s¾ðºØ¤§¥Íªø¶q¤è±¡A¼Ì¾ð¤§¥Íªø±¡ªp¨}¦n¡A¨ä¦bªL¬Û§ï¨}¸ÕÅç°Ï¤¤¡A¦U®|¯ÅªL¤ì¤À°tª¬ªp¨}¦n¡A±©»Ý¥[±j¤H¤u¤§¼¾¨|±¹¬I¡C¥úþ¾ð¦bª÷ªù¤§ªL¬Û§ï¨}¸ÕÅç°Ï¤§¤ÑµM§ó·s±¡ªp¸û¼Ì¾ð¨}¦n¡A¨ÌªL¬Û§ó·s¸ÕÅç¦a¤§¥úþ¾ð»P¼Ì¾ð¯Ý®|¯Å¤À§G±¡§ÎÆ[¹î¡A¥úþ¾ð¸û¼Ì¾ð¨ã¦³¤ÑµM§ó·s¤§¼ç¦bÀu¶Õ¡A¦¹¥~¡A¦b´ËªL¼¾¨|¤è±¡A¥úþ¾ð¤§¼¾¨|¤u§@¸û¼Ì¾ð«K§Q¡A¦]¦¹¥úþ¾ð¥ç¾A¦X§@¬°ª÷ªù¤ì³Â¶À³yªL¦a¤§ªL¬Û§ï¨}¾ðºØ¡C |
This study focuses on the stand
improvement of beefwood (Casuarina equisetifolia) afforestation in Kinmen
Islands, including selection of new tree species, regeneration of methods and
fosteration of measures. The Chen-Zai Mountain (CZM) in Kinmen was selected for field experiments, soil surveys and plant investigations. In order to study the soil characteristics correlate to beefwood afforestation in the CZM area, the vegetation structures of camphor trees (Cinnamomum camphora), Formosan ash (Frazinus formosana) and Chinese sweet gum (Liquidambar formosana) and beefwood (Casuarina equisetifolia) were also investigated to understand their nature afforestation of the stand improvements. The soil properties in the CZM area are quite acid and also show easily decomposition of soil organic matters. The soil fertility in situ was quite well. Thus, we recommend that soil pH can be added limes and applied fresh soil organic matter into soils to increase soil C/N ratios, it will promote the stand improvements. The major stand improvements in Kinmen Island include camphor trees, Formosan ash and Chinese sweet gum. The other economic trees are also recommended to continuing their afforestation of field experiments. On the other hand, the growth quantities of regeneration of camphor trees are growth quite well in good conditions, however, the different diameter levels in the other stands show quite well but it is still needed to enhance fostering measurements. The natural regeneration of Formosan ash stand improvement of field experiments was better than that of camphor trees. According to the diameter of breast height (DBH) distribution of those two trees, the Formosan ash possesses highly potentials of natural regeneration. Formosan ash is a better tree, which is easily to foster than that of camphor tree. Thus, we recommend that Formosan ash is a suitable tree to replace beefwood as a new stand improvement tree in Kinmen Islands. |
R91625042 | ªL±ê»Ê | 93 | 0 | ¤é¥»¤ks¤§·LÅéÁc´Þ | Micropropagation of Ligustrum japonicum Thunb. | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ·LÅéÁc´Þ,¡¦X²Õ´,¤é¥»¤ks | callus,micropropagation,Ligustrum japonicum Thunb. | ¥»¸ÕÅç¹Á¸Õ±´°Q¨Ã«Ø¥ß¤é¥»¤ks¨ä²Õ´°ö¾i¤§·LÅéÁc´ÞÅé¨t¡Cªì¨Bµ²ªG¦p¤U¡G ¥»¸ÕÅç¥H¤é¥»¤ks¤§¦¨¼ôºØ¤l¬°°ö´ÓÅé¶i¦æ°ö¾i¡C±N¦¨¼ôºØ¤l¥ý¥H¬y¤ô³B²z24¤p®É¡A¥ý¥H1¢H¦w¨ä®ø¬r²G®ûªw20¤ÀÄÁ°µªí±²M¼ä¡A¦A¥H70¢H¤§°sºë®ûªw5¤ÀÄÁ¡A³Ì«á¦b5¢H NaOCl¤ô·»²G¡]§t¬ù0.1¢H¡]v/v¡^Tween20®iµÛ¾¯¡^¤¤¶Wµªi¾_Àú30¤ÀÄÁ¡AºØ¤l¥i¹F100¢H¤§µL¦Ã¬V²v¡C ¦b¾¹©x§Î¦¨¤è±¡GºØ¤l»P¦¨¼ôF´Ó©óWPM¡B1/2MS¡BMS¤TºØ°ò¦°ö¾i°ò¤¤¥HWPM¹ï©óµLµß]¤§»¤¾É®ÄªG³Ì¦n¡C¥HF¶b¬°°ö´ÓÅé¡A¥HWPM¬°°ò¦°ö¾i°ò¦b¥ú·ÓÀô¹Ò¤U¡A²K¥[0.5 ppm ¤§2,4-D°ö¾i¡A¥iÀò±o¤j¶q²H¶À¦â¡BÃP³n¤§Â¡¦X²Õ´¡C¥HµLµß]¤§³»ªÞ¬°°ö´ÓÅé¡A¥HWPM¬°°ò¦°ö¾i°ò¦b¥ú·ÓÀô¹Ò¤U¡A¥i¶¶§Qµo®Ú¡CµLµß]¤§³»ªÞ¡A¦b§t¦³0.01 ppm IBA¤Î1 ppm BA ¤§WPM°ö¾i°ò¤¤¡A¥ú·ÓÀô¹Ò¤U¥i»¤¾É¥X¦hªÞÅé¡C»¤¾É¥X¤§¦hªÞÅé¥HWPMªÅ¥Õ°ö¾i°ò¦b¥ú«×20¡Ó5£gmol m-2s-1®É¡A©âªø®ÄªG¸û¦n¡C¤é¥»¤ks²ÓM²GºA°ö¾i¥H0.1 ppm 2,4-D°t¦X10 g/l ½©¿}¤§WPM°ö¾i°ò³Ì¬°¾A·í¡C |
This study describes the
development conditions and the propagation technique by in vitro culture for
the Ligustrum japonicum Thunb.
The primary results are as follow: Results of mature seeds culture of Ligustrum japonicum were as follows: mature seeds were first treated with running water for 24 hours, soaked in 1¢Manticeptol solution¡]Benzel thyonium chloride U.S.P 10¢M(w/v), Allcyl arylpolyther alcohol 10¢M(w/v)¡^for 20 minutes, then soaked in 70¢Methanol solution for 5 minutes, then soaked in 5¢MNaOCl¡]supplemented with 0.1¢M(v/v) Tween 20¡^and treated with ultrasonic shaker for 30 minutes and the seeds could get the 100¢Mnon- contamination. The medium of WPM get the best results to establish sterile plants. Light yellow and soft calli were induced after hypocotyls were cultured on WPM medium containing 0.5 ppm 2,4-D under light containing. Rooting was induced after terminal buds were cultured on WPM medium under light containing. Multiple shoots were induced after terminal buds were cultured on WPM medium containing 0.01 ppm IBA and 1 ppm BA under light containing. Multiple buds when transferred to WPM medium lacking plant growth regulators were promoted to elongate their length of internodes under light intensity of 20¡Ó5£gmol m-2s-1 light environment. The optimal medium for suspension culture was WPM added with 0.1 ppm 2,4-D and 10g/l sucrose of WPM medium. |
R91625035 | ½²°ê®Ñ | 93 | 0 | »OÆW«ó¬f»P¤j¸ÑÛ²Õ´°ö¾i»P¬Á¼þ½è¤Æªk¶W§C·Å«O¦s¤§¬ã¨s | Studies on Cryopreservation and Tissue Culture of Chamaecyparis obtusa var. formosana and Eucalyptus robusta by Vitrification Technique. | ¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¬Á¼þ½è¤Æªk,¥xÆW«ó¬f,¤j¸ÑÛ,¶W§C·Å«O¦s | Chamaecyparis obtusa var. formosana,Eucalyptus robusta,Cryopreservation,Vitrification | ¥»¸ÕÅç¥H¥xÆW«ó¬fChamaecyparis
obtusa var. formosana»P¤j¸ÑÛEucalyptus robusta ªºªÞÅé»PÄa¯B°ö¾i²ÓM¬°§÷®Æ¡A§Q¥Î¬Á¼þ½è¤Æªk¶i¦æ¶W§C·Å«O¦s¤§¬ã¨s¡A¨ÃÀË´úPVS2ªº¬r©Ê¡BLN(loading
solution)¸ÕÅç¤Î¤£¦P¿@«×ªºPVS2³B²z¡A¥H§ä¥X³Ì¨Îªº°t¤è»P³B²z¤è¦¡¡A´£°ª¦Bá«á²ÓM¤§¬¡¤O¡C ¤j¸ÑÛ¥HMS°ö¾i°ò²K¥[0.5ppm BA»P1ppm NAA»¤¾É¦hªÞÅé¡A³æ¤@ªÞÅ饧¡²£¥Í10ÓªÞ¡A¨Ã¥H5ppm 2,4-D»¤¾É¡¦X²Õ´±o¨ì³Ì¨Îµ²ªG¡F¥xÆW«ó¬f¥HWPM°ö¾i°ò²K¥[0.5-1 ppm BA®É¦hªÞÅ黤¾É²v³Ì°ª¡A¥HNAA 5ppm»¤¾É¡¦X²Õ´±o¨ì³Ì¨Îµ²ªG¡C ±N¤j¸ÑÛÄa¯B²ÓM®û¸mPVS2·»²G15¤ÀÄÁ¥H¤W·|¨Ï¬¡©Ê°§C¦Ü35¢H¥H¤U¡A¦ý¥xÆW«ó¬fÄa¯B²ÓM®û¸m30¤ÀÄÁ¥H¤W«o¨ÌµM¦³60¢H¥H¤Wªº²ÓM¬¡¤O¡FLN(loading solution)¸ÕÅç«h¥i°§CPVS2¹ï¨äÄa¯B²ÓMªº¬r©Ê¡A¨Ï²ÓM¬¡©Ê¸gPVS2³B²z15¤ÀÄÁ«á¤´ºû«ù±Nªñ60¢Hªº¬¡©Ê¡C ¥ý¥H50¢HPVS2³B²z¤j¸ÑÛÄa¯B²ÓM5¤ÀÄÁ¡A¦A¥H100¢HPVS2³B²z10¤ÀÄÁ¡A²ÓM¬¡¤O¥i¥H°ª¹F68¢H¡A¨Ã¯à»¤¾É¥X¡¦X²Õ´¥Íªø¡A¦ÓªÞÅé¸g50¢HPVS2³B²z60¤ÀÄÁ¦A¥H100¢HPVS2³B²z60¤ÀÄÁ¡A¥i¨Ï²ÓM¬¡¤O°ª¹F82¢H¡C¦Ó»OÆW«ó¬f¦hªÞÅé¥ý¥H50¢HPVS2³B²z¡A¦A¥H100¢HPVS2³B²z60¤ÀÄÁ¡A²ÓM¬¡¤O¥i¥H°ª¹F76¢H¡A¨Ã¦³33¢HªºªÞÅé¯à»¤¾É¥X¡¦X²Õ´¡C |
This study try to use
cryopreservation by vitrification technique to experiment on Chamaecyparis
obtusa var. formosana and Eucalyptus robusta buds and suspension cell
culture. Then we test PVS2 toxicity¡BLS(loading solution) test and different
concentration of PVS2 to find out the best formula to enhance of the cell
viability after freezed. The best result to induce buds of Eucalyptus robusta in MS medium with 0.5 ppm BA was to use 1 ppm NAA. The results showed that single bud could most effectly induce 10 buds and to induce callus with 5 ppm 2,4-D. And the best results to induce buds of Chamaecyparis obtusa var. formosana in WPM medium with 0.5-1 ppm BA. And callus induction were to use 5 ppm NAA. The Eucalyptus robusta suspension culture cell load in PVS2 solution over 15 minutes will decrease cell viability below 35¢H, but the Chamaecyparis obtusa var. formosana suspension culture cell load in PVS2 solution will still preserve cell viability over 60¢H after 30 minutes. The Eucalyptus robusta suspension culture cell can preserve about 60¢H viability of cell by LS(loading solution) test and to decrease PVS2 toxicity by soaking in PVS2 solution after 15 minutes. Take Eucalyptus robusta suspension culture cell with 50¢HPVS2 solution after 5 minutes and then with 100¢HPVS2 after 10 minutes will preserve the viability of cell over 68% and to induce the growth of callus. Take Eucalyptus robusta buds with 50¢HPVS2 solution after 60 minutes and then with 100¢HPVS2 after 60 minutes will preserve the viability of cell over 82¢H. Take Chamaecyparis obtusa var. formosana buds with 50¢HPVS2 solution after 60 minutes and then with 100¢HPVS2 after 60 minutes will preserve the viability of cell over 76¢H and make 33¢Hbuds induce callus. |
R91625036 | ½²§Ó©ú | 92 | 0 | ªÅ®ð¦Ã¬V·L²É¦b´Óª«ªí±¤§¨H°»P²æÂ÷ | Deposition and Removal of Air Pollution Particles on Plant surfaces | ¤ý¨È¨k ,®]©¥³¹ | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ²O¬~®Ä²v,±µÄ²¨¤,¸±¿n,º¢¹Ð®Ä²v | rain-cleaning efficiency,dust-catching efficiency,contact angle,leaf area | ¥»¬ã¨s¬ãµo¤w§Q¥Î¹q¸£±½´y¾¹¡A¶i¦æ¸¤ù±¿n¤§¶q´ú¤u¨ã¡C¥Dn«Y±½´y¸¤ù¦¨¹ÏÀÉ¡A§Q¥Î¹Ï¤ù¤¤ªº¹³¯À»Pµ{¦¡³nÅépºâ±½ºË«áªº¸±¿nÈ¡Aµo²{¦¹ºØ¤èªk¥i§Ö³tÀò±oºë½Tªº¸±¿nÈ¡C ¥t¤w³]p´¹Ð¾¹¤Î´¹Ð½c§Q¥Î¤H¤u´¹Ð½c´ú¸Õ13ºØ¾ðºØ¸¤ù¤§º¢¹Ð®Ä²v¡Aµ²ªGµo²{Às¬f¤§º¢¹Ð®Ä²v¬°³Ì°ª¡B¨ä¦¸¬°¤ì³Â¶À¡Bùº~ªQ¡C¥tµo²{¦b©T©w·¦V±ø¥ó¤UÄa¯B·L²É·|¨ÌºD©Ê§@¥Î¦Ó¿n»E¸½t¦a¤è¡A¤S¤ñ¸û13ºØ¾ðºØµo²{¤@¯ë¸±¿n¤p¤§¾ðºØº¢¹Ð¶q¸û¸±¿n¤jªÌ¬°°ª¡A¦Ó¤@¯ë¸g¼QÀã«áº¢¹Ð¶q¬Ò¤ñ°®ªÌ¬°¤j¡C ¥»¬ã¨s¥t¸g´ú¸Õ6ºØ´Óª«°®¤ÎÀãªK±ø¤§º¢¹Ð®Ä²v¡A©Ò¥Î·L²É¥]¬A¦³¹Ð¤g¤Î¤ôªd·L²É¡Cµ²ªGÅã¥ÜÀãªK±øªºº¢¹Ð¶q¤@¯ë¬Ò¤ñ°®ªK±ø¦h¡A¥BªK±ø¦b¼QÀã¼í«á¤£©ö°®ÀêªÌ¦p¥¿º_¤Î·¬»·|¨ã¦³¸û¤jªºº¢¹Ð¶q¡C ¸g³]p§¡¤Ã´¹Ð½c¤Î¤H¤u°«B²O¬~½c«á¡A¥»¬ã¨s¤w¼ÒÀÀ¨Ã¶q´ú°«B¹ï7ºØ´Óª«¸ªí¥|ºØ·L²É¤§²O¬~®Ä²v¡Aµ²ªGµo²{°£¤FÆAµµ¯ð¸ªí¤ôªd¤ñ¹Ð¤g·L²É²O¬~®Ä²v¤j¤§¥~¡A¨ä¥L6ºØ´Óª«¸ªí¦U·L²É¤§²O¬~®Ä²v¨Ì¦¸±Æ¦C¬°¹Ð¤g¡Ö¤ôªd¡Ö¿U·Ñ¸¦Ç¡Ö¿Uªo¸¦Ç¡C ¦UºØ¨ü´ú¤§´Óª«¤§¤ôºw±µÄ²¨¤¬Ò³Q¶q´ú¡A¥H±´°Q±µÄ²¨¤©Mº¢¹Ð®Ä²v¤Î°«B²O¬~®Ä²v¶¡ªº¬ÛÃö©Ê¡Aµ²ªGµo²{10ºØ¸¤ùªº¤ôºw±µÄ²¨¤¹ï¸ªí¹Ð¤g¤§¬ÛÃö©ÊR2¬°0.6658¡A¦Ó»P¤ôªd¶¡¤§R2¬°0.7668¡A7ºØ¸¤ùªº¤ôºw±µÄ²¨¤¹ï¸ªí¿U·Ñ¸¦Ç¤§¬ÛÃö©ÊR2¬°0.6117¡A¦¹¤T¶µÅã¥Ü§e²{°ª«×¬ÛÃö©Ê¡A¦ý¹ï¿Uªo¸¦Ç¶¡¤§R2¬°0.0283Åã¥Ü±µÄ²¨¤»P¤§µL¬ÛÃö©Ê¡C |
A computer scanner method was
developed to measure the leaf area in this study. This method calcutated the
leaf area by counting total dot numbers on each scanned map of leaves. In order to evaluate the dust catching efficiency of plant leaves, a dust chamber was designed and a dust generator were used to produce dust for the experiments. The dust catching efficiency of 13 tree species were determined in the chamber. Results showed that Juniperus chinensis var. Kaizuka had the best efficiency, followed by were Casuarina equisetifolia and Podocarpus costalis. We found that the amount of particulate matters was usually highest at the edge of each leaf due to inertia function. The species with smaller leaf area usually have higher dust-catching efficiency as compared with those larger leaf area. Wet leaves have higher dust catching efficiency as compared with dry leaves. The dust-catching efficiency of plant stems was also determined for 6 species. Both dust and cement particulate were used in this study. Results showed that wet stems have higher dust-catching efficiency as compared with dry stems. Wet stems ¡]eg. Ficus microcarpa and Liquidambar formosana¡^which are difficult to be dry usually have higher dust deposition as compared with the others. Rain-cleaning efficiencies of soil dust, cement dust, coal-fired fly ash and oil-fired fly ash on 7 plant leaves were compared in a simulated rain chamber. The rain-cleaning efficiency of cement dust on Bauhinia blakeana is higher than those of soil dust. While the 6 plants showed their rain-cleaning efficiency of all particles in the descending order as dust ¡Öcement¡Öcoal-fire fly ash¡Öoil-fire fly ash. The contact angles between water droplet and leaf surface were measured with an instrument . These contact angles were compared with dust-catching efficiencies, as well as rain-cleaning efficiency. The R2 between contact angle and the rain-cleaning efficiency of dust for 10 species wsa 0.6658. For cement, the R2 is 0.7668 . For coal-fired fly ash particles in 7 species, the R2 is 0.6117. Results show that they are closes related. But oil-fired fly ash particles, R2 is 0.0283, did not show strong correlation relationship. |
R91625038 | ¤ýÁ¨ | 92 | 0 | §Q¥Î¤gÄ[¦³¾÷½è¤¤£_13Cȱ´°Q³Ó¥ú¦a°Ï´Ó¸s¤§§ïÅÜ | Vegetation
Changes in Sheng-Guang Area using £_13C Values of Soil Organic Matter |
¤ý¨È¨k | »OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤gÄ[¦³¾÷½è,´Ó¸sºt´À,£_13CÈ,´ËªL¤õ¨a | vegetation chang,soil organic matter,13C value | ¦b¦ÛµMÀô¹Ò¤U¡A´ËªL¥ÍºA±`·|¨ü¨ì¤H¬°¦]¤lª½±µªºÂZ°Ê»P¯}Ãa¡A©Î¬O¦ÛµM¦]¯Àªº¤zÂZ¡A¶i¦Ó³y¦¨´Ó¸sÅܾE¨Ã§ïÅܴ˪Lªº¦U¶µ¥¯à¡A©Î¼vÅT즳¥ÍºA¨tªººt¶i¡C¥»¬ã¨s¤§¥Øªº§Y¿ï¾Üµo¥Í¤õ¿N¤§¸ÕÅç¦a¡A§Q¥Î¤gÄ[¦³¾÷½è¡]SOM¡^¤¤¤ÑµMºÒ¦P¦ì¯ÀÂ׫ס]abundance¡^¡A¨Ó¬ã¨s¹L¥h¦Ü²{¦b´Ó¸s¶¡ªºÅܤơAÁA¸Ñ¦¹¥ÍºA¨tªºÂZ°Ê±¡§Î¡C¥»¬ã¨s¤§¨ú¼Ë®É¶¡¬°2003¦~7¤ë¡A©ó³Ó¥ú¦a°Ï±Ä¶°ªL¤õ°Ï¸ÕÅç¦a¤Î¥¼µo¥Í¤õ¨a¤§¹ï·Ó°Ï¸ÕÅç¦a¤§¤gÄ[¤Î´Óª«¼Ë¥»¡A¨ú¼Ë®É°O¿ý¼Ë°Ï¤§Àô¹Ò¸ê®Æ¡A¦p¤è¦ì¡B°ª«×¡B©Y«×¤Î´Ó¥Í¡C¼Ë¥»¨ú¦^«á¡A±N¤gÄ[¼Ë¥»·°®¹L¿z¡A¤ÀªR¦U¶µ°ò¥»²z¤Æ©Ê½è¡B¤gÄ[Äqª«²Õ¦¨¡B¦³¾÷ºÒ©x¯à°ò¤À¥¬¡A¤Î¦³¾÷½è¤¤¤§Ã©w©ÊºÒ¦P¦ì¯À¡C´ÓÅé«h±N¨ä¯M°®¿i¸H«á¡A¤ÀªR¦³¾÷ºÒ©x¯à°ò¤À¥¬¡A¥H¤Î´ÓÅ餤¤§Ã©w©ÊºÒ¦P¦ì¯À¡Cµ²ªGÅã¥Ü¡A¬ã¨s°Ï§e²{¤@°ª«×²O¬~ªºª¬ºA¡A¤gÄ[§e±j»Ä©Ê¡A°ß¤õ¿N«á¡A¦]¦Ç¥÷ªº¥[¤J¡A¨Ï¤gÄ[¤§pHȬ۹ï¸û°ª¡C¤gÄ[Äqª«²Õ¦¨Åã¥Ü¼Ë°Ï¤¤¤gÄ[Äqª«¥Hµí¥Û¡B°ªÀ¥Û¤Î¥ìµÜ¥Û¬°¥D¡A¨Ã§t¦³¥ìµÜ¥Û-µí¥Ûªº²V¼hÄqª«¡A¤Î¤Ö¶qªººñªd¥Û¡C´ÓÅé©M¤gÄ[¤¤¤§¦³¾÷ºÒ©x¯à°òºØÃþ¥Dn¬°ÖJ°òºÒ¡]alkyl-C¡^¡B§t´áÖJ°òºÒ¡]N-alkyl-C¡^¡B§t®ñÖJ°òºÒ¡]O-alkyl-C¡^¡B¤AÁYîǺҡ]acetal-C¡^¡BªÚ»°òºÒ¡]aromatic-C¡^¡Bßn°òºÒ¡]carboxyl-C¡^»P×ô°òºÒ¡]phenolic-C¡^µ¥¤CºØ¡A¥B¬Ò¥H§t®ñÖJ°òºÒ©Ò¦û¤ñ¨Ò¬°³Ì°ª¡C¥Ñ©óC3«¬´Óª«ªº£_13CȽd³ò¦b-32~ -20 ‰¤§¶¡¡A¦ÓC4´Óª«¤¶©ó-17~ -9 ‰¤§¶¡¡A¬GÂǥѣ_13CȪº¤ÀªR¡A¥i©ú½T¦a¤À¿ë¥X¬ã¨s°Ï¤¤¤gÄ[¦³¾÷½èªº¨Ó·½¡A¨Ã§Q¥Î««ª½å±SOM £_13CȪº¤À§G¡A¶i¦Ó±À´ú屧Φ¨¹Lµ{¤¤¡A´Ó¸sµ²ºc²Õ¦¨ªº§ïÅÜ¡C¦b¥¼¿U¿N¤§»OÆW¤G¸ªQªL¼Ë°Ï¤¤¡Aªí¼hSOM £_13CȬ°-21.87 ‰¡A¦Ó¤U¼h¬Ò¬ù¬°-18 ‰¡AÅã¥Ü¹L¥h°ª¤s¨~ªº¼Æ¶q¥i¯à¸û²{¦b¦h¡A¦ý´Ó¸sªººØÃþµL¦h¤j§ïÅÜ¡C¦b¤õ¿N«á¤§»OÆW¤G¸ªQªL¤¤¡A¤gÄ[¼ËÅ餧£_13Cȸû±µªñ¥¼¿U¿N²V¦XªL¤¤¸û²`¼h¤gÄ[¼ËÅ骺£_13CÈ¡A¬ù¤¶©ó-24.32~ -23.75 ‰ ¤§¶¡¡A¬G¦b¤õ¨aµo¥Í«e¡A¦¹¦a°Ï¥ç§t¦³¨ä¥LC3ºØÃþªº´Óª«¡A©Î´Ó¸s²Õ¦¨»P²{¦bªº²V¦XªL¬Û¦ü¡C¥¼¿U¿N²V¦XªL¤gÄ[¼ËÅéªí¼h0~10 cm³Bªº£_13CÈ¡A¬°©Ò¦³¤gÄ[¼ËÅ餤tȳ̤j¡]-26.96 ‰¡^¡AÅã¥Üªñ´Á¦aªí¤§´Ó¸s¥HC3ºØÃþªº´Óª«¬°¦h¡A§t¦³¸û¦h¤§Äé¤ìÃþ¤ÎÁï¸¾ðºØ¡C¦b¤õ¿N«á²V¦XªL¤gÄ[¼ËÅ餤¡A´Ó¸sºØÃþÅܰʸû¤j¡A¥H«e´ËªL´Óª«§YC3«¬´Óª«¸û¦h¡A¦ý«o¤@«×¼W¥[³¦hªº¯óì§YC 4«¬´Óª«¡A³Ì«á¤S¦A³vº¥³Q´ËªL©Ò¨ú¥N¡A¥R¤ÀÅã¥Ü¦¹°Ï´¿¦]¥~¨Ó¦]¯À¦Óµo¥ÍÂZ°Ê¡A¶i¦Ó§ïÅÜ´Óª«ªº²Õ¦¨¡C¤Wzµ²ªGªí©ú¡AÀ³¥Î£_13C§Þ³N¥i¥H´y¥Ü¥X¦U¼Ë°Ï¤¤Àu¶Õ¾ðºØ¡B´Ó¸s²Õ¦¨¤§ÅܰʡA¨Ã¶i¦Ó±À½×¸ÕÅç¦a¤¤¹L¥h¾D¨üÂZ°Ê¤§±¡§Î¡C | Forest ecosystems may be interfered and damaged directly or indirectly by human and nature factors that result in changes of plant vegetation, forest function and ecosystem evolution. The objective of this study was to understand the plant vegetation change and disturbance suffered of forests using carbon isotope ��13C abundance of soil organic matter (SOM) in soil profile. The study area was located at Sheng-Guang region. Soil and plant samples were collected on July, 2003 from the burned pine, burned mixed forest, pine control and mixed forest control zones, respectively. During the sampling, these environmental conditions such as location, altitude, slope and vegetation of sample points were recorded. Soil samples were air-dried in the laboratory and passed through 2 mm sieve for analysis of soil physico-chemical properties, soil mineralogical compositions, functional group compositions and isotope ��13C abundance in SOM. Plant samples were oven-dried at 60�aC and ground for assays of carbon functional group and ��13C abundance. High leaching potentials are present in the forest zones with low soil pH, while in the burned zones soil pH is higher due to the mixture of burned ashes compared with the unburned zones. In the soil mineralogical compositions, vermiculite, kaolin and illite were found as the main types with mixed-layered clays in soil samples. The ��13C-NMR analysis indicated that functional groups, including alkyl-C, N-alkyl-C, O-alkyl-C, acetal-C, aromatic-C, carboxyl-C and phenolic-C are present in plant and SOM. The O-alkyl-C functional group was the major component. Values of ��13C in SOM were corresponding to the sources of plant vegetation. Generally, the abundances of ��13C of C3 and C4 range from ¡V32 to -20 ‰ and from ¡V17 to -9 ‰, respectively. Hence, the change of plant vegetation could be inferred by the values of SOM ��13C in soil profile. In the unburned pine (Pinus taiwanensis Hayata) zone, ��13C of SOM in the surface horizon was ¡V21.87 ‰ and approximate ¡V18 ‰ in the bottom horizon, indicating that plant types had no great change but abundance of silvergrass (Miscanthus transmorrisonensis) exist in the record. In the burned pine zone, the values of ��13C were in the range of ¡V24.32~ -23.75 ‰ that was similar to the unburned mixed forest, indicating similar plant vegetation as current mixed forest exist before the recent burning. The values of ��13C of SOM in the mixed forest was the lowest of ¡V26.96 ‰ in 0-10 cm soil depth, suggesting that more C3 plants included forest and bushes were present in this zone. However, in the burned mixed forest zone, results of ��13C values indicated that C3 plant had been dominated in this zone, C4 plant communities increased at some time and then decreased. Such a process in the burned mixed forest zone fully elucidated that external factor once disturbed the evolution of the forest ecosystem. Hence, the ��13C value can be used successfully in understanding of the vegetation dynamics and disturbances suffered of each site in the history. |
R86625056 | Àd¤ë¶³ | 91 | 2003 | ¤g¦×®Û¤£¦P«a¼h¦ì¸m¤G®ñ¤ÆºÒ©T©w®Ä¯q¤§¬ã¨s | Study on Carbon Dioxide Fixation Efficiency at Different Canopy Layers ofCinnamomum osmophlaeum | ¤ý¨È¨k±Ð±Â | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤g¦×®Û,²b¥ú¦X§@¥Î³t²v,¤¤¤È§í¨î,¸·Å,¥ú«× | Cinnamomum osmophlacum , net photosynthetic rate middy depression , PAR , leaf temperature¡C | ¿ï¾Ü¥|¦~¥Í¤g¦×®Û¬°¸ÕÅç§÷®Æ¡A¨C¤ë¤À§O´ú©w¤W¤U¼h¶§¸»P½®¸²b¥ú¦X§@¥Î³t²v¡B»]´²§@¥Î³t²v¡B®ð¤Õ¾É«×¤T¶µ¥Í²z¦]¤l¡A¥H¤Î¥ú¦X§@¥Î¦³®Ä¥ú¿ç®g¡B¸·Å¡B®ð·Å¡B¬Û¹ïÀã«×¡B¤G®ñ¤ÆºÒ¿@«×µ¥Àô¹Ò¦]¤lªº¤éÅܤơCÂÇ¥H±´°Q¤g¦×®Û¤£¦P«a¼h¶§¸¡B½®¸ªº¥ú¦X§@¥Î»PÀô¹Ò¤Î¥Í²z¦]¤l¤§¬ÛÃö©Ê¤Î¨ä¥Dn¼vÅT¦]¤l¡A¨Ã¶i¦Ó±À¦ô¥þ¦~¸³¡CO2©T©w¶q¡C ¤@¦~¥Í¬Ö]¦b±±¨îÀô¹ÒùڷŽc¤º»]®ðÀ£®tºû«ù1KPa¥H¤º¡A¸·Å27-28¢J®É¡A´ú±o¤g¦×®Û¥ú¹¡©MÂI¬ù¬°600-700 µmol m-2s-1¡A³Ì¤j²b¥ú¦X§@¥Î³t²v¬°7.2 µmol m-2s-1¡C¦Ó¦b³¥¥~¤g¦×®Û¦¨¤ì¡A²b¥ú¦X§@¥Î³t²v¤W¼h¶§¸¬°5.22 µmol m-2s-1¡A¤W¼h½®¸¬°3.10 µmol m-2s-1¡A¤U¼h¶§¸¬°3.92 µmol m-2s-1¡A¤U¼h½®¸¬°2.51 µmol m-2s-1¡C¸g¦¨¹ï¼Ë¥»TÀË©wÅã¥Ü¡A¤W¤U¼h¶§¸»P½®¸¶¡¤Î¤W¤U¼h¶§¸¶¡¡A¦h¼Æ´ú©w¤é¡AÀô¹Ò¦]¤l¤Î²b¥ú¦X§@¥Î³t²v¤Î»]´²§@¥Î³t²v§¡®t²§ÅãµÛ¡A¦ý¤W¤U¼h½®¸¶¡«h®t²§¤£ÅãµÛ¡C¥ú«×»P¸·Å¬°¦h¼Æ´ú©w¤é¼vÅT¶§¸¥ú¦X§@¥Îªº¥Dn¦]¤l¡A¦Ó¥ú«×¦h¬°½®¸¥ú¦X§@¥Îªº¥Dn¼vÅT¦]¤l¡C¦b´¸®Ôª¢¼öªº¤ÑÔ¡A¤W¼h¶§¸²b¥ú¦X§@¥Î³t²v¤éÅܤƦ³©úÅ㪺¤¤¤È§í¨î²{¶H¦Ó§eÂù®pÁͶաC ²Öp¤@¤é9¤p®É¤g¦×®Û¶§¸¥§¡¨C¥¤è¤½¤Ø±¿n¥i©T©w6.52 g CO2¡A½®¸¬°4.01 g CO2¡C |
The efficiency of carbon
dioxide fixation of Cinnamomum osmophlacum Kaneh was analyzed by measuring
net photosynthetic rate, transpiration rate, stomatal conductance rate and
other environmental factor in this study in the field monthly. Effects of temperature , light¡A CO2¡A vapor pressure deficit(VPD) on photosynthetic rates of Cinnamamum osmophlacum Kaneh leaves were investigated on photosynthetic characteristics by portable photosynthetic system and self-organized environmental control system. When VPD was below 1.0KPa in ambient CO2 concentration light saturation point is 600-700µmolm-2s-1. Maximum Pn was about 7.2 µmolm-2s-1 under light intensity above 600 µmolm-2s-1, leaf temperature between 27-28¢J. In the field , the upper sun-leaf average net photosynthetic rate was 5.22 µmolm-2s-1. For the upper shadow-leaf, the lower sun-leaf and the lower shadow-leaf , they are 3.10, 3.92, 2.51 µmolm-2s-1 respectively According to the result of paired t-test analysis, it has significantly difference between the sun-leaf and the shadow-leaf and between the upper and lower canopy layer of the sun-leaf in photosynthesis, transpiration and environmental factors, but is not between the upper and lower canopy layer of shadow-leaf. PAR and leaf temperature are the major influence factors of sun-leaf and PAR is the major influence factor of shadow -leaf in photosynthesis in many experiment days. Under sunny and hot day, diurnal changes showed two peaks with middy depression for the upper sun-leaf. The CO2 fixation efficiency in 9 hours during the daytime that of sun-leaf of Cinnamomum osmophlacum Kaneh was 6.52 g m-2s-1, and that of shadow-leaf was 4.01g m-2s-1. |
R89625035 | §d©v½å | 91 | 2003 | ¤ò¬U¤§ÅéFµo¥Í¤Îµo¨| | Somatic Embryogenesis and Development of Diospyros discolor | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤ò¬U,ÅéF,ÅéFµo¥Í | Diospyros discolor,somatic embryo,embryogenesis | ¤ò¬U¦¨¼ôF°ö¾i©óMS°ö¾i°ò¥i«P¨ÏFµoªÞ¡A¥~¥[¥Íªø¸`¾¯«h·|§í¨îµoªÞ§@¥Î¡C¦¨¼ôF°ö¾i©ó²K¥[0.1¤Î0.5 ppm 2,4-D¤§MS°ö¾i°ò¡AF¶b¨ã¿±µÈ¤ÏÀ³¡A±N¿±µÈ¤§F¶bÄ~¥N°ö¾i©ó²K¥[0.3%¡]w/v¡^¬¡©Ê¬´¤§MS°ö¾i°ò¡A¥i»¤¾Éª½±µÅéF»P¶¡±µÅéFµo¥Í¡C ¤ò¬U¦¨¼ôF¤§F¶b°ö¾i©ó²K¥[0.1 ppm 2,4-D¤Î0.2¢H¡]w/v¡^PVP¤§MS°ö¾i°ò¥i»¤¾Éª½±µÅéFµo¥Í¡A°ö¾i©ó²K¥[¬¡©Ê¬´¤§MS°ö¾i°ò«hµL¤ÏÀ³¡C0.1 ppm TDZ»P0.1 ppm 2,4-D¤§²Õ¦X¸û³æ¿W¨Ï¥Î2,4-D¥iÀò±o¸û°ª¤§ÅéFµo¥Í²v¡ABA»P2,4-D¤§²Õ¦X¸û³æ¿W¨Ï¥Î2,4-D¨ÃµLÅãµÛ®ÄªG¡C ¤ò¬UÅéFµo¥Í»Ý°ö¾i©ó¥ú·ÓÀô¹Ò¡A¶Â·tÀô¹ÒÁö¥ç¦³ÅéFµo¥Í²{¶H¡A¦ý®ÄªG¸û°ö¾i©ó¥ú·ÓÀô¹Ò®t¡C»¤¾ÉÅéFµo¥Í©Ò»Ý¤§½©¿}¿@«×¬°3%¡]w/v¡^©Î4%¡]w/v¡^¡A½©¿}¿@«×¹L§C©Î¹L°ª¬Ò¤£§Q¤ò¬UÅéFµo¥Í¡C ¤ò¬U¦¨¼ôF¤§F¶b°ö¾i©ó×¹¢¹L¤§MS°ö¾i°ò¡A¥HKNO3¿@«×¬°28.2 mM¤ÎNH4NO3¿@«×¬°10.3 mM¡ANO3-/NH4+¤ñȬ°3.7¡A¥i±o³Ì¨ÎÅéF»¤µo®ÄªG¡A±Nµo®i¦Ü²y§Î¶¥¬q¤§ÅéF°ö¾i©ó¤À¤Æ¥Î¤§ªÅ¥Õ°ö¾i°ò¡AMS°ö¾i°ò´á¿@«×´î¥b¨ã«P¶iÅéFµoªÞ¤§§@¥Î¡Aºû«ùì´á¿@«×¡AÅéF¥iµoªÞ¡Bµo®Ú¤ÎF¶b¦ùªø¡A´£°ª´á¿@«×¦ÜìMS°ö¾i°ò¤§3/2¿¡A¥i«P¶iÅéFF¶b¦ùªø¡C |
Mature embryos of Diospyros discolor could germinate on hormone-free
MS medium. Germination of mature embryos inhibited by exogenous plant growth
regulators. While mature embryos cultured on MS medium supplemented with 0.1
and 0.5 ppm 2,4-D, hypocotyls began to swell. Swelled hypocotyls subcultured
on MS medium supplemented with 0.3%¡]w/v¡^activated charcoal, direct and
indirect somatic embryogenesis occurred. Hypocotyls of matured embryos of Diospyros discolor cultured on MS medium supplemented with 0.1 ppm 2,4-D and 0.2%¡]w/v¡^PVP could obtain direct somatic embryogenesis. Explants had no response while hypocotyls cultured on MS medium supplemented with 0.1 ppm and activated charcoal. In order to obtain high frequency of somatic embryogenesis, we culture hypocotyls of mature embryo of Diospyros discolor on MS medium supplemented with 0.1 ppm 2,4-D and 0.1 ppm TDZ. The result of somatic embryogenesis of medium supplemented with 2,4-D and BA was the same as medium only supplemented with 2,4-D. Although somatic embryogenesis of Diospyros discolor could occurred in the dark culture, the frequency of somatic embryogenesis was lower than culture in the 16 hr light photoperiod. The optimal concentration of sucrose used to somatic embryogenesis of Diospyros discolor was 3 and 4 %¡]w/v¡^.It didn¡¦t suited somatic embryogenesis while concentration of sucrose was too low or too high. In order to understand nutrient necessary of somatic embryos development, hypocotyls of mature embryos of Diospyros Discolor cultured on modify MS medium. High frequency somatic embryogenesis could obtain while explants cultured on modify MS medium with 28.2 mM KNO3 and 10.3 mM NH4NO3¡A3.7 NO3-/NH4+. Globular embryos subcultured on hormone-free modify MS medium for development. In 1/2 nitrogen strength MS medium, germination of somatic embryos occurred. Germination, rooting and elongation of somatic embryos were gained in normal nitrogen strength MS medium. In 3/2 nitrogen strength MS medium, somatic embryos could elongate. |
R89625031 | ¶Àà±´@ | 91 | 2003 | DNA¤À¤l¼Ð»xÀ³¥Î©ó¥xÆW¤¸ªQ¤§¿ò¶Çª[²§«×¤ÀªR | Genetic diversity of Pinus morrisonicola Hayata based on DNA markers | ¤ý¨È¨k ,¤ý¸Î¤å | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¥xÆW¤¸ªQ,¿ò¶Çª[²§«×,RAPD,AFLP | Pinus morrisonicola,genetic diversity,RAPD ,AFLP | ¥xÆW¤¸ªQ
(Pinus morrisonicola Hayata) ¬°¥xÆW¯S¦³ªº°w¸¾ðºØ¡C¥»¬ã¨s§Q¥ÎRAPD¤À¤l¼Ð»x¨Ó¦ôºâ¥xÆW¤¸ªQ¤ÑµM±Ú¸s¤§¿ò¶ÇÅܲ§¤Î¿ò¶Çµ²ºc¡A¥H10Ó³{¾÷¤Þ¤l¤ÀªR169Ӽ˥»¡A¨ä¤¤¥]¬AµØ¤sªQ»P¥xÆW¤G¸ªQ¨âÓªñ·½ª«ºØ¡C¥xÆW¤¸ªQ¥§¡±Ú¸s¿ò¶Çª[²§«× (Hs)¬°0.20¡AAMOVA¤ÀªR±o¨ì£XstȬ°0.146¡A»¡©ú¥xÆW¤¸ªQ±Ú¸s¦³¾A«×ªº¤À¤Æ²{¶H¡C¦b±Ú¸s¿ò¶Çµ²ºc¤è±¡AAMOVA¤ÀªRÅã¥Ü¥X¿ò¶Çª[²§«×¥Dn¬O¦s¦b±Ú¸s¤º¡A¦Ó«D±Ú¸s¶¡¡A±Ú¸s¶¡¿ò¶Çª[²§«×¦ûÁ`¿ò¶Çª[²§«×ªº¤ñ¨Ò¬°14.61¢M¡C ¤ÀªR¥xÆW¤¸ªQ¥_¡B¤¤¡B«n¦a°Ï¦@¤Q¤@Ó±Ú¸s¡A©Ò±o¤§¿ò¶Ç¶ZÂ÷¾ðª¬¹ÏÅã¥Ü¥X±Ú¸sªº¸sÂO²{¶H»P¦a²z¦ì¸m¦³ÃöÁp©Ê¦s¦b¡A¥Dn¥i¹º¤À¦¨¨âÓÃþ¸s¡A´f»^ªL³õ¡B¨qÅr¡B¨¦Ãö»P¤j§|ÀYØè¤s¡B«n¾î¡B¦h¯Ç¡B»ñ±^¤s¡B®°¥±Ú¸s¤§¶¡ªº¿ò¶Ç¶ZÂ÷ªñ¡A¹º¬°²Ä¤@Ãþ¸s¡C²Ä¤GÃþ¸s¬°¬°¤T®l¤¼d¦y¡B¥ÛÞä¬Ó«Ò·µ¤Îµ§¬[¤s±Ú¸s¡C ¦b AFLP³¡¤À¡A¥|¹ï¤Þ¤l²Õ¦X¦@Àò±o119Ӽлx¡A¥u¦³9Ó¦h«¬©Ê¼Ð»x¡A®Ú¾Ú³o¨Ç¦h«¬©Ê¼Ð»x¦ôºâ¥xÆW¤¸ªQ¤EӤѵM±Ú¸s¤§¥§¡ª[²§«×¡]Hs¡^¬°0.088¡C¥xÆW¤¸ªQ±Ú¸sª[²§«×§C¡Aªí¥Ü¨ä°ò¦]²Õªº¬Û¦ü«×°ª¡A³\¦h¤Þ¤l²Õ¦XµLªkÀò±o¦h«¬©ÊªºAFLP¼Ð»x¡A¦pªG¯à¨Ï¥Î§ó¦hªº¤Þ¤l²Õ¦X°µ¿z¿ï¡A©Î³\¯à¦³¾÷·|§ä¨ì§ó¤j¶qªº¦h«¬©Ê¡C |
|
P90625008 | ¼B¨që | 91 | 2003 | ¦æ¹D¾ð¤ô¶À¥Ö»P¶ÂªO¾ð¤G®ñ¤ÆºÒ©T©w®Ä¯q¤§¬ã¨s | Study on Carbon Dioxide Fixation Efficiency of sidewalk trees Cytisus pinnatus and Alstonia scholaris. | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤ô¶À¥Ö,¶ÂªO¾ð,¤G®ñ¤ÆºÒ,²b¥ú¦X§@¥Î³t²v,®ð¤Õ¾É«×,»]´²³t²v | Cytisus pinnatus,Alstonia scholaris,Carbon Dioxide,net photosynthetic rate,stomatal conductance rate,transpiration rate | ¥»¬ã¨s«Y¿ï¾Ü¦ì©ó¥xÆW¥_³¡®ç¶é¿¤®ç¶é¥«³q©¹°ª³t¤½¸ô¥Dn·F¹D°ê»Ú¸ô¤G¬q¤§¦æ¹D¾ð¤ô¶À¥Ö(Cytisus pinnatus)¤Î¤å¤¤¸ô¤§¦æ¹D¾ð¶ÂªO¾ð(Alstonia scholaris)¬°¸ÕÅç§÷®Æ¡A¨C¤ë¿ï¾Ü¨â¤Ñ¡A¦b´¸¤Ñ¥B¦Û¤K®É¦Ü¤U¤È¥|®É©ó¤á¥~¶i¦æ²b¥ú¦X§@¥Î³t²v¡B®ð¤Õ¾É«×¡B»]´²³t²v¤Î¨ä¥LÀô¹Ò¦]¤l¤§¸ÕÅç¡A±N©Ò±o¤§¦U¶µ¼Æ¾Ú¤ÀªR¥H±´°Q¤GºØ¾ðºØ¹ï¤G®ñ¤ÆºÒ©T©w®Ä¯q¡A¥H´£¨Ñ¤é«á³Wµe¦æ¹D¾ð°Ñ¦Ò¤§¥Î¡C | In this study, Cytisus pinnatus
on Kuo-Ji Road, a mainline from Tao Yuan¡]a city in northern Taiwan¡^to Chung
Shan freeway, and Alstonia scholaris on Wen-Chung road were selected. The Carbon Dioxide fixation efficiency, which will be a reference for sidewalk trees planning afterward, was analyzed by measuring net photosynthetic rate, transpiration rate, stomatal conductance rate and other environmental factor outdoor from 8 am to 4 pm, two sunny days a month. |
R88625036 | §õ½Ã©v | 90 | 2002 | «CèòR²Õ´°ö¾i¤G¦¸¥NÁ²£ª«¤§±´°Q | The Secondary Metabolites from Tissue Cultures of Cyclobalanopsis glauca | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | «CèòR,¤G¦¸¥NÁª«,¡¦X²Õ´ | Cyclobalanopsis glauca,secondary metabolites,callus,catechin | ¥»¸ÕÅç¥H«CèòR¡]Cyclobalanopsis
glauca¡^¥¼¦¨¼ôF¤§°ö´ÓÅ鬰§÷®Æ¡C±N¥¼¦¨¼ôºØ¤l¥h°£¨ä°ò³¡ªº´ß¤æ«á¡A¥ý¥Hµ}ÄÀ500¿ªº¦w´Á®ø¬r¾¯²M¬~10¤ÀÄÁ¡A¦A¥H70¢H°sºë®ûªw5¤ÀÄÁ¡A³Ì«á¥H5¢H NaOCl¤ô·»²G¡]§t¬ù1¢H¡]v/v¡^Tween20®iµÛ¾¯¡^¬°®ø¬r¾¯¡A¦b¶Wµªi¾_Àú15¤ÀÄÁ¡Aå¶}ºØ¤l¨ú¥¼¦¨¼ôF¶i¦æµLµß°ö¾i¡A¦b¶Â·tªº°ö¾iÀô¹Ò¤U¡A¡¦X²Õ´»¤¾É²v¸û°ª¡A¥§¡¬°91.17 ¢M¡A¨ä¤¤¥H´Óª«¥Íªø½Õ¸`¾¯¿@«×¬°1 mg/lªº2,4-D»¤¾É²v³Ì°ª¡A¹F¨ì94.52 ¢M¡C¦b¶Â·t¤¤°ö¾i40¤Ñ¤§Â¡¦X²Õ´¡A¨ä«¶q¥§¡¼W¥[8.79¿¡A¨ä¤¤¤S¥H0.5 mg/l¤§2,4-D³B²z¸û°ª¡A¼W¥[17.97¿¡C ¦b36Ó¸ÕÅç²ÓM®è¼Ë«~¤¤¡A5ºØ¹w©w¥Ø¼Ð¦¨¤À¤¤¶ÈÀË´ú¥X(+)-catechin ©M(-)-epicatechin 2ºØ¦¨¤À¡A(+)-gallocatechin¡B(-)-epigallocatchin¤Îrutin«h¨S¦³µo²{¡C¨C1¤½§J·sÂA¡¦X²Õ´²ÓM¤º¥§¡§t¦³186.21£gg¤§(+)-catechin¤Î54.28£gg¤§(-)-epicatechin¡C |
Immature embryos of
Cyclobalanopsis glauca were as explants in this experiment. When immature
embryos were transferred into MS medium in the dark, average induction rate
91.17¢Mwas observed and the highest induction rate 94.52¢Mof all treatments was
the medium with 1 mg/l 2,4-D. When the callus was cultured in the dark for 40
days, average double rate was 8.79 and the highest double rate¡]17.97¡^was
observed in the medium with 0.5 mg/l 2,4-D. Among thirty-six callus cell samples, five desirable compounds¡](+)- catechin¡B(-)-epicatechin¡B(+)-gallocatechin¡B(-)-epigallocatechin¡Brutin¡^, there were only two of them¡](+)- catechin and (-)-epicatechin¡^. There were detected 186.21£gg (+)-catechin and 54.28£gg (-)-epicatechin per one gram fresh callus cell. |
R89625040 | ¦¿³Í· | 90 | 2002 | ·ËÀY¦a°Ï¤TºØ´Ó¥Í¤U®Ú°é»P¥»Åé¤gÄ[²z¤Æ©Ê½è¤§¤ÀªR | Physical and chemical properties, and distribution of metal species in rhizosphere and bulk soils of three plantations at Chi-Tou region | ¤ý¨È¨k ,¤ý©ú¥ú | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ®Ú°é¤gÄ[,³sÄò©Ê©â¨úªk,·ËÀY | rhizosphere soil,mutiple-step extraction,Chi-Tou | ¥»¬ã¨s±N¥H¤@Ó¸û·LÆ[ªºµJÂI¡A¨Ó¬ÝªL¤ì»P¤gÄ[¦b¾i¤À´`ÀôªºÃö«Y¡A¯S§O±NµJÂI©ñ¦b¡u®Ú°é¡v³oӰϰ줤¡C¥»¹êÅç¦b·ËÀYÀçªL°Ï¶i¦æ¡A°£¤F¨Ï¥Î¤@¯ëªº¤ÀªR¤èªk¨Ó¤ÀªR¤gÄ[°ò¥»©Ê½è¤§¥~¡A¨Ã±Ä¥Î³sÄò©Ê©â¨úªk¡]multiple-step extraction¡^¨Ó¤ÀªR®Ú°é¤gÄ[»P¥»Åé¤gÄ[¡A¥H¤F¸Ñ¨ä®t²§©Ê¡C µ²ªGÅã¥Ü®Ú°é¤gÄ[ªºpHȧC©ó¥»Åé¤gÄ[¡B¶§Â÷¤l¥æ´«®e¶q¤j©ó¥»Åé¤gÄ[¡F²É®|¤ÀªR¤W®Ú°é¤gÄ[ªº½è¦a¸û²Ê¡F¦³¾÷ºÒ¡B´áªº§t¶q¥H®Ú°é¤gÄ[¸û°ª¡A¦ý¬OºÒ´á¤ñ¨ÃµL®t²§¡C ®Ú°é¤gÄ[¤¤ª÷ÄÝÂ÷¤lªº¥Íª«¦³®Ä©Ê§t¶q¤jP¤ñ¥»Åé¤gÄ[°ª¡C¤gÄ[¤¤ªºª÷ÄݧκA¤À§G¨C¤@ºØª÷Äݳ£¤£¦P¡A¦ý¦b®Ú°é¤gÄ[»P¥»Åé¤gÄ[ªº¤ñ¸û¤U¡A®Ú°é¤gÄ[¥H¦³¾÷½èªºÁäµ²§ÎºA¤ñ¨Ò¸û¦h¡A¥»Åé¤gÄ[¥H«D¦³¾÷½èÁäµ²ªº¤ñ¨Ò¸û°ª¡C |
This research was emphasied on
the microscale to study the relationship between tree species and nutrient
cycle, particularly focused on the rhizosphere soils. The miltiple-step
extraction method was employed to differentiate the different soil properties
between bulk and rhizosphere soils. pH and cation exchange capacity¡]CEC¡^of rhizosphere soils are usually lower and greater than bulk soils. On the other hand, the particle size of rhizosphere soils are coarser than bulk soils, respectively. Organic carbon and nitrogen contents of rhizosphere soils are greater than bulk soils. However, the C/N ratio show no significant differences between rhizosphere and bulk soils. The contents of bioavailable metals in rhizosphere soils are greater than that of bulk soils. The fractionations of each metal showed different distribution. Organic-bound metal showed high concentration in rhizosphere soils. However, the bulk soils contain more in inorganic-bound metals than rhizosphere soils. |
R89625033 | ¹ùz´f | 90 | 2002 | ¼Ì¾ð»P¥xÆWõÑ©óªL¤U®â´Ó¤G®ñ¤ÆºÒ©T©w®Ä¯q¤§¬ã¨s | Study on Carbon Dioxide Fixation Efficiency of Cinnamomum camphora and Zelkova serrata in understory planting | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤G®ñ¤ÆºÒ,²b¥ú¦X§@¥Î³t²v,¼Ì¾ð,¥xÆWõÑ | carbon dioxide,net photosynthetic rate,Cinnamomum camphora,Zelkova serrata | ¬ã¨s¿ï¾Ü¥xÆW¤¤¥_³¡]®ß¹A¤u©M¿³ªL³õªL¤U®â´Ó¤§¤T¦~¥Í¼Ì¾ð(Cinnamomum camphora)»P¥xÆWõÑ(Zelkova serrata)¬°¸ÕÅç§÷®Æ¡A¦Û90¦~5¤ë¦Ü91¦~4¤ë¨C¤ë¤À§O´ú©w¤W¼h¸¤Î¤U¼h¸²b¥ú¦X§@¥Î³t²v¡B»]´²³t²v¡B®ð¤Õ¾É«×¤T¶µ¥Í²z¦]¤l¡A¥H¤Î¥ú¦X§@¥Î¦³®Ä¿ç®g¡B¸·Å¡B¬Û¹ïÀã«×¡B¤G®ñ¤ÆºÒ¿@«×µ¥Àô¹Ò¦]¤lªº¤éÅܤơAÂÇ¥H±´°QªL¤U®â´Ó¤§¼Ì¾ð»P¥xÆWõѹï¤G®ñ¤ÆºÒªº©T©w®Ä¯q¡C ©ó12Ó´ú©w¤é´ú±o¼Ì¾ð¤§¤é¥§¡²b¥ú¦X§@¥Î³t²v¦b¤W¼h¸¬°5.06£gmol m-2s-1¡A¤U¼h¸¬°2.48£gmol m-2s-1¡C¥xÆWõѤW¼h¸¬°3.87£gmol m-2s-1¡A¤U¼h¸¬°1.67£gmol m-2s-1¡C²Öp¤@¤é9¤p®É¼Ì¾ð¤W¼h¸¥§¡¨C¥¤è¤½¤Ø¸±¿n¥i©T©w7.21 g CO2¡A¤U¼h¸¬°3.54 g¡F¥xÆWõÑ«h¨C¥¤è¤½¤Ø¸±¿n¥i©T©w5.52g CO2¡A¤U¼h¸¬°2.38 g¡C |
In this study, Cinnamomum
camphora and Zelkova serrata in understory planting of the experimental
forest of National Miao-Li Agricultural and Industrial Vocational High School
were selected, The efficiency of
carbon dioxide fixation was analyzed by
measuring net photosynthetic rate, transpiration rate, stomatal
conductance rate and other environmental factor in the field monthly. The results of investigation of Cinnamomum camphora were¡Gthe upper-leaf average net photosynthetic rate was 5.06 £gmolm-2s-1 ¡Fthe lower-leaf average net photosynthetic rate is 2.48 £gmolm-2s-1. The results of investigation of Zelkova serrata were ¡Gthe upper-leaf average net photosynthetic rate was 3.87 £gmolm-2s-1, the lower-leaf was 1.67 £gmolm-2s-1. For estimating the CO2 fixation efficiency in 9 hours during the daytime, that of upper-leaf of camphora tree was 7.21 g m-2d-1,and that of lower-leaf of camphora tree was 3.54 g m-2d-1 ¡Fthat of upper-leaf of Zelkova was 5.52 g m-2d-1 ,and that of upper-leaf was 2.38 g m-2d-1. |
R87625032 | §ù¤jªv | 90 | 2002 | ·ËÀY¦a°ÏÀ̤ì¡B¬h§ü©M©s©v¦Ëªº®Ú°é»P¥»Åé¤gÄ[§C¤À¤l¶q¦³¾÷»Ä»PºÒ-13®ÖºÏ¦@®¶¥úÃФ§¤ÀªR | Low molecular weight organic acids and 13C nuclear magnetic spectroscopy analyses of Chamaecyparis formosensis, Cryptomeria japonica and Phyllostachys pubescens, Rhizosphere and Bulk Soils at Chi-Tou Region. | ¤ý¨È¨k±Ð±Â ,¤ý©ú¥ú±Ð±Â | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ®Ú°é¤gÄ[,¥»Åé¤gÄ[ | rhizosphere soil,bulk soil | ®Ú°é¬O«ü¤gÄ[ªº·L¥Íª«¬Û¡]microflora¡^³Q´Óª«ªº®Ú¼vÅTªº°Ï°ì¡C´Óª«¦b¥Íªø´Á¶¡¦³¯à¤O¯à§ïÅܩΨî®Ú°ìªº©Ê½è¡C´Óª«®Úªº¼vÅT¥Dn¬O¸g¥Ñ¦³¾÷»PµL¾÷ª«½èÄÀ©ñ¶i¤J¤gÄ[ªº®Ú°ì¡C´Óª«ªººØÃþ¡B®Ú¤Àªcªº¦³¾÷ª«½è©M¾i¤À§l¦¬«¬ºAµ¥¡A³£·|¤Þµo®Ú°é¤gÄ[©Ê½èªº§ïÅÜ¡A¶i¦Ó§ïÅܤF®Ú°é¾i¤Àªº°ÊºA¡A¹ï©ó´Óª«ªº¥Íªø¤]²£¥Í¤F¼vÅT¡C¥»¬ã¨s¥H°ê¥ß¥xÆW¤j¾Ç¹A¾Ç°|¹êÅçªL·ËÀYÀçªL°ÏÀ̤ìªL¡]Chamaecyparis formosensis¡^¡B¬h§üªL¡]Cryptomeria japonica¡^©M©s©v¦ËªL¡]Phyllostachys pubescens¡^§@¬°¸ÕÅç¹ï¶H¡A¤ñ¸û®Ú°é¤gÄ[»P¥»Åé¤gÄ[ªº°ò¥»ª«²z¤Æ¾Ç©Ê½è¡]¦ppHÈ¡B¶§Â÷¤l¥æ´«®e¶q¡B¤gÄ[½è¦a¡B¦³¾÷ºÒ©M§t´áÁ`¶qµ¥¡^¡C¨Ã§Q¥Î®ð¬Û¼hªR»ö¤Î©TºA®ÖºÏ¦@®¶¥úÃЪk¡A¤ÀªRÀ̤ì¡B¬h§ü©M©s©v¦Ë´ÓÅé§C¤À¤l¶q¦³¾÷»Äªº§t¶q©M®t²§¡A¤gÄ[¦³¾÷½èºÒ²Õ¦¨¤À¥¬¡A®Ú°é¤gÄ[»P¥»Åé¤gÄ[¶¡§C¤À¤l¶q¦³¾÷»Äªº§t¶q©M®t²§¡A¥H¤Î®Ú°éÀô¹Ò¹ï©ó¤gÄ[¦³¾÷½èºÒ²Õ¦¨¤À¥¬ªº¼vÅT¡C ¬ã¨sµ²ªGÅã¥Ü¡A¦b°ò¥»ª«²z¤Æ¾Ç©Ê½è¤è±¡A¤TºØ´Ó¥Í¤Uªº®Ú°é¤gÄ[pHȬҧC©ó¥»Åé¤gÄ[¡A¦Ó¶§Â÷¤l¥æ´«®e¶q¡BÂH²É§t¶q¡B¦³¾÷ºÒ©MÁ`´á§t¶q¬Ò¸û¥»Åé¤gÄ[°ª¡C¦b´Óª«Åé§C¤À¤l¶q¦³¾÷»Ä§t¶q¤è±¡A¯ó»Äªº§t¶q¡A¥H©s©v¦Ë®Ú³¡³Ì°ª¡A¬h§ü®Ú³¡³Ì§C¡C¤þ¤G»Ä§t¶q¡A¥HÀ̤ìªK¸³Ì°ª¡A©s©v¦Ë®Ú³¡³Ì§C¡Cµ[¬Ä»Äªº§t¶q¡A¦b´ÓÅé¤è±¡A¥HÀ̤ìªK¸³Ì°ª¡A¥H¬h§ü®Ú³¡³Ì§C¡C´N¤gÄ[¦Ó¨¥¡A§C¤À¤l¶q¦³¾÷»Ä§t¶qÁͶլ°¡G©s©v¦Ë®Ú°é¤gÄ[ ¡Ö À̤ì®Ú°é¤gÄ[¡Ö¬h§ü®Ú°é¤gÄ[ ¡Ö ¥»Åé¤gÄ[¡A¨Ã¥B¨ä¶¡¦³ÅãµÛªº®t²§©Ê¦s¦b¡C¦b¦³¾÷ºÒ©x¯à°òªº¤À¥¬¤è±¡AÖJ°òºÒ¥H©s©v¦Ë®Ú°é¤gÄ[©Ò¦ûªº¤ñ¨Ò³Ì°ª¡A¥»Åé¤gÄ[³Ì§C¡F§t´áÖJ°òºÒ¡B§t®ñÖJ°òºÒ©Mßn°òºÒ¤À§O¥H¥»Åé¤gÄ[¡BÀ̤ì©M¬h§ü®Ú°é¤gÄ[©M©s©v¦Ë®Ú°é¤gÄ[©Ò¦ûªº¤ñ¨Ò³Ì§C¡A×ô°òºÒ¥H¥»Åé¤gÄ[©Ò¦ûªº¤ñ¨Ò³Ì°ª¡A¦b¨ä¾l¤TºØ¤gÄ[¶¡«hµL®t²§©Ê¦s¦b¡F¤AÁYîǺҩMªÚ»°òºÒªº¤À¥¬¤ñ¨Ò¡A¦b¥|ºØ¤gÄ[¶¡¨ÃµL®t²§©Ê¦s¦b¡CºîÆ[¤Wzµ²ªG¡A®Ú°é¤¤ªºª«²z¤Æ¾Ç©Ê½è·|ÀHµÛ´Ó¥Íª¬ªpªº¤£¦P¦Ó¦³©Ò§ïÅÜ¡C |
Rhizospere is the activity zone nearly plant root. The species of
plants, root exudates, and the uptake pattern of nutrients influence the soil
properties in rhizosphere, consequently dynamic of nutrients, and the plant
growth. The study site was lacated at a typical mountain forest where
Chamaecyparis formosensis, Cryptomeria japonica and Phyllostachys pubescens
grows at Chi-Tou Region. We compared the physicochemical properties, such as
pH value, cation exchange capacity (CEC), soil texture, organic carbon, the
total nitrogen content. The content of the low-molecular-weight organic acids
in rhizosphere and bulk soils was measured with gas chromatography. The
distribution of functional group of organic carbon in the soils was
determined with solid state nuclear magnetic resonance. The results of basic soil physicochemical properties showed that, the pH value of rhizosphere soils were lower than the bulk soil. The CEC, clay content, and the amount of organic carbon and total nitrogen in rhizosphere soils are higher than those of bulk soils. The amount of low-molecular-weight organic acids showed the highest oxalic, succinic, malonic and fumaric acids, in the Phyllostachys pubescens rhizosphere soil and the lowest in the bulk soil. In general, the amount of low-molecular-weight organic acid showed as follows: Phyllostachys pubescens rhizosphere soil > Chamaecyparis formosensis rhizosphere soil > Cryptomeria japonica rhizosphere soil > bulk soil in these species. The functional groups of organic carbon showed, the highest percentage of alkyl-C in the Cryptomeria japonica rhizosphere soil and lowest in bulk soil. The percentage of N-alkyl-C were the lowest in the bulk soil. However, the O-alkyl-C and carboxylic-C were showed the lowest percentage in the Chamaecyparis formosensis rhizosphere soil. The highest percentage of phenolic-C is present in bulk soil, but the rhizosphere soil of the three species showed significant difference. The percentage oa acetal-C and aromatic-C were not significantly difference among the all soils. It was concluded that the properties of rhizosphere soils changed with the plant species. |
R87625008 | ¬xÄפå | 90 | 2002 | ¼Ì¾ð¤£¦P«a¼h¦ì¸m¤§¥ú¦X§@¥Î²b¥Í²£¤O | Net Photosynthetic Productivity at Different Canopy Layers of Cinnamomum camphora | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ²b¥ú¦X§@¥Î³t²v,»]´²§@¥Î³t²v,¸·Å,¥ú«×,¤@¤éºÒ¦¬Ã¬¶q | net photosynthesis rate,transpiration rate,leaf temperature,photon flux density,dinural carbon gain | ¥»¸ÕÅç¥Dn¥Øªº¦bÀò±o¼Ì¾ðªº¥ú¦X§@¥Î»PÀô¹Ò¤Î¥Í²z¦]¤l¤§¬ÛÃö©Ê¤Î¨ä¥Dn¼vÅT¦]¤l¡A¨Ã¶i¤@¨BÀò±o¥þ¦~¸³¡¥Í²£¤Oªº¸ê®Æ¡C ¸g¦¨¹ï¼Ë¥»TÀË©wªk¤Î³v¨B°jÂkªk¤ÀªR«á¡A¶§¸»P½®¸¶¡µL½×¬OÀô¹Ò¦]¤l©Î¥ú¦X§@¥Î¤Î»]´²§@¥Î§¡®t²§ÅãµÛ¡A¦ý¾ð«a¤W¼h»P¤U¼h¶¡«hµLÅãµÛ®t²§¡C¦b¥ú¦X§@¥Îªº¼vÅT¦]¤l¤è±¡A¸g¦h¤¸³v¨B°jÂk¤ÀªR«áµo²{¡A©Ò¦³©u¸`¤¤¥ú«×¬°¼vÅT¥ú¦X§@¥Îªº¥Dn¦]¤l¡C¹ï¶§¸¦Ó¨¥¡A¥ú«×»P¸·Å¬°¦h¼Æ¤é¤l¤¤¥ú¦X§@¥Îªº¥Dn¼vÅT¦]¤l¡F¹ï½®¸¦Ó¨¥¡A¤j¦h¼Æ¤é¤l¸Ì¥u¦³¸·Å¬°¥Dn¼vÅT¦]¤l¡C¸ÕÅ礤¤]µo²{¨C¤é¤W¤È¤E®ÉªºÀþ¶¡¥ú¦X§@¥Î³t²v»P·í¤éºÒ¦¬Ã¬¶q¦³ÅãµÛ¬ÛÃö©Ê¡C ¥t¥~¦b¼Ì¾ð¥ú¦X§@¥Î¦~¥Í²£¶qªº±À¦ô¤è±¡A¥»¸ÕÅ窺¼Ì¾ðÁ`¸¤ù±¿n¬°124 m2¡A¨ä¤¤¶§¸¸¤ù±¿n¦û30¢H¡A½®¸¸¤ù±¿n¦û70¢H¡A¥þ®è¤@¦~¬ù¥i©T©w234¢Vªº¤G®ñ¤ÆºÒ¡A¨ä¤¤¶§¸°^Äm54%¡A½®¸°^Äm46%¡C |
The main purpose of this
experiment was to study the correlation between photosynthesis of camphor
tree, environment and physiology factors, and other major effect
factors. Furthermore, to obtain
the annual leaf productivity data. The statistical data of this experiment was analyzed by pair-sampled T-test and proceed regression models. The results showed that there were big differences between sun-grown leaves and shade-grown leaves with effect of environment, photosynthesis or transpiration factors. However, there was no difference between the upper and lower crown of trees with effect of environment, photosynthesis or transpiration factors. In terms of photosynthesis factor, the proceed regression model analysis showed that the photon flux density is the major factor to photosynthesis in all seasons. For sun-grown leaves, the photon flux density and leaf temperature were main influential factors to photosynthesis most of the time. For shade-grown leaves, only leaf temperature was the major influential factor to photosynthesis. The experiment also discovered there were high correlation between the speed of photosynthesis at 9 o¡¦clock every mornings and diurnal carbon gains. In addition to the estimation of annual phtosynthetic productivity, among the total area of 124 m2 of camphor leaves containing 30% of sun-grown leaves and 70% of shade-grown leaves in this experiment, 234 kg of Carbon Dioxide can be stabilized per year, among all, sun-grown leaves contributes 54% and shade-grown leaves contributes the other 46%. |
P89625010 | ÃQ®iÙy | 90 | 2002 | ¤d¦~®äªL¤U¤§¯Q¤ß¥Û¥xÆWõÑ®â´Ó | Planting Zelkova serreata and Michelia compressa under Aleurites montana stands | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ªL¤U®â´Ó | planting under stands | ¥»¬ã¨s¥H]®ß¹A¤u©M¿³¹ê²ßªL³õ¤§30¦~¥Í¤d¦~®ä¤H¤uªL¤U¡A±¿n1.5¤½³¼¬°¸ÕÅç¦a¡A¨Ì¤£¦PªL¤À±K«×³B²z¬°¬Ò¥ï°Ï¡]¬Û¹ï¥ú«×100¢M¡^¡B±KªL°Ï¡]¬Û¹ï¥ú«×25¢M¡^¤Î²¨¥ï°Ï¡]¬Û¹ï¥ú«×47¢M¡^¡A¥HCRD¸ÕÅç³]p®â´Óì¥ÍÁï¸¾ðºØ¥xÆWõѤίQ¤ß¥Û¡A¥H«Ø³y½Æ¼hªL¡A¶i¦æºî¦XÀË´ú¥H©úÁA¤£¦PªL¤À±K«×¶i¦æ½Æ¼hªL«Ø³y®É¡A¤£¦P·LÀô¹Ò±ø¥ó¹ï³yªL¤ì¥Íªø©Ò³y¦¨ªº¼vÅT¡C ¦]ªL¤À¾D¨ü¤H¬°¼¾¨|§@·~¤Î¦ÛµM¤zÂZ¡]»ä·¡^µ¥ºî¦XÂZ°Ê¤§«á¡A´ËªLÀô¹Ò»PªL¦a¥Í²£¤O¦³©ÒÅܰʡAP¼vÅT´Ó³Q¤§ºt´À¤Î³yªL¤ì¤§¥Íªøª¬ªp¡A¥»¬ã¨s§Y¹ï·LÀô¹Ò¦]¤l¦p¥ú¦X§@¥Î¥ú¶q¤l±K«×¡B®ð·Å¡B¤gÄ[·Å«×¤Î¤gÄ[¤ô¶Õµ¥¥[¥HºÊ´ú¡A¥H©úÁA¤£¦P·LÀô¹Ò¤U®ðÔ¦]¤l¤§ÅܤơA¤Î¹ï¦U³yªL¥®¤ì¤§¦¨¬¡¤Î¥Íªø¶q¤§¼vÅT¡Aک󥼨ӪL¤U®â´Ó®É°µ¬°¸gÀç¨Mµ¦¤§°Ñ¦Ò¡Cªì´Á¸ÕÅçµ²ªG¡A¤@¦~¥Í¥xÆWõѦb¬Ò¥ï°Ï¥§¡]°ª²b¥Íªø61.19¡]¡Ó9.57¡^cm/yr¡A²b°ò®|¥Íªø4.5¡]¡Ó2.90¡^cm/yr¡F¦b±KªL°Ï¤º]°ª²b¥Íªø47.32¡]¡Ó7.42¡^cm/yr¡A²b°ò®|¥Íªø2.06 ¡]¡Ó1.76¡^cm/yr¡F¦b²¨¥ï°Ï]°ª²b¥Íªø42.14¡]¡Ó7.47¡^cm/yr¡A°ò®|¥Íªø2.27¡]¡Ó1.79¡^cm/yr ¡F¦¨¬¡²v¸gÂà´«¬°¨¤«×´Ó«á¦U³B²z¶¡¨S¦³ÅãµÛ®t²§¡A¥§¡¦¨¬¡²v¹F96.6%¡C¯Q¤ß¥Û¦b¬Ò¥ï°Ï¥§¡]°ª²b¥Íªø18.75¡]¡Ó8.78¡^cm/yr¡A²b°ò®|¥Íªø2.02¡]¡Ó2.16¡^mm/yr¡F¦b±KªL°Ï²b]°ª¥Íªø17.58¡]¡Ó8.92¡^cm/yr¡A²b°ò®|¥Íªø1.92¡]¡Ó1.50¡^mm/y¡F¦b²¨¥ï°Ï¡]¬Û¹ï¥ú«×47%¡^¤º²b]°ª¥Íªø16.72¡]¡Ó7.58¡^cm/yr¡A²b°ò®|¥Íªø2.21¡]¡Ó1.88¡^mm/yr¡F¦U³B²z¶¡¥§¡¦¨¬¡²v¹F93.98%¡C ¤d¦~®äªL¤À¦b¤£¦P¨|ªL³B²z¤U¡A¦U³B²z¶¡¤§´ËªL¤gÄ[¡A¦³¾÷½è§t¶q¡B¤Î¥æ´«©Ê¶t¡BÁâ¡B¹[¡B¦³®Ä©ÊÁCµ¥¤gÄ[ªÎ¤O§¡Äݨ}¦nµ¥¯Å¡A¦]ªL¦a¥§¡©Y«×26¢X¤Î¯Ç²ú»ä·±a¨Ó»¨«B¾ÉP´ËªL¤gÄ[¾i¤À²O¬~¦Ó¬y¥¢¡AP¦U³B²z¶¡¤gÄ[¾i¤ÀµLÅãµÛ®t²§¡CªL¦a¸g¹L¤@¦~¤§¤H¬°¤Î¦ÛµM¤zÂZ«á´Ó¸sºØÃþ¥Ñì¨Ó88ºØ¼W¥[¦Ü140ºØ¡A¨³³t¦¨ªø¹F1.6¿¡AªL¤U®â´Ó¼¾¨|§@·~»ÝnÄ~Äò¥[±j¼¾¨|¡]°£¯ó¡^¡A¤è¯à«Ø³y½Æ¼hªL¡C |
This research focused on the 30
years old Aleurites Montana of plantation forests and conducted at the
experimental forest of National Miao-Li Agricultural and Industrieal
Vocational High School. The area of the experimental station is 1.5 hectares.
There are separated into three experimental treatments, such as clearcutting
(100% of relative light intensity), closed stand (25% of relative light
intensity), and thinning stand (47% of relative light intensity). In order to
build up a multi-stories forest according to CRB design, native species of
hardwood Zelkova serrata and Michelia compressa were planted under Aleurities
Montana. The objective of this study was to investigate the microenvironments
affected the forest growth under multi-storied forests at different intensity
of stands. The forest environments and forestry productivity affected by artificial tending operation and natural interference (i.e., typhoon). Therefore, the status of the regeneration of vegetation and forestry growth were influenced by the following environmental factors. These environmental factors included light intensity of photosynthesis, air and soil temperatures, and water potentials. We were monitoring those factors and trying to investigate the different environmental factors of climate change influence the seedlings of plantation, growth, and productivity. These parameters will be used as a reference of a strategy and management of next plantation. In the preliminary tests, the average of plantation growth height and basil diameter of Zelkova serrata seedlings were 61.19 (¡Ó9.57) cm yr-1, and 4.5 (¡Ó2.90) mm yr-1, respectively at clearcutting district. However, at closed stand and thinning districts of seedling growth height and basil diameter were 47.32 (¡Ó7.42) cm yr-1, 2.06 (¡Ó1.76) mm yr-1; 42.14 (¡Ó7.47) cm yr-1 and 2.27 (¡Ó1.79) mm yr-1 with respect to Zelkova serrata. The average of seedlings growth was above 96.6% and show no significant differences with different treatments. On the other hand, the average growth height and basil diameter of Michelia compressa at clearcutting, closed stand and thinning districts were 18.75 (+8.78) cm/yr-1, 1.92 (¡Ó1.50) mm yr-1; 17.58 (¡Ó8.92) cm yr-1, 1.92 (¡Ó1.88) mm yr-1; and 16.72 (¡Ó7.58) cm yr-1, and 2.21 (¡Ó1.88) mm yr-1. The average of seedling growth was around 93.98%. At different treatments of Aleurites Montana silviculture, organic matter contents, exchangeable Ca, Mg, K and available phosphorus were classified as an upper level grade of soil fertility. The soil erosion was occurred owing the Nali typhoon of high precipitation and caused the loss of forest soil nutrients. Hence, there was no significant differences of soil nutrients at different treatments. The species of vegetations increased from 88 to 140 after a year''s of artificial and natural interferences, and grown about 1.6 times. Therefore, this research concluded and suggested that the tending operation under forestry plantation need to enhance the tending (i.e., weeding) in order to build multi-storied forest. |
R88625041 | ÁúÁÂ§Õ | 90 | 2002 | ªw®äÂà´Þ¨t²Î¤§«Ø¥ß | ¤ý¨È¨k ,¸¶}·Å | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ªw®ä,Âà´Þ | paulownia fortunei,transgenic | ªw®ä(Paulownia
fortunei)¬O³t¥Íªº¸gÀÙ¾ðºØ¡A ¥Ñ©ó¨ä¨ã¦³§÷½è«¶q»´, ©è§Ü»G±Ñ, ¤£©öÅܧÎ, ¥H¤Î¦h¥Î³~¡F
¨Ò¦p¡G ¨Ñ§@¼Ö¾¹¥Î§÷¡A °ª¯Å®a¨ã¥Î§÷µ¥µ¥¡C ©Ò¥H¦¨¬°´ËªL¹A·~ªº¤@¶µ«n¸ê²£¡C ªw®äªº¦A¥Í¨t²Î¤w«Ø¥ß§¹¦¨¡A ¥i¥H§Ö³téwªºÀò¨ú¤j¶qÂà´Þ]¤ì¡A ¥u»Ý±N¦³¯q³Bªº°ò¦]Âà´Þ¶i¤Jªw®ä¤¤¨Ã¥BÀò±oªÞÅé¡A ´N¥i¥H§Q¥Î·LÅéÁc´Þ¨t²Î¤j¶q¦A¥Í¥Ø¼ÐÂà´Þ]¤ì¥H¨Ñ´ËªL¹A·~¤W¨Ï¥Î¡C ©Î¬OÂà´Þ¦hºØ°ò¦]¥H§ï¨}ªw®ä©Êª¬¡I ¥»½×¤å«Øºc§ÜÂΰò¦]---sweet potato sporamin °ò¦]©óÂù¦V¸üÅépBI121Â૬¶i¤J¹A±ìµß(Agrobacterium tumefaciens)µß®è¡G LBA4404¤¤¡A ¥HCaMV 35S ±Ò°Ê¤l(promoter)¡A «ùÄòªí²{sporamin³J¥Õ½è°ò¦]Âà´Þ¶i¤Jªw®ä¡F ¥H¨Ïªw®ä¨ã¦³¯Ø³J¥Õ»Ã¯À§í¨î¦]¤l©Ò´£¨Ñ¤§§ÜÂίà¤O¡C ¥»¸ÕÅç¤]«Ø¥ß¤F§¹¾ãªºªw®ä¦A¥Í»PÂà´Þ¨t²Î¡A §Q¥Î§Ü¥Í¯Àkanamycin30ppm¬°ªì¨Bªº¿z¿ï¼Ð»x(selection marker)¡A ¥Î¥H¿ï´ÞÂ૬¦¨¥\ªºªw®ä°ö´ÓÅé¡A ©Ò±o¤§¦A¥ÍªÞÅé¦A¥HPCR(polymerase chain reaction)¤ÏÀ³¡A §Ö³t½T»{Âà´Þªw®ä°ò¦]²Õ(genomic DNA)¤¤¬O§_¦³sporamin°ò¦]¤ù¬qªº´¡¤J(insertion)¡C ¸g¥ÑPCR¿z¿ï¥X¨ã¦³°T¸¹ªº´Ó®è«á¡A ¥²¶·¶i¤@¨B¸g¹L«n¤è¤ó¾¥ÂIªkÀË´ú(southern blot analysis)¡A Âø¦X¤ÏÀ³«á¦bX-ray film¤W¥i¥H¨£¨ì©úÅ㪺°T¸¹¦Ó³¥¥Í«¬¥¼Âà´Þ¤§ªw®ä¤¤«h¤£¨ã¦³¦¹¤@°T¸¹¡A ¬°¤F¸ÑÂà´Þªw®ä¬O§_¯à¶¶§Qªí²{sporamin°ò¦]ªºmRNA¡A ±Ä¥Î¥_¤è¤ó¾¥ÂIªk(northern blot)Ų©w¡A µ²ªGÅã¥ÜÂà´Þ®è¤º¤§sporamin¤ù¬q¥i¥H¶¶§Qªí²{mRNA¦bÂà¿ý¼h¦¸¤W¨ÃµL°ÝÃD¡C ¥Ñ©ó¸¶}·Å±Ð±Â¹êÅç«Ç¤w«Ø¥ß¤@§¹¾ã¤§¯Ø³J¥Õ»Ã¯À¬¡©Ê¬V¦âÀË´ú(trypsin inhibitor activity staining)¤èªk¡A ¬G¨Ì·Ó¨ä¤èªkÀË´ú±oª¾¡A Âà´Þ®èTP1, TP2, TP5, TP6¯à°÷ªí²{¨ã¦³¬¡©Ê¤§sporamin³J¥Õ½è¡A ¥B¦b¦è¤è¦¡¾¥ÂIªk¤W¤]¥i±o¨ì¬Û¦Pµ²½×¡C Åã¥ÜÂà´Þ®è¬°¤@¨ã¦³sporamin°ò¦]ªí²{ªºÃ©wÂà´Þ®è¡C ¦ý¬OTP3, TP4¥i¯à¬O¦bÂàͼh¦¸¤Wµo¥Í°ò¦]ÀRÀq(gene silencing)¡C |
Paulownia wood has been well utilized due to it¡¦s light weight, rot
resistance and free of warping. The fast growth rate of Paulownia may be
capitalized upon for agroforestry. Paulownia fortunei is readily propagated
through regeneration, transformed clonal lines could be bulked up from single
shoots transformed with interest gene. In this report, we introduce the insect resistance gene, sporamin into Paulownia fortunei under 35S promoter control. The sporamin cDNA gene was constructed in a binary vector pBI121 at BamHI site, and then transformed Paulownia fortunei mediated by Agrobacterium tumerfaciens LBA4404.We also established the regeneration system and transformation system for transgenic Paulownia. Further used to transform the different tissue of Paulownia fortunei that selected by selection medium (kanamycin 30ppm), Twelve transgenic plantlets of them were analyzed by PCR analysis and Northern blot analysis. However, sporamin protein gene expression was investigated only in TP1, TP2, TP5, TP6, transgenic lines, but not in TP3, TP4, and TP6 after Western blot and trypsin inhibitory activity staining analysis. It suggested that a gene silencing might occur at the translational level in some transformants. |
|
R87625007 | ªL«Ø¨} | 89 | 2001 | §Q¥ÎRAPD¤À¤l¼Ð»x¬ã¨s»OÆW¤s¤òõѤ§±Ú¸sÅܲ§ | Studying the Population Genetic Variation of Taiwan Beech (Fagus hayatae) by RAPD Marker. | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | »OÆW¤s¤òõÑ,³{¾÷ÂX¼W¦h§Î©ÊDNA,±Ú¸s¿ò¶ÇÅܲ§ | Fagus hayatae,RAPD,population genetic variation | »OÆW¤s¤òõÑ(Fagus hayatae Palib. ex Hayata)¬Oªk©w¬Ãµ}´Óª«¤§¤@¡A¥Ø«e»OÆW¦a°Ï¶È¦b´¡¤Ñ¤s¦ÛµM«O¯d°Ï¤Î»É¤s¦a°Ï¦³µo²{¡A¥»¹êÅç¥H³{¾÷ÂX¼W¦h§Î©ÊDNA (RAPD)¤À¤l¼Ð»x§Þ³N±´°Q±Ú¸sªºÅܲ§©Ê¡A¦b¥_´¡¤Ñ¤s¨ú¤@Ӽ˰ϡA»É¤s¦a°Ï«h¿ï¨ú¤TӼ˰ϡA¨C¼Ë°Ï³{¾÷¿ï¨ú25®è¼Ë¥»¡A¦@100®è¼Ë¥»¡A¨Ï¥Î6Ó10-merªº¤H¤u¦X¦¨³{¾÷§Ç¦C¤Þ¤l¡A¦@±o¨ì108±øÂX¼W¤ù¬q¡A¨ä¤¤98±ø(90.74%)¬°¦h§Î©Ê¤ù¬q¡A10±ø(9.26%)¬°³æ§Î©Ê¤ù¬q¡A¬Û¦ü©Ê¤ÀªRªºµ²ªGÅã¥Ü»É¤s¦a°Ïªº75®è¼Ë¥»¶¡ªº¥§¡¬Û¦ü«×¬°0.547¡A¥_´¡¤Ñ¤s±Ú¸sªº25®è¼Ë¥»¶¡«h¬°0.651¡AÅã¥Ü¨â±Ú¸s¤ºªºÅܲ§»á°ª¡CPOPGENE¤ÀªR«hÅã¥Ü¥§¡±Ú¸sÁ`Åܲ§(Ht)¬°0.1951¡A¥§¡±Ú¸s¤ºÅܲ§(Hs)¬°0.1756¡A¥§¡±Ú¸s®t²§©Ê(Gst)¬°0.1001¡A·N¿×±Ú¸s¶¡ªºÅܲ§¶È¦ûÁ`Åܲ§ªº10.01%¡A¥DnªºÅܲ§¦s¦b©ó±Ú¸s¤º³æ®è¶¡¡A±Ú¸sªº¤À¤Æ«h¤£©úÅã¡C | Taiwan beech (Fagus hayatae Palib. ex Hayata), one of the rare plants in Taiwan, can be found only in Chatienshan Nature Reserve and Tongshan area. This study attempts to study the population variation by RAPD molecular marker. Total 100 samples were collected from one plot of Peichatienshan and three plots of Tongshan (25 samples from each plots). Six arbitrary sequenced 10-mer primers were used in this study and 108 DNA fragments were recorded. Among them, 98 fragments were polymorphic (90.74%) and 10 fragments were monomorphic (9.26%). Average similarity coefficient for 75 samples of Tongshan population and 25 samples of Peichatienshan population were 0.547 and 0.651 respectively, guessing high variation within populations. POPGENE software analysis showed that averaged total population genetic diversity (Ht) was 0.1951, averaged genetic diversity within population was 0.1756, and Gst index was 0.1001, indicating that the major variation existed within population and population genetic differentiation was not significant. |
D84625005 | ªL±Ó©y | 89 | 2001 | §Q¥Î²ÓMÄa¯B°ö¾i¶i¦æ¬õÀÌÅéF»¤¾É¤Î»OÆW«ó¬f¤H¤uºØ¤l¬ã»s | Studies on somatic embryo induction from cell suspension culture of Chamaecyparis formosensis and artificial seed production of Chamaecyparis obtusa var. formosana | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ³Õ¤h | ¬õÀÌ,»OÆW«ó¬f,ÅéF,¤H¤uºØ¤l | Chamaecyparis formosensis,Chamaecyparis obtusa var. formosana,somatic embryo,artificial seed | ±N¬õÀÌ¥¼¦¨¼ôF¼½ºØ¦bWPM¡]Woody plant medium¡^×¥¿°ö¾i°ò²K¥[3mg/l 2,4-D¤Î0.5mg/l BA¡A¦b¶Â·t¤¤°ö¾i¡C¸g¹L1Ó¤ë«á¡A»¤¾É¨ì¶À¥Õ¦â¡BÀã³n¤§Â¡¦X²Õ´¶i¦æÄa¯B²ÓM°ö¾i¡A¸g¹L¥Íªø¦±½u´ú¸Õ¤Î¥ú¾ÇÅã·LÃèÆ[¹î«á¨ú±o¥Íªø³Ì©ô²±¤Î¨ã¦³ÅéF¤À¤Æ¯à¤O¤§²ÓM1g©ñ¤J§tWPM×¥¿°ö¾i²G50ml¤§250ml ¤T¨¤À@§Î²~©ñ¤j°ö¾i¡A±µµÛ¨ú 20 g¤§Äa¯B°ö¾i²ÓM¡A²¾¤J2LÅͩճq®ð¦¡¤§¥Íª«¤ÏÀ³¾¹¡A¤º§t1.2L WPM ×¥¿°ö¾i²G+ABA¤§°ö¾i²G¡C°ö¾i¤¤«ùÄò³q®ð¤ÎÅͩաA¸g¹L2Ó¤ë«á¥i±o¨ì¤ß«¬¡B³½¹p«¬´ÁÅéF¡A¦A±NÅéF¸m¤J©TÅé°ö¾i°ò«P¨Ï¨ä¦¨¼ô ¡C ¥H»¤¾É¥X»OÆW«ó¬fªÞÅé¡B¬õÀÌÅéF¬°§÷®Æ¡A±N¨ä»P3 % Sodium alginate©ñ¤Jº|¤æ¤¤§¡¤ÃÅͩաA¨Ï¨äºw¸¨©ó 25mM CaCl2.2H2O¤¤¡A1¤ÀÄÁ¤§¤º¥i»s³y¥X130Áû¥H¤W¤§¤H¤uºØ]¡A¨ä¤¤¬ù¦³60Áû¬°¦¨¥\¤§¤H¤uºØ]¡A¥t¦³¤@¥b¬°ªÅ²É¡C±N¨ä¼½ºØ¦bµLµß°ö¾i°ò¤¤¡A¨ã¦³72.6¢HµoªÞ²v¤Î59.2¢Hªºµo®Ú²v¡C¥H»OÆW«ó¬f²ô³»¡BªÞÅ鬰§÷®Æ¡A¥«°â¤§ÃĥνŦâ³z©ú½¦Ån»s§@½¦Ån«¬¤H¤uºØ¤l¡A¨äµoªÞ²v¬°53.6 %¡Aµo®Ú²v¹F25.6%¡C |
Callus tissue of Chamaecyparis
formosensis was initiated from immature embryos, which was inoculated in
solid medium ( WPM modified medium ) supplemented with 3mg/l 2,4-D and 0.5
mg/l BA, and then the cultures were incubated in the dark. After 1 month, white
and soft embryogenic tissues of C. formosensis were formed and to proceed on
suspension cell culture. An inoculure of 1g cells possesses embryogenic
patented into a 250ml flask for
culture ampification after esta blishment of cell growth curve and demonstratian
microcopically of cell optics microscope tested of vigor and somatic embryo
differentiation. Transfering a quantify of 20g cells into a 2L aerated - stirred
bioreactor, containing 1.2 L medium ( WPM ) with abscisic acid. For
initiating bioreactor application, therefore continuous good aeration as well
as agitation for Culture were aerated and agitation were used for mixing
cells. After differentiated 2 months, heart stage, and subsequent torpedo
stage somatic embryos were. For somatic-embryo maturation, the somatic
embryos were inoculated onto WPM solid medium containing after bioreactor
culture. C. obtusa var. formosana were mixed thoroughly in funnel, dripped into 25 mM calcium chloride solution, a total of 130 artificial seeds were produced in one minutes with apoportian of 60% survival, others were failure or empty. A rate of 72.6% and 59.2% of germination and rooting percentage were obtained respectively in sterile sowing conduction. The pharmaceutical capsules were used as protective materials to produce artificial seeds with the tips and buds of C. obtusa var. formosana in capsule artificial seed in capsule declined germination percentage to 53.6% and rooting percentage to 25.6% . |
¶À¤å«T | 88 | 2000 | ¥xÆWªF¥_³¡¤»ºØÁï¸¾ðºØ¾ð«a¼h¤G®ñ¤ÆºÒ©T©w¥\¯à¤§¬ã¨s | The Effects of CO2 Fixation in the Canopy of Six Broad-leaved Tree Species in Northeast Taiwan | ¤ý¨È¨k±Ð±Â | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤G®ñ¤ÆºÒ´î¶q,²b¥ú¦X§@¥Î³t²v,»]´²§@¥Î³t²v,®ð¤Õ¾É«×,¥ú¦X§@¥Î¦³®Ä¿ç®g¶q | Carbon Dioxide Absorption,Net photosynthesis rate,Transpiration rate,Stomatal Conductance rate,Photosynthetically active radiation | ºÖ¤s´Óª«¶é»P´ÏÄõªL°Ï¦ì©ó©yÄõ¿¤¹Ò¤º¡AÄÝ©ó¨È¼ö±a«À㫬®ðÔ°Ï¡A°®Àã©u¤£©úÅã¡A¥þ¦~¤£¯Ê¤ô¡C¸ÕÅç¾ðºØ¿ï¨ú¨ã¥Nªí¸Ó°Ï¤§6ºØÁï¸¾ðºØ¡A¤À¬°±`ºñ»P¸¨¸2ÃþÁ︾ð¡F±`ºñÁ︾ð4ºØ¥]¬A¼Ì¬ì¤§«p´ß®Û(Cryptocarya
chinensus)¡Bªø¸¤ìÁ¤¤l(Litsea
acuminata)»PJ®ç¬ì¤§¶À§û(Engelhardtia
roxburghiana )¡B´ß¤æ¬ì¤§¿÷¸ªø§ÀÑÜ(Castanopsis
carlesii )¡A¸¨¸Á︾ð2ºØ¥]¬A¥xÆWú@¾ð(Sassafras randaiense)»P¬U¾ð¬ì¤§¤s¬õ¬U(Diospyros morrisiana )µ¥¡C´ú©w³¥¥~´¸¤Ñ¤U¤§¸¤ù²b¥ú¦X¦¨²v¡A¨Ã¤ÀªR»P¦U¶µ¦]¤l¶¡¤§¬ÛÃö©Ê¡C¥t¥~¿ï¨ú«p´ß®Û¡Bªø¸¤ìÁ¤¤l¡B¶À§ûµ¥3ºØ1¦~¥Í¬Ö®â]¤ì¡A¦b±±¨îÀô¹Ò¤U©ó¦P¤Æ½c¤º¶i¦æ®ðÅ饿´«¯S©Ê¹ï¤£¦P¥ú«×¤§¤ÏÀ³¸ÕÅç¡C ¨Ñ¸Õ¾ðºØ¨ä²b¥ú¦X¦¨²v»P¥ú¦X§@¥Î¥ú¤l¬y¶q±K«×(PhAR )¦b´ú¸Õ·í¤é®É¤§¤éÅܤƬ۪ñ¡A6ºØ¨Ñ¸Õ¾ðºØ¤§¸¤ù¥ú¦X¦¨²v»P®ð¤Õ¾É«×¥H¿÷¸ªø§ÀÑ̤ܳj¡Cªø¸¤ìÁ¤¤l³Ì¤p¡C¦U¾ðºØ©u¸`ÅܤƥH¥ð¯v©u¸`³Ì¤p¡A¦Ó¥Íªø©u¸`®t²§©Ê¸û¤j¡C¤s¬õ¬U¡B¶À§û»Pªø¸¤ìÁ¤¤l¥ú¹¡©MÂI¥H¤s¬õ¬U¸û°ª¡]500-700 umol.m-2.s-1¡^¨ä¦¸¬O¶À§û¡]400-500 umol.m-2.s-1¡^¡Aªø¸¤ìÁ¤¤l³Ì§C¡]300-400 umol.m-2.s-1¡^¡C ¤é²b¥ú¦X§@¥Î²v¥xÆWú@¾ð»P¿÷¸ªø§ÀÑܪº¥ú¦X§@¥Î¼ç¯à¬Ûªñ¡A10¤ë¥÷±Þ¶¡¥xÆWú@¾ð8.5Ó¤p®É»P¿÷¸ªø§ÀÑÜ6.5Ó¤p®É¨C¥¤è¤½¤Ø¸±¿n¤À§O¥i¥H©T©w5.59»P5.81§JªºCO2¡C¤é»]´²¶q¥xÆWú@¾ð»P¿÷¸ªø§ÀÑÜ«h¬Ûªñ¡A10¤ë¥÷¥Õ¤Ñ¥xÆWú@¾ð8.5Ó¤p®É»P¿÷¸ªø§ÀÑÜ6.5Ó¤p®É¨C¥¤è¤½¤Ø¸±¿n¤À§O¥i»]´²487»P460§JªºH2O¡C |
This study was conducted at the
Fu-Shan plant garden and the Chilian Shan, Ilan County, both within the
subtropical regime and with high humidity year round. Six most common broad-leaved tree
species including four evergreen Crypticarya chinensus, Listsea acuminata,
Engelhardtia roxburghiana and Castanopsiscarlesii, and two deciduous
Sassafras randaiense and Diospyros morrisiana were chosen to study the carbon
dioxide absorption reaction. CI-301 photosynthesis system instrument was used to measure the net photosynthesis rate for each tree species. The relationship between transpiration rate and stomata conductance rate were analyzed monthly from September 1998 to September 1999. One year seedlings from three tree species were also selected to measure gas exchange properties to PhAR response in assimilation boxes under an environmental-controlled laboratory. Daily patterns of the net photosynthesis rate in response to PhAR were similar for all tested species. However, the net photosynthesis rates were significantly different for all tested species. The Castanopsis carlesii had the highest net photosynthesis rate, and the Listsea acuminata had the lowest. Seasonal courses of photosynthesis capacity were significantly different between all tested species. Castanopsis and Sassafras had similar photosynthesis capacity, which were 5.59 g CO2/m2 in 8.5 hours and 11.7 g CO2/m2 in 6.5 hours, respectively. The transpiration rate of these two species (487 g H2O / m2 in 8.5 hours and 460 g H2O / m2 in 6.5 hours, respectively) were not significantly different. |
|
R87625038 | ¶P¥ß¦æ | 88 | 2000 | ©yÄõ»É¤s¦a°Ï¤s¤òõѪL¤gÄ[°Êª«¤§ªì¨B¬ã¨s | Preliminary Study on Soil Animals of Fagus Forest | ¤ý¨È¨k ±Ð±Â ,«¸®aµØ ±Ð±Â | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤gÄ[°Êª«,¹ª«ºô,¤s¤òõÑ | Soil animal,food web,Fagus hayatae | ¥»¬ã¨s¥Dn±´°Q©yÄõ¿¤»É¤s¦a°Ï¤s¤òõѪL¤º¤gÄ[°Êª«ºØÃþ²Õ¦¨¤Îª«ºØ¦h¼Ë©Ê¡BÀu¶Õ±Ú¸s¼Æ¶qÅܰʤΤ£¦P©u¸`¤gÄ[°Êª«²Õ¦¨¤Î¼Æ¶q¤§²§¦P¡A¥Bªì¨B±´°Q¤gÄ[°Êª«¼Æ¶q¦b©u¸`ÅܰʤΨä¤gÄ[¦]¤l¡B·L®ðÔ¦]¤l¶¡ªºÃö«Y¡A¨Ã³q¹L¹©Ê¤ÀªR¡Aªì¨BÀÀ¥X¤gÄ[°Êª«¹ª«ºôªº¬[ºc¡C¥»¬ã¨s¼Ë°Ï³]¥ß¦b¤s¤òõѪL¤º¡A½Õ¬d®É¶¡±q¦è¤¸1999¦~5¤ë¥¿¦¡¶}©l¨ì2000¦~3¤ë¬°¤î¡A¨C2-3Ó¤ë¡]¥H©u¸`¬°³æ¦ì¡^½Õ¬d¤gÄ[°Êª«¤@¦¸¡A±ÄÀH¾÷¨ú¼Ë¤è¦¡¶i¦æ½Õ¬d¡C¦@±Ä¶°¨ì232Ӽ˥»¡A¨ä¤¤¥]¬A108Ó°®¯M¤g¼Ë¡]Tullgrenº|¤æ¶°ÂΪk¡^¡B108ÓÀã¯M¤g¼Ë¡]Baermannº|¤æ¶°ÂΪk¡^¡B¥H¤Î16Ó¤â¬D¤g¼Ë¡C¦@°O¿ý¤j¡B¤¤¤p«¬¤gÄ[°Êª«¦@2447Ó¡A¨ä¤¤¤j«¬¤gÄ[°Êª«¦@®·Àò1189°¦¡A¤¤¡B¤p«¬¤gÄ[°Êª«¦@1258°¦¡A¤ÀÄÝ3ªù7ºõ14¥Ø20¬ì¡C»É¤s¦a°Ï¤s¤òõѪL¤gÄ[°Êª«ÄÝ©ó·Å±a´ËªL¤gÄ[°Êª«Ãþ«¬¡A½Õ¬d¤gÄ[°Êª«¤§Àu¶ÕÃþ¸s¡]ÓÅ鼯¦ûÁ`Å鼯ªº10%¥H¤W¡^¥]¬A½uÂÎÃþ¡BãëúpÃþ¤ÎÂù¯ÍÃþ¡A¤À§O¦û¥þ®·¶qªº33.92%¡A13.2%¥H¤Î29.7%¡F¦Xp¦@¦ûÁ`®·¶qªº76.82%¡AÅã¥Ü½uÂÎÃþ¡BãëúpÃþ¤ÎÂù¯ÍÃþ¬°»É¤s¤s¤òõѪL¤gÄ[°Êª«¸s¸¨¤§¥Dn²Õ¦¨¡C¨ä¥L±`¨£Ãþ¸s«h¥]¬A³L°CÃþ¦û4.54%¡B¼u§ÀÃþ¦û6.38%¡BÀT¯ÍÃþ¦û3.56%¡B½¤¯ÍÃþ¦û5.72%¡A±`¨£Ãþ¸s¦@¦ûÁ`®·¶qªº20.2%¥ª¥k¡C¤gÄ[°Êª«¦b¤g¼h¤¤««ª½¤À§G¤W¥H0-10cm¤g¼h¤gÄ[°Êª«¶q»·¤j©ó10-20cm¤Î20-30cmªº¤g¼h¡A¦Ó10-20cm©M20-30cmªº¤g¼h¶¡¤gÄ[°Êª«¼Æ¶q«h¨S¦³ÅãµÛ®t²§¡C¤gÄ[°Êª«¸s¸¨¦h¼Ë©Ê¤W¤j«¬¤gÄ[°Êª«²¤°ª©ó¤¤¡B¤p«¬¤gÄ[°Êª«¡A¦ý®t¶Z·¥¤p¡C¦b¤s¤òõѪL¤¤¤gÄ[°Êª«»P®ðÔ¦]¤l¤Î¤gÄ[¦]¤lªº¬ÛÃö©Ê¤è±¡Aµo²{¤gÄ[°Êª«¼Æ¶q»P®ðÔ¦]¤l¤Î¤gÄ[¦]¤l¶¡Áö¨ã¬YºØµ{«×ªºÃö³s¡A¦ý³£¤£ÅãµÛ¡F¥Ñ©ó»É¤s¤s¤òõѼ˦a¦b¦a§Î¤ÀªR¤Wµo²{¡A¨ä¤À§G¦b°~®k¤§¤s©Y¡A¬O§_¦]¬°¦a§Î¤§½t¬G³y¦¨¬ÛÃö©Ê§Cªºµ²ªG¦³«Ý§ó²`¤J¤§¬ã¨s¡C¥»¬ã¨s¸g¥Ñ¤gÄ[°Êª«¼Æ¶q¤Î²Õ¦¨ªº½Õ¬d¤ÀªR¡A¨Ã¹ï±`¨£Ãþ¸sªº¹©Ê³q¹LÆ[¹î¤Î¤åÄm¬d¾\¡AÀÀªì¨B«Øºc¸Ó¦a°Ï¤gÄ[°Êª«¹ª«ºô¡A¥]¬A¥H¤gÄ[°Êª«¨ú¹°ò¥»¹·½½d³ò¦Ó©wªº¹ª«ºô§Y¥H¤gÄ[°Êª«¬Û¤¬Ãö«Y¬°°ò¦ªº¹ª«ºô¡C | The object of this study was
deal with the soil animal composition, diversity, quantity variation of
dominant species in the fagus forest of Tong-shan area and difference in soil
animal composition and quantity under four seasons. Through the food resources
analysis and preliminary construction food chain, in order to provide
fundamental data of material cycle and energy research in Tong-shan area, the
study sites were established in the stand of fagus. We observed the data in
each month started from May 1999 to March 2000. Total of 232 samples were
collected, including 108 dry soil animal samples, 108 wet soil animal samples
and 16 macrofauna samples(divided by hand with naked eye). Total of 2447 soil
animals were recorded including macrofauna, middlefauna and microfauna which
belongs to 3 phyla, 7 classes, 14 orders, 20 families. According to the
previous study, the soil animals in Tong-shan area belongs to the
warm-temperature rain forest soil animal type. The result shows the order of
soil animal number and group: Dominant species including Nematoda, Acarina
and Diptera. Other major species including Oligochaeta opisthopora,
Collembola, Coleoptera and Hymenoptera. In this study, the trend of verticle
distribution of soil animal number: 0-5cm > 10-20cm and 20-30cm layer, but
the 10-20cm and 20-30cm is almost the same. Soil animal diversity index of
large soil animal a few large then med.and min. soil animal. In the study,
there is shown correlation between quantitative of soil animal had some correlation
with microclimate and soil physiochemical properties, but not significant. This study recorded the soil animal group in fagus forest of Tong-shan area. In order to know practical observation and paper reviews had been done the habit of some of specific soil animal group. Through preliminary construction of soil animal food web in Tong-shan area were done, including food web range based on the food resources of soil animal and food web based on the observed interaction of the soil animal. |
R87625034 | ³¯«Ø¼ý | 88 | 2000 | ¦a²z¸ê°T¨t²Î§Þ³N©ó³yªL¦aºÞ²z¤§À³¥Î | Application of GIS Technique on the Management of Plantation Land | ¤ý¨È¨k ,ªô¬èºa | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ³yªL¦aºÞ²z,¦a²z¸ê°T¨t²Î | GIS,Plantation land,Land management | ¥»¬ã¨s¥H¦a²z¸ê°T¨t²Î¬°¤u¨ã¡A»O¤j¹êÅçªL·ËÀYÀçªL°Ï¬°¬ã¨s½d³ò¡A¥H¸Ó¦a°Ï¦UºØ¹ÏÄy¸ê®Æ¤Î³yªL¥x±b¸ê®Æ¡A±´°Q³yªL¦a¸ê®Æ®w¤§«Øºc»P³yªL¦a¬É½d³ò¬É©w¤§§Þ³N¡C¬ã¨s§@·~¤W¡A¥ý¼Æ¤Æ³yªL¦a¹Ï¦¨¼Æ¦ì¦¡¼v¹³¸ê®Æ¡A¦A°t¦X¬Û¤ù°ò¥»¹Ï¡BªL¯Z¬É¹ÏÀɱN¼Æ¦ì¦¡³yªL¦a¼v¹³Àɤ©¥H©w¦ì¡C¬ã¨s¹Lµ{¤¤µo²{¡A©w¦ì«á¤§³yªL¦a¼v¹³¹Ïºë«×¤£¨¬¡AµLªk§@¬°§PÄÀ³yªL¦aÃä¬É¤§¨Ì¾Ú¡A¦ý¥i¨Ñ§@³yªL¦a¤jP¦ì¸m¤§°Ñ¦Ò¡C¦b³yªL¦aÃä¬É¤§§PÄÀ¤W¡A¥Dn¥õ¿à¬Û¤ù°ò¥»¹Ï©Î¯èªÅ·Ó¤ù¨Ó¤§»²§UÃä¬É¤§§PÄÀ¡C¬ã¨sµ²ªGÅã¥Ü¡A¦¹ºØ§@·~¤èªk¡A¦b¥i±µ¨üºë«×½d³ò¤º¡A¨³³t¹F¦¨³yªL¦a¼Æ¦ì«ØÀɤ§¤u§@¡A¦A¶i¤@¨Bµ²¦XÄÝ©Ê¸ê®Æ¡A§Y¥i«Ø¸m¤@³yªL¦a¦a²z¸ê°T¨t²Î¸ê®Æ®w¡C ³yªL¦a¦a²z¸ê°T¸ê®Æ®w«Øºc¤§§Þ³N¡A°£¤F´£¨Ñ¸gÀçªÌ¦³¨t²ÎªºªL¦aºÞ²z¸ê°T¥~¡A¨Ã¥iµ²¦X¤g¦a±M®a¨t²Î©Î¼Ò¦¡¨t²Î¡A¥H´£¨Ñ³yªL¦a¸ê°T¡Q¹ï©ó§Q¥Î¯è·Ó¼v¹³¨Ó»²§U³yªL¦a¬É§PÄÀ¤è±¡A¥Ñµ²ªG¥iµo²{¸ÓºØ§Þ³N¤§À³¥Î¦³¬Û·í¤j¤§§U¯q¡C |
The Chitou district of Experiment Forest, National Taiwan University was selected as this study area. We collected all kinds of maps and the plantation data of this area. The Geographic Information System (GIS) technology was a tool used to combine all the data in this study. A new procedure of image registering technique was developed to integrate the plantation maps into GIS database. We scanned the plantation map into a digital image map. We registered based on the photo base map and digital compartment map. The digital plantation map was registered into the same coordinate system with the base map. After registering the plantation maps, we found that the points of transform were too rough to delineate the plantation boundary. However the registered plantation map could be used to locate assist compare approximately the position of plantation land. Finally, the photo base maps and aerial-photo were used to assist delineate the boundary of plantation. The results indicated that based on this procedure to digitize the plantation land was more precise, and accomplish the purpose speedily. |
R86625041 | ¦¨¹ç | 88 | 2000 | ¥xÆWÅK§ü¤§²Õ´°ö¾i | Tissue Culture of Tsuga chinensis var. formosana | ¤ý¨È¨k±Ð±Â | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¥xÆWÅK§ü,²Õ´°ö¾i,MS°ö¾i°ò,SH°ö¾i°ò,¤£©wªÞ,¡¦X²Õ´,BA,TDZ | Tsuga chinensis var. formosana,tissue culture,MS,SH,adventitious buds,callus,BA,TDZ | ¥»¸ÕÅç¥H»OÆWÅK§ü¡]Tsuga chinensis (Franchet) Pritz. ex Diels var. formosana (Hayata) Li ¡® Keng¡^¤§¦¨¼ôF¬°°ö´ÓÅé¶i¦æ°ö¾i¡C±N¦¨¼ôºØ¤l¥ý¥H¬y¤ô³B²z48¤p®É¡A¦A¥H70%°sºë®ûªw¨â¤ÀÄÁ¡A³Ì«á¦b5% NaOCl¤ô·»²G¡]§t¬ù1% (v/v) Tween20®iµÛ¾¯¡^¤¤¶Wµªi¾_Àú20¤ÀÄÁ¡A¥i¹F¹s¦Ã¬V²v¡C¨ú¦¨¼ôF¶i¦æ°ö¾i¡A¦b²K¥[0.1% (v/v) EM-X·»²G¤§°ö¾i°ò°ö¾i¥i¤j´T´£°ªµoªÞ²v¡C¥HMS¬°°ò¦°ö¾i°ò¦b¶Â·tªºÀô¹Ò¤U¡A²K¥[1ppm BA¤Î2ppm 2,4-D°ö¾i¡A¥iÀò±o¤j¶q²H½Å¦â¡BÃP³n¤§Â¡¦X²Õ´¡C¥HMS°ö¾i°ò¦b¥ú·ÓÀô¹Ò¤U¡A²K¥[0.1ppm TDZ°ö¾i¥i«P¶i¥®]¥Íªø¡C¥HSH°ö¾i°ò°ö¾i¡AµL½×²K¥[BA¡BTDZ©ÎBA»P2,4-D¤§²Õ¦X¡A¬Ò¥iÀò±o¤£©wªÞ¡C¦b¶Â·tªºÀô¹Ò¤U¡ABA»P2,4-D«h¥i»¤¾É¥X¥Õ¦â°íµwªºÂ¡¦X²Õ´¡C±N¨ã¤£©wªÞ¤§°ö´ÓÅé²¾©¹¤£§t¥Íªø½Õ¸`¾¯1/2 SH°ö¾i°ò¡A¥H§t¬¡©Ê¬´»P¤£§t¬¡©Ê¬´ªº°ö¾i°ò¥æ¤¬°ö¾i¡A¥i±o¤p´Ó®è¡C | Results of mature embryo culture of Tsuga chinensis (Franchet) Pritz. ex Diels var. formosana (Hayata) Li ¡® Keng were as follows: mature seeds were first treated with running water for 48 hours, then soaked in 70% ethanol solution for 2 minutes. Soaked in 5%NaOCl (supplemented with 1% (v/v) Tween 20) and treated with ultrasonic shaker for 20 minutes. The medium containing 0.1% (v/v) EM-X could promote germination ratio of mature embryos. Light brown and soft calli were induced after mature embryos were cultured on MS medium containing 1 ppm BA and 2 ppm 2,4-D under dark condition. Mature embryos grew better in MS medium containing 0.1ppm TDZ under light condition. Adventitious buds formed on SH medium containing BA or TDZ or BA with 2,4-D. Under dark condition, white and compact calli were induced in SH medium containing BA and 2,4-D. After the adventitious buds were transferred to 1/2 strength SH medium containing 0.1%(w/v) activated charcoal, and then transferred to 1/2 SH medium with out activated charcoal alternatively, adventitious buds could grow to plantlets. |
©P©É§Í | 88 | 2000 | §Q¥ÎRAPD¬ã¨s»OÆW¬õÀ̪½·F»P¤À¤e´Ó®è¶¡¿ò¶Ç¤W¤§®t²§ | Using RAPD Makers to Study the Genatic variatoin in straight and folking trees of Chamaecyparis formosensis | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¬õÀÌ,ª½·F,¤À¤e,¿ò¶ÇÅܲ§,³{¾÷ÂX¤j¦h«¬©Ê®Ö»Ä | Chamaecyparis formosensis,straight,folking,genetic variation,Random Amplified Polymorphic DNA (RAPD) | ³{¾÷ÂX¤j¦h§Î©Ê®Ö»Ä¡]Random
Amplified Polymorphic DNA, RAPD¡^¤ÀªR§Þ³N¡Aªñ¦~¨Ó¼s³QÀ³¥Î¦b¬ã¨s´Óª«ªº¿ò¶Ç¤Î¤ÀÃþ¨t²Î¤W¡A¥»¬ã¨s§Y§Q¥ÎRAPD¤§¤ÀªR±´°Q¬õÀ̪½·F»P¤À¤e´Ó®è¶¡¿ò¶Ç¤W¤§®t²§¡C¦b´ÏÄõ¡B·ËÀY¤Î¥xªF¤TÓ¬õÀ̱ڸs¤¤¦U¿ï¨úª½·F¤Î¤À¤e´Ó®è¦U20®è¼Ë¥»¡AÁ`¦@120®è¼Ë¥»¶i¦æ¤ÀªR¡A¨Ï¥Î¤F10Ó¤H³y§Ç¦Cªº¤Þ¤l¡A¦@°O¿ý¤F 131 ±øDNA¤ù¬q¡A¨ä¤¤85 ±ø¬°¦h«¬©Ê¡]64.9¢H¡^¡A¨ä¾lªº46±ø¬°³æ«¬©Ê¡]35.1¢H¡^¡C µ²ªGÅã¥Ü´ÏÄõ¦a°Ïª½·F¬õÀ̤§¥§¡¿ò¶Ç¬Û¦ü©Ê¬°0.875474¡A¤À¤e·F¬õÀ̬°0.860263¡F·ËÀY¦a°Ïª½·F¬õÀ̤§¥§¡¿ò¶Ç¬Û¦ü©Ê¬°0.829053¡A¤À¤e·F¬õÀ̬°0.788368¡F¥xªF¦a°Ïª½·F¬õÀ̤§¥§¡¿ò¶Ç¬Û¦ü©Ê¬°0.853158¡A¤À¤e·F¬õÀ̬°0.850789¡C ¦U¦a°Ï¬õÀ̪½·F»P¤À¤e´Ó®è³æ®è¤§¶¡ªº¥§¡¿ò¶Ç¬Û¦ü©Ê¡A´ÏÄõ¦a°Ï¬õÀ̬°0.817615¡A·ËÀY¦a°Ï¬õÀ̬°0.786115¡A¦Ó¥xªF¦a°Ï¬õÀ̬°0.813137¡C¦A¸g¥æ¤e¤ñ¹ï¤£¦P¦a°Ïª½·F»P¤À¤e·F¶¡ªº¥§¡¿ò¶Ç¬Û¦ü©Ê¡A´ÏÄõª½·F»P·ËÀY¤À¤e·F¶¡¬°0.799416¡A´ÏÄõª½·F»P¥xªF¤À¤e·F¶¡¬°0.822449¡A·ËÀYª½·F»P´ÏÄõ¤À¤e·F¶¡¬°0.824667¡A·ËÀYª½·F»P¥xªF¤À¤e·F¶¡¬°0.808821¡A¥xªFª½·F»P´ÏÄõ¤À¤e·F¶¡¤§¿ò¶Ç¬Û¦ü©Ê¬°0.830416¡A¦Ó¥xªFª½·F»P·ËÀY¤À¤e·F¶¡¤§¿ò¶Ç¬Û¦ü©Ê¬°0.805474¡C ´ÏÄõ¡B·ËÀY¤Î¥xªF¦a°Ï¤ºªº¥§¡¬Û¦ü©Ê¤À§O¬°0.867869,0.808711¤Î0.851974¡CÅã¥Ü¥X¥xÆW¬õÀ̤TÓ¦a°ÏµL±Ú¸s¤À¤Æ²{¶H¡C |
RAPD (Random Amplified
Polymorphic DNA) markers have recently been used to estimate genetic
variation and taxonomic relationships in plants. In this study, RAPD
analysis was performed to determinate genetic variation between straight and folking
trees of Chamaecyparis formosensis. Total 120 samples were used in this
study, including 20 straight trees and 20 folking trees from each of the
three study area (Chilan, Chitou and Taitung ). Ten arbitary sequenced
primers were used and 131 DNA fragments were recorded. Among them, 46 fragments showed monomorphism (35.1%)and 85 showed
polymorphism(64.9%). Average similarity coefficient for straight and folking trees in Chilan were 0.875474 and 0.860263 respectively. Average similarity coefficient for straight and folking trees in Chitou were 0.829053 and 0.788368 respectively .For the Taitung area, average similarity coefficient for straight and folking trees of Chamaecyparis formosensis were 0.853158 and 0.850789 respectively. The Average similarity coefficient of Chamaecyparis within Chilan, Chitou and Taitung were 0.817615, 0.786115 and 0.813137 respectively. By comparing the average similarity coefficient of straight and folking trees of Chamaecyparis formosensis between different area, the average similarity coefficient between straight trees in Chilan and folking trees in Chitou was 0.799416. The average similarity coefficient between straight trees in Chilan and folking trees in Taitung was 0.822449 and the average similarity coefficient between straight trees in Chitou and folking trees in Chilan was 0.824667. The average similarity coefficient between straight trees in Chitou and folking trees in Taitung was 0.808821. The average similarity coefficient between straight trees in Taitung and folking trees in Chilan was 0.830416 and the average similarity coefficient between straight trees in Taitung and folking trees in Chitou was 0.805747. Average similarity coefficient for Chilan, Chitou and Taitung area were 0.867869, 0.808711 and 0.851974 respectively. These results suggested that Chamaecyparis formosensis in these three area were not differentiated significantly. |
|
D83605003 | ¸â©ú¾± | 87 | 0 | ¶ð¶ð®a¦a¦a°Ï¤ÑµM¥Í¥xÆW¶³§ü¾ð¤ì®ðԾǤ§¬ã¨s | Dendroclimatological Study on the Natural Taiwan Spruce (Picea morrisonicola) in Ta-Ta-Chia Area of Central Taiwan | «¸®aµØ ,¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ³Õ¤h | ¥xÆW¶³§ü,¾ð½ü,³nX-®g½u·L±K«×pªk,¾ð¤ì®ðÔ¾Ç,¤ÏÀ³¨ç¼Æ,¬ÛÃö¨ç¼Æ,»ä· | Picea morrisonicola,Tree-ring,Soft x-ray micro-densitometry,Dendroclimatology,Response function,Correlation function,Typhoon | ¥»¬ã¨s±q¥xÆW¶³§ü¾ð½ü¡A·LÆ[¸Ñåºc³y»P§Î¦¨¼h²ÓM¶}©l¤Àµõ¤§®É§ÇµÛ¤â¡A«Ø¥ß¥xÆW¶³§ü¾ð¤ì®ðԾǬã¨s¤§°ò¦¡F¥xÆW¶³§ü§Î¦¨¼h²ÓM¤Àµõ¬¡°Ê¶}©l®É§Ç¤§Æ[¹î¡A±oª¾1999¦~5¤ë5¤é±Ä¶°¤§¾ð¿¶§Î¦¨¼h¤w¶}©l¤Àµõ¡C ¶ð¶ð¥[¦a°Ï¤§¥xÆW¶³§ü¥ß¤ì¥H³nX-®g½u·L±K«×pªk¡A¨M©w¦±ß§÷±K«×ªº¹Ò¬É¬°560 Kg/m3 ³z¹L¾ð½ü¸ÑªRµ{¦¡¤ÀªR¾ð¿¶Àò±o8Ó¾ð½ü¯S¼xÈ¡A«Ø¥ßº§å§¹¾ã¤§¾ð½ü8Ó¯S¼xȦ~ªí(224-250)¸ê®Æ®w¡C ³z¹L¾ð¤ì®ðԾǬã¨sªk¡A±oª¾¾ð½ü¼e«×¯S¼xÈ¥Dn¤Ï¬M¥X¥Íªø©u¸`¶}©l¤§¬K©u·Å«×»P¬î©u·Å«×¡A¤Î®L©u»P¬î©u°«B¶q¡F¤£¦P®ü©Þ¤§¾ð½ü±K«×¯S¼xÈ¡A¹ï©ó¤£¦P¤ë¥÷°«B¶q¦b««ª½®ü©Þ±è«×¤WÀô¹Ò¤§ÅܤÆ(1800m-2600m)¤ÏÀ³¨Ã¨S¦³¯S§O©úÅ㪺³W«ßÅܤơA¦Ó¾ð½ü±K«×¯S¼xȹï©ó¦P¤@¤ë¥÷°«B¶q¦b¤£¦P®ü©Þ¤§¤ÏÀ³¨ã¦³Ãþ¦üªºµ²ªG¡C¾ð½ü±K«×¦~ªí¨ü¤ë¥÷¥§¡·Å«×ªº¼vÅT¸û¤j¡A¦Ó¨ü¤ë¥÷°«B¶q¼vÅT¸û¤p©ÎªÌ§e²{t¬ÛÃö¡C ¥Í¨|¦a¹L¥h245¦~ªº¥§¡·Å«×¡A¦U®É´Á·Å«×ªºÅܰÊ1835-1840¦~·Å«×°¾§N¡F1845-1850¦~·Å«×¤S¦³¦^·xªºÁͶաF1850-1870¦~¬°¥Ã´Á·Å«×ÅܤƤ£¤j¡F1870-1890¦~·Å«×°¾§C¡F1890-1930¦~¬°¥Ã´Á¡F1930-1950¦~·Å«×¤S°¾§C¡F1950¦~¥H«á·Å«×¦³³vº¥¤W¤ÉªºÁͶաC¥Í¨|¦a¹L¥h245¦~ªº®L©u»P¬î©u°«B¶qªºÅܰʡA19»P20¥@¬öªì¦³¸û°¾°®ªºÁͶաA1940¦~¥H«á¨£Âର°¾Àã¡A1990¦~¥H«áÂର°¾°®ªºÁͶաC ¤ÀªR¤£¦P®ü©Þ¡A»ä·¸g¹L¥Í¨|¦a¤§26¦~ªº¾ð½ü¼e«×«ü¼Æ¹ê»ÚÈ»P¹w´úȤ§¬ÛÃö«Y¼Æ¡Aµo²{¬ÛÃö©Ê«Y¼Æ°§C¦Ü(0.50-0.55)¡A»ä·¥¼¸g¹L¥Í¨|¦a¤§16¦~¾ð½ü¼e«×«ü¼Æ¹ê»ÚÈ»P¹w´úȤ§¬ÛÃö«Y¼Æ(0.81-085)¡C»ä·¦]¤lªº¤zÂZ®ÄÀ³¡A°§C¥¿±`®ðÔ¦]¤l¤§ÀÀ¦X«×¡C |
The purpose of this study was
to establish an information the fundamental dendroclimatology of Taiwan
spruce distrbuted in the Ta-Ta-Chia area of central Taiwan. Firstly , micro anatomical structure
of cambium division activities of wood was observed. According to the sampls taken on May
5th,1999, cambium has begun to divide. Secondly, Taiwan spruce density boundary of early-wood and late-wood was 560 kg/m3 determined by soft x-ray micro-densitometry method. Chronology of eight tree-ring characteristics chronology was established from cores analyzed by tree-ring analysis program. According to dendroclimatological results indicated that tree-ring width parameters responded to spring temperatures, fall temperature, summer precipitation, and fall precipitation of current growth season. However, tree-ring density parameters responded to summer temperature of current growth season and weak correlation or negative correlation show to the precipitation. The tree-ring density parameters of different elevation areas did not respond to precipitation of different month significantly, that is , the elevation gradient had no significant relationship to the change of environment; so did the parameters to monthly precipitation. The results also shown that tree-ring density was significantly affected by monthly temperature more than that of monthly precipitation. In the past 245 years, reconstructed average temperature of the site shown that it was cool during 1835-1840 and change to warm during 1845-1850. During 1850-1870 and 1890-1930, the temperature was stable, but during it was cool during 1810-1890 and 1930-1950. Then, temperature increased after 1950. Meanwhile, the change of summer and autumn precipitation were short at the beginning of 19th and 20th centuries, then it turn to humid after 1940. However, it decreased again after 1990. In analysis of the correlation coefficients between actual indices and predicted indices of tree-ring width in different elevation area, the correlation coefficients (0.50-0.55) of the tree-ring indices affected by typhoon of 26 years was lower than those (0.81-085) without typhoon affect of 16 years. The results indicated that the disturbance of typhoon would reduce the fixation of regular climatic factors. |
D82605002 | §õÂí¦t | 87 | 0 | Äõ¶§·Ë¬y°ì¤£¦P®ü©Þ«CèòR¿ò¶ÇÅܲ§¤§¬ã¨s | Studies on the Genetic Variation of Cyclobalanopsis glauca from Different Elevations in the Lan-Yang Hsi Catchment Area | «¸®aµØ ,¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ³Õ¤h | ¿ò¶ÇÅܲ§,«CèòR,¦P¦ì»Ã¯À,²§¥æ¤ñ²v,¯ä®ñ,¤G®ñ¤Æ²¸,¨H°³t²v | genetic diversity .Cyclobalanopsis glauca .isozyme,outcrossing rate.ozone.sulfur dioxide,deposition velocity | ¥»¸ÕÅç§Q¥ÎÄõ¶§·Ë¬y°ì«CèòR¤Ó¤£¦P®ü©Þ29Ó®a¨t290®è¤T¦~¥Í]¤ì,¨Ã¤À¤»Ó®ü©Þ±Ä¶°89®è³¥¥~¥À¾ð´ú©w±Ú¸s¤º¿ò¶Çª[²§«×¤Î±Ú¸s¶¡¿ò¶Ç¤À¤Æ¡C§Q¥Î9ºØ»Ã¯À11Ó°ò¦]®y, ¨ä¤¤¦³5 Ó°ò¦]®y¬°¦h§Î©Ê,¶i¦æ¬ã¨s¡C«á¸Ç]¤ì¦h§Î©Ê°ò¦]®y¤ñ²v½d³ò¥Ñ36.36¢H∼45.45¢H,¥§¡43.63¢H¡C¨CÓÅé²§µ²¦X©Ê°ò¦]®y¦Ê¤À¤ñ½d³ò¥Ñ 10.9¢M∼ 17.6¢M,¥§¡16.0¢M¡C¨C°ò¦]®yµ¥¦ì°ò¦]¥§¡¼Æ¥Ø½d³ò¥Ñ 1.45-1.55,¥§¡1.51¡C¨C°ò¦]®yµ¥¦ì°ò¦]¦³®Ä¼Æ¥Ø½d³ò¥Ñ1.13~1.23 ,¥§¡1.19¡C¥§¡²§µ²¦X©Ê´Á±æÈ½d³ò±q0.115¨ì0.190¡A¥§¡0.177¡C³¥¥~¥À¾ð¦h§Î©Ê°ò¦]®y¤ñ²v½d³ò¥Ñ36.36¢H∼45.45¢H,¥§¡43.94¢M¡C¨CÓÅé²§µ²¦X©Ê°ò¦]®y¦Ê¤À¤ñ½d³ò¥Ñ 10.3¢M∼ 15.9¢M,¥§¡12.7¡C¨C°ò¦]®yµ¥¦ì°ò¦]¥§¡¼Æ¥Ø½d³ò¥Ñ 1.36-1.55,¥§¡1.47¡C¨C°ò¦]®yµ¥¦ì°ò¦]¦³®Ä¼Æ¥Ø½d³ò¥Ñ1.15~1.22,¥§¡1.19¡C¥§¡²§µ²¦X©Ê´Á±æÈ½d³ò±q0.131¨ì0.182¡A¥§¡0.167¡C¥H¤W¼ÆÈ»P¨ä¥Lªø¹Ø©R¦h¦~¥Í¤ì¥»´Óª«¬Û¤ñ«CèòR¦³¸û°ªªºÈ¡C ¥H F-statistics ¤Î°ò¦]ª[²§«×¤ÀªR, ±Ú¸s¶¡¤Î±Ú¸s¤º¿ò¶ÇÅܲ§¤À°t¤ñ²v, µ²ªGµo²{±Ú¸s¤ºªºÅܲ§¶q¥eÁ`Åܲ§¶q92%, ±Ú¸s¶¡¥u¥e8%¡C³oÓµ²ªGÅã¥Ü«CèòR¤£¦P®ü©Þ¤ÑµM±Ú¸s¯Ê¥F¦¸µ²ºcªº¤À¤Æ, ¨äì¦]¥i¯à¬°¤£¦P®ü©Þ±Ú¸s¶¡°ò¦]¬yÂà¯Ê¥F¦³®Ä»Ù½ª©ÒP¡C¥§¡³æ°ò¦]®y²§¥æ¤ñ²v¬°0.743,¦h°ò¦]®y²§¥æ¤ñ²v¬°0.956¡C«CèòRÄݰª²§¥æ¤ñ²v¤§¾ðºØ¡C «CèòR¥~³¡§ÎºA©Êª¬¦b®ü©Þ¶¡¤Î¥À¾ð¶¡¬Ò§e·¥ÅãµÛ®t²§¦Ó¦P¦ì»Ã¯À¬ã¨sµ²ªG«CèòR±Ú¸s¶¡Åܲ§¶q¥u¦ûÁ`Åܲ§¶qªº8.5¢M¡AÅã¥Ü§ÎºA»P¦P¦ì»Ã¯À¬ã¨sµ²ªG¨Ã¤£¤@P¡C¦U®ü©Þ¯ä®ñÁ`¥§¡§l¦¬³t²v¬°6.46¡]n mole/m2s¡^¡BÁ`¥§¡¨H°³t²v¬°0.79¡]mm/s¡^¡BÁ`¥§¡¯Ó·l²v¬°5.76¢M¡C¯ä®ñ§l¦¬³t²v¡B¨H°³t²v¡B¯Ó·l²v¸gÅܲ§¼Æ¤ÀªRµ²ªG¡A®ü©Þ¶¡¤Î¥À¾ð¶¡®t²§§¡·¥ÅãµÛ¡C¦U®ü©Þ¤G®ñ¤Æ²¸Á`¥§¡§l¦¬³t²v¬°12.10¡]n mole/m2s¡^¡BÁ`¥§¡¨H°³t²v¬°1.48¡]mm/s¡^¡BÁ`¥§¡¯Ó·l²v¬°10.34¢M¡C¤G®ñ¤Æ²¸§l¦¬³t²v¡B¨H°³t²v¸gÅܲ§¼Æ¤ÀªRµ²ªG¡A®ü©Þ¶¡®t²§¤£ÅãµÛ¡A¥À¾ð¶¡®t²§ÅãµÛ¡A¯Ó·l²v¸gÅܲ§¼Æ¤ÀªRµ²ªG¡A®ü©Þ¶¡®t²§·¥ÅãµÛ¡A¥À¾ð¶¡®t²§ÅãµÛ¡C¦U»Ã¯À¤£¦P°ò¦]«¬¯ä®ñ¤Î¤G®ñ¤Æ²¸¨H°³t²v¥§¡È¡A¸gÅܲ§¼Æ¤ÀªRµ²ªG¡A®t²§¬Ò¤£ÅãµÛ¡CÅã¥Ü¤£¦P»Ã¯À°ò¦]®y»P¯ä®ñ¤Î¤G®ñ¤Æ²¸¨H°³t²v¤§¶¡¨ÃµL¬ÛÃö¡C ¦U©Êª¬»P¯ä®ñ¤Î¤G®ñ¤Æ²¸¤§§l¦¬³t²v¡B¨H°³t²v¡B¯Ó·l²v¶¡¡A°£ºØ¤lµoªÞ²v»P¤G®ñ¤Æ²¸¤§¯Ó·l²v¤£¨ã¬ÛÃö¥~¡A¨ä¾l©Êª¬§¡»P¯ä®ñ¤Î¤G®ñ¤Æ²¸¤§§l¦¬³t²v¡B¨H°³t²v¡B¯Ó·l²v¶¡¨ã¦³¬ÛÃö©Ê¡C |
Genetic diversity within and
genetic differentiation among five different elevation populations of
Cyclobalanopsis glauca in Lan-Yang Hsi catchment area were investigated using
290 three-year old progenies belonging to 29 families and 89 mother trees in six
elevation populations. Five out of the 11 loci examined were polymorphic in 9
enzyme systems. In progeny, the average proportion of polymorphic loci per
population was 43.63% ranging from 36.36¢Mto 45.45¢M. In average, the percent
heterozygosity per individual ranged from 10.9¢Mto 17.6¢Mand averaged 16.0¢M,
the number of alleles per locus ranged from 1.45 to 1.55 and averaged 1.51,
and the effective number of alleles per locus from 1.13 to 1.23 and averaged
1.19,mean expected heterozygosity ranged from 0.115 to 0.190 and average
0.177 in progeny. In mother tree, the average proportion of polymorphic loci
per population was 43.94% ranging from 36.36¢Mto 45.45¢M. In average, the
percent heterozygosity per individual ranged from 10.3¢Mto 15.9¢Mand averaged
12.7¢M, the number of alleles per locus ranged from 1.36 to 1.55 and averaged
1.47, and the effective number of alleles per locus ranged from 1.15 to 1.22
and averaged 1.19,mean expected heterozygosity ranged from 0.131 to 0.182 and
averaged 0.167 in progeny. Compared with long-lived perennial woody plants
probably Cyclobalanopsis glauca reflects high degree of genetic
variation. Partitioning the genetic variability into within- and among- population components with F-statistics and gene diversity analysis led to an estimate of within- population variation amounting to 92% of the total variation ,only about 8¢Mof the total genetic diversity existed among population. These suggested a lack of barriers to gene flow among different elevation populations.The average single locus outcrossing rate and multilocus outcrossing rate was 0.743 and 0.956.These results showed relatively high outcrossing rate in Cyclobalanopsis glauca As to morphological character, there were highly significant difference among the elevation and mother tree. There were no consistency agreement in the result of morphological and isozyme variation. The average of flux density ,deposition velocity and depletion rate were 6.46¡]n mole/m2s¡^¡A0.79mm/s¡A5.76¢Min different elevation fumigated with ozone. There were highly significant differences among the elevation and mother tree in three parameters. The average of flux density ,deposition velocity and depletion rate were 12.10¡]n mole/m2s¡^¡A1.48mm/s¡A10.34¢Mby sulfur dioxide fumigation. There were significant differences among the elevations and mother trees in flux density , deposition velocity. But, there was no significant difference among the elevations and significant difference among the mother trees in depletion rate. There was no significant difference among ozone and sulfur dioxide deposition velocity with respect to different enzyme patterns. There were high correlation between ozone and sulfur dioxide flux density , deposition velocity and depletion rate with morphological character except germinative percentage. |
R86625035 | ²ø«T¶h | 87 | 0 | ¶ð¶ð¥[¦a°Ï¤gÄ[°Êª«¤§ªì¨B¬ã¨s | Preliminary Study on Soil Animals of Ta Ta-Chia Area | «¸®aµØ ,¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¤gÄ[°Êª«,Àô¹Ò¦]¤l,¹ª«ºô,¶ð¶ð¥[ | soil animals,environment factor,food chain,Ta Ta-chia | ¥»¬ã¨s¥Dn±´°Q¶ð¶ð¥[¦a°Ï¥DnªL¬Û¤¤¤gÄ[°Êª«ªººØÃþ²Õ¦¨¤Îª«ºØ¦h¼Ë©Ê¡BÀu¶ÕºØ¸sªº¼Æ¶qÅܰʤΤ£¦PªL«¬¤U¤gÄ[°Êª«ªº²Õ¦¨¤Î¼Æ¶q²§¦P¡A¥Bªì¨B±´°Q¤gÄ[°Êª«¼Æ¶q¦b12Ӥ뤤ÅܤƤΨä»P¤gÄ[¦]¤l¡B·L®ðÔ¦]¤l¶¡ªºÃö«Y¡A¨Ã³q¹L¹©Ê¤ÀªR¡Aªì¨BÀÀ©w¨ä¹ª«ºôµ²ºc¡C¼Ë°Ï³]¥ß¬°¡GÅK§üªL°Ï¡B¥É¤s½b¦Ë°Ï¡B¯óì°Ï¡C¥»¬ã¨s¨CÓ¤ë½Õ¬d¤@¦¸±q1998¦~3¤ë¥¿¦¡¶}©l¦Ü1999¦~2¤ë©w´Á±Ä¼Ë½Õ¬d¡A¦@±Ä¶°546¼Ë¥»¼Æ¡A¥]¬A216Ó°®¯M¤g¼Ë¡B216ӷïM¤g¼Ë¤Î24Ó¤â¬D¤g¼Ë¡C¦@°O¿ý¤j¡B¤¤¡B¤p«¬¤gÄ[°Êª«2860Ó¡A¤ÀÄÝ©ó3ªù7ºõ20¥Ø34¬ì¡C¾Ú¤w¦³¸ê®Æ¤ÀªR¶ð¶ð¥[¦a°Ï¤gÄ[°Êª«¸s¸¨¤§©Ê½èÄݩ󰪤s°w¸ªL¤gÄ[°Êª«Ãþ«¬¡CªL¬Û¤¤¤gÄ[°Êª«¼Æ¶q¤ÎÃþ¸s¼Æ¥HÅK§üªL¬°³Ì¦h¡A¨ä¦¸¬°½b¦ËªL¤Î¯óì¡CÀu¶ÕÃþ¸s¤WÅK§üªL¬°¸õÂÎÃþ¡B¥É¤s½b¦ËªL¬°½u°CÃþ¡A¯óìµL©úÅ㤧Àu¶ÕÃþ¸s¡C¤gÄ[°Êª«««ª½¤À§G¬°¤gÄ[0-5 cm¼hªº¼Æ¶q»·¤j©ó5-10 cm¼h¤Î10-15 cm¼h¡A¦Ó5-10 cm¼h¤Î10-15 cm¼h¤§¶¡µLÅãµÛ®t²§¡C¤gÄ[°Êª«¸s¸¨¦h¼Ë©Ê(Diversity)«ü¼Æ¥H¯ó쬰³Ì°ª¡A¨ä¦¸¬°ÅK§üªL¡B½b¦ËªL¡A¥X²{³oºØ²{¶Hªºì¦]¬OÅK§üªL¤Î½b¦ËªL¦³ÅãµÛÀu¶ÕÃþ¸s¡A¦Ó¯ó쪺Àu¶ÕÃþ¸s¤£©úÅã¡C¦b©Ò½Õ¬d¤TӼ˰϶¡ªº·L®ðÔ¦]¤l¤¤µL©úÅ㪺®t²§¡A¬GµLªk»¡©ú·L®ðÔ¦]¤l¬O³y¦¨¤TӼ˰϶¡¤gÄ[°Êª«ªº®t²§¡F¦ý¦UªL¬Û¤¤ÅK§üªL¤gÄ[°Êª«¼Æ¶qÅܤƻP®ð·Å³Ì¤pȧe¬ÛÃö©Ê¡F¥É¤s½b¦ËªL¤º¤gÄ[°Êª«¼Æ¶qÅܤƻP®ð·Å¤¤³Ì¤jÈ¡B¤ë§¡È¤Î³Ì§CÈ¡F¬Û¹ïÀã«×³Ì§CȤΤgÄ[ªí¼h·Å«×³Ì°ªÈ¤]¨ã¬ÛÃö©Ê¡CÅK§üªL¤Î¥É¤s½b¦ËªLªºÀu¶ÕÃþ¸s»P¨ä¤gÄ[§t¤ô²v¡B¦³¾÷½è¡B¹[¡B¶t¡BÁâ¶¡¬ÛÃö©ÊÅãµÛ¡F¯óì°Ï¤gÄ[§t¤ô²v¤Î¦³¾÷½è¶q¬Ò¸û§C¡A¥B¤gÄ[®e«¸û¤j¡A©Ò¥H¦¹Àô¹Ò¤U¤gÄ[°Êª«¼Æ¶q¬Ò¤Ö©ó¥t¥~¨â¼Ë°Ï¡C¥»¬ã¨s´x´¤¸Ó¦a°Ï¤TºØ´Óª«¬Û¤U¤gÄ[°Êª«²Õ¦¨Ãþ¸s¡A¹ï±`¨£Ãþ¸sªº¹©Ê³q¹L¹ê»ÚÆ[¹î¤Î¤åÄm¬d¾\¡AÀÀªì¨Bºc«Ø¸Ó¦a°Ï¤gÄ[°Êª«¹ª«ºô¡A¥]¬A¥H¤gÄ[°Êª«¨ú¹°ò¥»¹·½½d³ò¦Ó©wªº¹ª«ºô¤Î¤gÄ[°Êª«¬Û¤¬Ãö«Y¬°°ò¦ªº¹ª«ºô¡C | This object of this study was
deal with the soil animal composition, diversity, quantity variation of
dominant in the main forest type of Ta-Ta Chia district and difference in
soil animal composition and quantity under different forest type. Through the
food resources analysis and preliminary construct food chain, in order to
provide fundamental data of material cycle and energy research in Ta-Ta Chia
district forest ecosystem, the study sites were established in the stand of
Tsuga, Yushania-cane and grassland. we observed the data in each month
started from March 1998 to february 1999.Total of 546 samples were collected,
including 216 dry soil animals, 216 wet soil animals and 24
macrofauna(divided by hand with naked eyes). Total of 2860 soil animals were
recorded including macrofauna,middlefauna and microfauna which belongs to 3
phyla, 7 classes, 20 orders, 34 families. According to the previous study,
the soil animals in Ta-Ta-Chia belongs to the Alpine coniferous soil animal
type. The results shows the order of the soil animal number and group: Tsuga
forest>Yushania-cane forest >Grassland.Collembola is the dominant in
Tsuga forest. Enchytraeidae is the dominant in Yushania-cane forest and there
was no obvious dominant in the Grassland. In this study, the trend of
verticle distribution of soil animals number: 0-5 cm>5-10 cm >10-15 cm
layer, and there was no obvious difference between 5-10 cm and 10-15 cm
layer. Soil animal diversity index are Grassland> Tsuga
forest>Yushania-cane forest because there were obvious dominant in the
Tsuga and Yushania-cane forest , but no obvious dominant in the
Grassland. There is no obvious difference in the the microclimate between the three investigated sites, thus we can not prove that the microclimate is the cause of the difference in soil animal between the three sites; however, within the three sites, there is shown correlation between quantitative of soil animals in Tsuga forest and minimum air temperature, correlation with quantitative of soil animals in Yushania-cane forest and maximum, mean,minimum of air temperature and minimum relative humidity and maximum soil surface temperature. Dominant groups in Tsuga forest and Yushania-cane forest are significant correlation with moisture, organic matter,K,Ca and Mg. The soil animals amount in Grassland are less than other two plots,because the less moisture and organic matter. This study recorded the soil animal groups in these three forest type of Ta-Ta Chia. In order to know practical observation and paper reviews had been done the habit of some of the specific soil animal groups. Through preliminary construction of soil animal food web in Ta-Ta Chia, including food chain range based on the food resources of soil animal and food chain based on the observed interaction of the soil animal. |
R85625022 | §º¬³½÷ | 87 | 0 | ¶ð¶ð¥[¦a°Ï¥xÆW¤G¸ªQ³yªL¦aªº®Ú°é»P¥»Åé¤gÄ[¤§²z¤Æ©Ê½è»Pª÷ÄݧκA¤À§G | Physico-Chemical Properties and Metal Speciations of Rhizosphere and Bulk Soil of Taiwan Red Pine in Ta-Ta-Chia Area | «¸®aµØ±Ð±Â ,¤ý¨È¨k±Ð±Â | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ®Ú°é,ª÷ÄݧκA¤À§G,¶ð¶ð¥[,¥xÆW¤G¸ªQ | Rhizosphere,Metal Speciations,Ta-Ta-Chia,Taiwan Red Pine | ¥»¬ã¨s¥H¶ð¶ð¥[¦a°Ï¥xÆW¤G¸ªQ§@¬°¸ÕÅç¹ï¶H¡A§Æ±æ¦b´ËªL¾Çªº¬ã¨s½d³ò¤º¶i¦æ¥»°Ï´Ó¥Í¤Î¤gÄ[²z¤Æ©Ê½èªº¤ÀªR½Õ¬d¡C¥t¤Þ¥Î¦b¤gÄ[¾Ç½d³òªº¤ÀªR¤èªk¤ñ¸û¥xÆW¤G¸ªQ®Ú°é»P¥»Åé¤gÄ[ªº°ò¥»²z¤Æ©Ê½è¤Î±Ä¥Î³sÄò©â¨úªk¡]multiple-step extraction¡^¡A¹ï®Ú°é¤gÄ[»P¥»Åé¤gÄ[¤¤ª÷ÄÝÂ÷¤l»P¤gÄ[½¦Å骺Áäµ²¡A°µ¤£¦P§ÎºAªº¹º¤À¤Î¤ÀªR¨ä¶qªº®t²§¡C ¬ã¨sµ²ªGÅã¥Ü¥»°Ï´Ó¥Í¥H¥xÆW¤G¸ªQ¬°¥Dn¾ðºØ¡F¦Ó¥»°Ï¤gÄ[¬°Öß½èÄ[¤g¡AÄݱj»Ä©Ê¤gÄ[¡F¤gÄ[§t¤ô²v¡B¦³¾÷½è¤Î¥æ´«©Ê¹[¶tÁâ¦b¤£¦P¤gÄ[²`«×¶¡¬Ò¦³ÅãµÛ®t²§¡A¦ý¦³®ÄÁC§t¶q«hµLÅãµÛ®t²§¡C¦b¥xÆW¤G¸ªQ®Ú°é»P¥»Åé¤gÄ[ªº°ò¥»²z¤Æ©Ê½è¬ã¨sµ²ªGÅã¥Ü¡A®Ú°é¤gÄ[ªº¯S©Ê¦p¤U¡GpH¸û§C¡A¦Ó¥æ´«©Ê¹[¶tÁâ¸û°ª¡F¦b®Ú°é»P¥»Åé¤gÄ[ª÷ÄݧκA¤À§G¤¤¾T¤À§G©ó¦³¾÷ª«Áäµ²¤Î´Ý¯dª«©~°ª¡FÅK¤À§G©ó»Pª÷ÄÝ©M¦³¾÷½è§Î¦¨ªº½Æ¦Xª«Áäµ²¤Î»Pµ²´¹©ÊÅK®ñ¤Æª«Ãìµ²¡F»É¤À§G©ó»P©öÁÙìª÷ÄÝ®ñ¤Æª«Ãìµ²¤Î»PµL©w§ÎÄq½è½¦ÅéÃìµ²³Ì¦h¡F¦Ó¾N»P¿ø¤j¦h¤À§G©ó´Ý¯dª«¤¤¡CµM¦Ó¡A¾T¡BÅK¡B»É¡B¾N¡B¿ø¤Ó¤¸¯À¦b´Ý¯dª«§ÎºA¤ñ¨Ò¬Ò«Ü°ª¡C |
The rhizosphere of Taiwan red pine in the Ta-Ta-Chia area were
selected for this study. The vegetation and physico-chemical properties of
soil in the site were studied. The rhizosphere and bulk soils were studied
for their physico-chemical properties. The mutiple-step extraction method for
the rhizosphere and bulk soils show the metal-bound fractions and evaluate
their differences. Taiwan red pine is major species in this sites. Soil texture is clay loam and strong acid soil in this site. The moisture, organic matter and exchange cations were significantly difference with the depth, but the available phosphate showed no significantly difference. The pH values of rhizosphere soils were lower than the bulk soils, however its exchange cations are greater than bulk soils. The Al distribution of metal fractionations indicate that organic-bound and residual fractions are major species. The Fe fractions indicate that metal-organic complex-bound and crystalline Fe oxide-bound are major species. The Cu species indicate that easily reducible metal oxide-bound and amorphous mineral colloid-bound are the major species. The residual fractions of Zn and Mn are the major species. |
R84625027 | ³¹¤Í¸© | 86 | 0 | «CèòR¤§²Õ´°ö¾i | Tissue Culture of Cyclobalanopsis glauca Thunb | ¤ý¨È¨k ,«¸®aµØ | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | ²Õ´°ö¾i,«CèòR | Tissue Culture,Cyclobalanopsis glauca | ¥»½×¤å¤D¥H«CèòR (Cyclobalanopsis glauca Thunb) ¤§¥¼¦¨¼ôF¬°°ö´ÓÅé¡A¸m¤J§t1 ppm NAA »P0.5 ppm BAªºMS°ö¾i°ò¤¤¡A¥i»¤¾É¥XµLµß]¡C ¤À§O¥H¥¼¦¨¼ôF¤ÎµLµß]¤§F¶b¡B¤l¸¬°°ö´ÓÅ黤¾É¡¦X²Õ´µ²ªG¡G ¥¼¦¨¼ôF¡BF¶b¦bMS²K¥[1ppm ¤§NAA¡A¤l¸¦bMS²K¥[0.5 ppm 2,4-D®ÄªG³Ì¨Î¡A¦Ó¤TºØ°ö´ÓÅ餤¡A¥H¥¼¦¨¼ôF»¤¾É¥XªºÂ¡¦X²Õ´³Ì¦h¡C·í´Óª«¥Íªø½Õ¸`¾¯¤£¦P¡A»¤¾É¥XªºÂ¡¦X²Õ´§ÎºA¤]¤£¦P¡A¨ä¤¤¥H 2,4-D»¤¾É¥XF©Ê¡¦X²Õ´¡A¥i§@¬°Äa¯B°ö¾iªº§÷®Æ¡C¥t¥H¥¼¦¨¼ôF¡BF¶b¡B¤l¸¶i¦æÅéFªº»¤¾É¡Aµ²ªG¡G¥HF¶b¤Î¤l¸»¤¾É¥XªºÅéF¼Æ¶q¤£¦h¡A¥B³¡¥÷·|§Î¦¨Â¡¦X²Õ´¡A¥¼¦¨¼ôF¶i¦æÅé F»¤¾É®ÄªG³Ì¨Î¡C¦bª½±µÅéF»¤¾É¤W¡A³Ì¾A¦X«CèòRªºauxin»Pcytokininªº²Õ¦X¬°¨Ï¥Î0.5 ppm NAA »P0.5 ppm TDZ¡A¨ä»¤¾ÉªºÅéF½è»P¶q§¡¨Î¡C«P¶iÅéF¦¨¼ô®É¡A¥[¤J0.5©Î1 ppm ABA¡A¥i¨ÏÅéF¥¿±`µo¨|¡C |
Immature embryos of
Cyclobalanopsis glauca Thunb were used as explants in this experiment. They
were transferred into MS medium supplemented with 1 ppm NAA and 0.5 ppm BA,
and highest germination rate were obtained; accordingly in vitro seedling
material were established successfully. Callus were induced from immature embryos, cotyledon and hypocotyl of in vitro seedlings respectively. Optinum medium of plant growth regulators used for callus induction of immature embryos and hypocotyl was MS medium with 1 ppm NAA, and of cotyledon was MS medium with 0.5 ppm 2,4-D. Among these three explants, immature embryos could be induced largest among of callus. Phenotype of callus induced were different to each other according to different plant growth regulators. Used 2,4-D could induce embryogenic callus, this callus were used as materials for suspension culture. Since hypocotyl and cotyledon could be induced little somatic embryos, they tended to callus formation, so only immature embryos were used as materials for the following experiments. 0.5ppm NAA and 0.5 ppm TDZ were optinum conceration for best direct somatic embryos induction. For normal somatic embryo maturation, 0.5-1 ppm ABA was added. |
R84625023 | ±i»FÅï | 86 | 0 | »OÆW¶³§üÅéF¤§»¤¾É | The Induction of Somatic Embryo of Picea morrisonicola Hayata | ¤ý¨È¨k ,«¸®aµØ | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | ÅéF,»OÆW¶³§ü,Fì©ÊF¬`²ÓM¹Î | Somatic Embryo,Picea morrisonicola,embronal suspension mass | ¥H¥xÆW¶³§ü(Picea morrisonicola Hayata)¦¨¼ôF¬°°ö´ÓÅé¶i¦æ°ö¾i¡C±N¦¨¼ôºØ¤l¸g48¤p®É¬y¤ô³B²z¡A¥H70%°sºë®ûªw2¤ÀÄÁ¤Î®û¦b4% NaOCl¤ô·»²G(§t¬ù1%(v/v) Tween 20®iµÛ¾¯¡^¤¤¶Wµªi¾_Àú10¤ÀÄÁ¡A¦Ã¬V²v¬°¹s¡C¨ú¦¨¼ôF¶i¦æF°ö¾i¡A©ó¨C¤@Ó50 ml¤T¨¤À@§Î²~¤¤ªº20 ml©TÅé°ö¾i°ò¤W©ñ¸m10ÓF¡C¦b¥þ¥ú·Ó¤Î¶Â·tªºÀô¹Ò¤¤°ö¾i¡A²£¥Í¡¦X²Õ´ªº¤£¦P¡G¥þ¥ú·Ó¤U»¤¾É¥Xºñ¦â¡Bºò¹ê¤§Â¡¦X²Õ´¡A¦b¶Â·t¤U«h¬°¶À¦â¡BÃP³n¤§Â¡¦X²Õ´¡C±N¶À¦â¡BÃP³n¡¦X²Õ´°ö¾i©ó²K¥[2ppm 2,4-D¡B1 ppm BAªºMS°ö¾i°ò¤¤¡A¦b¶Â·tÀô¹Ò¤U¸g¹L¥|Ó¤ë¡A¥i»¤¾É¥X¥Õ¦âÂH½èªºFì©Ê¡¦X²Õ´¡A¨ä§t¦³¨ãF©ÊºÝ¤ÎF¬`²ÓMªº«e¤l¸´ÁÅéF¡F³Ì«á±NFì©Ê¡¦X²Õ´²¾¦Ü²K¥[0.1ppm2,4-D¡B1ppm BA»P2 ppm ABAªºMS©TºA°ö¾i°ò¤¤¡A¸g¹L¨âÓ¤ë¥þ¥ú·Óªº°ö¾i¡A«h¥i»¤¾É¥Xºñ¦âµu¶b¤§¤l¸´ÁÅéF¡C | Results of mature embryo
culture and somatic embryo induction of Picea morrisonicola Hayata were as
follows: mature seeds were first treated with running water for 48 hours, then soaked in 70% ethanol solution for 2 minutes. Soaked in 4% NaOCl (supplemented 1% (v/v) Tween 20) and treated with ultrasonic shaker for 10 minutes. Mature embryos were them isolated from the seed and 10 mature embryos were transferred into 50 ml conical flask containing 20 ml MS solid culture medium. Callus with different phenotype were induced after they were culture under light and dark conditions respectively. Under light conditions, green and compact callus were formed, but yellow and soft callus were formed under dark. After yellow and soft callus were transferred to medium containing 2 ppm 2,4-D and 1 ppm BA, and cultured under dark conditions for 4 weeks, white and sticky embrygenic callus were induced. These callus contained precotyledonary phase somatic embryos with embryonal head and suspensor . Cotyledonary phase somatic embryos with green and short axis were induced after these callus were transferred onto MS solid medium supplemented with 1 ppm 2,4-D,1 ppm NAA and 2 ppm ABA and cultured at light conditions for 2 months. |
R84625026 | ³¯¤l¯E | 86 | 0 | ·ËÀY¦a°Ï¤CºØªL¬Û¤gÄ[°Êª«¤§ªì¨B¬ã¨s | Preliminary Study on Soil Fauna of Seven Forest Stands in Chitou Area | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | ¤gÄ[°Êª«,ªL¬Û | Soil Fauna,forest stands | ¥»¸ÕÅç¥H¥xÆW¤j¾Ç¹êÅçªL·ËÀYÀçªL°Ï¬°¼Ë¦a¡A¾Ü¨ú¤CºØªL¬Û¡A¥]¬A¬h§üªL¡B¥xÆW§üªL¡B¬õÀ̪L¡B»È§öªL¡B©s©v¦ËªL¡B¤ÑµMÁ︪L»P¬h§üªL¬Û§ï¨}¦a¡C¦b¤CÓªL¬Û¤¤¦U¨ú¤TÓ¼ËÂI¡A©ó1998¦~2¤ë22¸¹»P1998¦~3¤ë15¸¹¡A¦U±Ä¤@¦¸¼Ë¡A¨Ã½Õ¬dªL¦aª¬ªp¡A¥]¬AÆ{½ª«×¡B¾ð°ª¡B¦a³Q¼h°ª¡B¦a³Qȸs½Õ¬d°O¿ý¡C¤gÄ[¼Ë¥»©ó¼ËÂI¥H100¥ß¤è¤½¤Àªº±Ä¤g¶êµ©±Ä¶°0-5¤½¤À¡B5-10¤½¤À¡B10-15¤½¤À¤gÄ[¡A¥t¥~¦A±Ä¨ú¬ù2¤½¤çªº¤gÄ[±K«Ê©ó«Ê¤f³U¤¤¡C¤gÄ[±Ä¦^«á·°®«O¦s¡A¨Ã°µ¤gÄ[½è¦a¤ÀªR¡B¤gÄ[®e«¡BPHÈ¡B¦³¾÷½è¡B¥þ´á¶q¡BµL¾÷ºA´á¡]»ÏºA©MµvºA¡^¡B¦³®Ä©ÊÁC©M¥i¥æ´«©Ê¹[¶tÁâ¡C¤gÄ[°Êª«¼Ë¥»¥HÅé¿n100¥ß¤è¤½¤Àªº±Ä¤g¶êµ©¦P¼Ë±Ä¤T¼h¤gÄ[¡A§@¬°°®¯Mªkªº¼Ë«~¡A¥H25¥ß¤è¤½¤Àªº±Ä¤g¶êµ©±Ä¤T¼h¡A§@¬°·Ã¯Mªkªº¼Ë«~¡C¥Hª½®|28.5¤½¤Àªº±Ä¤g¶êµ¨±Ä5¤½¤Àªº¤gÄ[¡A¬°¤j«¬¤gÄ[°Êª«ªº¼Ë«~¡C¤j«¬¤gÄ[°Êª«¥Î¦×²´¬Ý¤â¬D¡A°®¥Í¤gÄ[°Êª«¥ÎTullgrenº|¤æ¡A·Ã¥Í¤gÄ[°Êª«¥ÎBaermannº|¤æ¡C¦@294Ӽ˫~¡A²Ä¤@¦¸±Äªº¼Ë¯M24¤p®É¡A²Ä¤G¦¸¯M48¤p®É¡C¦@°O¿ý¤gÄ[°Êª«4ªù¡B10ºõ¡B23¥Ø¡B41¬ì¡B20ÄÝ¡B6ºØ¡C¤â±Äªk¼Ë¥»¼Æ1423Ó¡A°®¯M778Ó¡A·Ã¯M91Ó¡A¦@2292Ó¡C¸ê®Æ¤ÀªR«á¡A±oª¾¦UªL¬Û¤gÄ[°Êª«¼Æ¶q³Ì¦hªº¬O¤ÑµMªL¡A³Ì¤Öªº¬O¬õÀ̪L¡CShannon-Weaver¦h¼Ë©Ê«ü¼Æ³Ì°ªªº¬O¬h§üªL¡A³Ì§Cªº¬O©s©v¦ËªL¡CJaccard¬Û¦ü«×¤ñ¸ûªºµ²ªG¡A¤gÄ[°Êª«²Õ¦¨³Ì¬Ûªñªº¬O¬h§üªL»P¤ÑµMªL¬Û¦ü«×86%¡A¬õÀ̪L»P¤ÑµMªL¬Û¦ü«×³Ì§C¶È58%¡C¤£¦PªL¬Û¶¡ªº¤gÄ[°Êª«²Õ¦¨»Pµ²ºc¬O¤£¦Pªº¡A§Y¨Ï¼Æ¶q»P¦h¼Ë©Ê«ü¼Æ«Ü±µªñ¡A¦ýÀu¶ÕÃþ¸s¤]¤£¤@¼Ë¡C¤gÄ[¦]¤l»P¤gÄ[°Êª«¤ñ¸ûªºµ²ªG¡A¦UªL¬Û¤gÄ[°Êª«ªºÁ`¼Æ»P¤gÄ[½è¦a¡BPHÈ¡B¦³¾÷½è¡B¥þ´á¶q¡BµL¾÷ºA´á¶q¡B¦³®Ä©ÊÁC¡B¥i¥æ´«©Ê¹[¶tÁâ³£¨S¦³ÅãµÛªº¬ÛÃö¡C¤gÄ[°Êª«ªº¦h¼Ë©Ê«ü¼Æ»P¤gÄ[pHÈ(R2=0.6503)¡B¥i¥æ´«©Êªº¶t(R2=0.731)©MºÒ´á¤ñ(R2=0.8255)¦³ÅãµÛªº¥¿¬ÛÃö¡A¥i§@¬°ªL¦apHÈ»PºÒ´á¤ñªº«ü¼Ð¡A¨ä¥Lªº¦]¤l«h¬ÛÃö¤£ÅãµÛ¡C |
The study site is located at the Chitou in the Experimental forest of
the National Taiwan University. Seven forest types including pure stands of
Cryptomeria japonica, Taiwania cryptomeriodes, Chamaecyparis formosensis,
Ginkgo biloba, Phyllostachys pubescens, natural forest and forest type
improvement land were selected. Three sample points were randomly chosen in each forest types respectively. Soil sample were selected on February 22 rd and March 15 th, 1998 with vegetation investigated which includes canopy closure pencentage, tree height, vegetation height, and ground vegetation investigation. Soil animal samples were collected on sites with metal cylinder of 100 square centimeters as dry method and 25ml of cylinder for wet method from soil of 0-5 cm, 5-10 cm, and 10-15 cm in depth. Additional soil sample of 2 kilograms were also collected. Soil were air dried and preserved for soil texture,bulk density, pH, organic matter, total nitrogen, inorganic nitrogen(ammonium and nitrate), available phosphate, and exchangeable potassium, calcium and magnacium analyses. Soil asmple of 5cm deep were collected with metal cylinder of 28.5 cm in diameter as sample for macrofauna. Macrofauna were divided by hand with naked eyes, dry soil animals were collected with Tullgren funnel, and wet soil animals with Baermann funnel. Total of 294 samples collected for the first time were dried for 24 hours, second time for 48 hours. 4 phyla¡B10 classes¡B23 orders¡B41 families¡B 20 genus¡Band 6 different species of soil animals were recorded. Total of 1423 samples were collected by hand, 778 by dry, and 91 by wet method, hance amount of 2292 samples were obsered. After data analysis, it showed that natural forest had the abundant of soil animals, stand of Chamaecyparis formosensis was the least. Shannon-Weaver index of diversity were the highest in pure stand of Cryptomeria japonica, and lowest in Phyllostachys pubescens. According to the result of Jaccard similarity comparison, pure stand of Cryptomeria japonica and natural forest have the most familiar soil animal composition with similarity. of 86%; Chamaecyparis formosensis and natural forest had the lowest of 58%. Soil animal composition and structure among different forest types are not the same. Even if they have similar amount and diversity index,dominant population will still be different. The soil animal amount versuse different forest types is not shown in relevant correlation with soil texture, pH, organic matter, total nitrogen, inorganic nitrogen contents, available phosphate, and exchangeable potassium, calcium and magnesium. The diversity index of soil animal could be a reliable indicator for forest pH and C/N ratio. The relevant correlation (R2) of soil animals is 0.6503 with soil pH , exchangeable calcium of 0.731 and C/N ratio of 0.8255. |
R83605035 | ·¨¬ü¬Â | 85 | 0 | ¶ð¶ð¥[¦a°Ï´ËªL¤õ¨a¹ïªQÃþ³yªL¦a¤§´Ó¸s¡B·L®ðԤΤgÄ[©Ê½èªº¼vÅT | The study on the variations of vagetations, the microclimate and soil chemical properties after the forest-fire from pinus plantation in Tatajia area | «¸®aµØ, ¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | ¥ú¦X§@¥Î¦³®Ä¿ç®g¶q,´ËªL¤õ¨a,·L®ðÔ,¤gÄ[¤Æ¾Ç©Ê½è | photosynthetically active radiation,forest-fire,microclimate,soil chemical properties | ¥É¤s°ê®a¤½¶é¶ð¶ð¥[¦a°Ï¡A©ó¥Á°ê¤K¤Q¤G¦~¤@¤ë¤»¤éµo¥Í¸Ó¶é°Ï¦¨¥ß¥H¨Ó³Ì¤jªº´ËªL¤õ¨a¡A½d³ò¬ù¹F¤T¦Ê¤½³¼¡C¦Û¥Á°ê¤K¤Q¥|¦~¥|¤ë¦Ü¤K¤Q¤¦~¤T¤ë´Á¶¡¡A¿ï¾Ü¸Ó°Ï¤§Åï³k¤sªF°¼¤ÎªF«n°¼©Y¦a¬°ªL¤õ°Ï¸ÕÅç¦a¡A¶i¦æ´Ó¸s½Õ¬d¡B·L®ðÔÆ[´ú¡B¤gÄ[¤§¦³¾÷½è¡B»ÄÆPÈ(pH)¡B¥i·»©ÊÁC¡B¤Î¥i·»©Ê¹[¡B¶t¡BÁ⪺´ú©wµ¥¤u§@¡C ½Õ¬d´Á¶¡ªL¤õ°Ïªº´Óª«²Õ¦¨¡A«Y¥H°ª¤s¨~¡BÅr¤j¿¹¡B°¨¾K¤ì¡B¬õ¤ò§ùÃY¡B¦Ê³ß¯ó¡B½Å¤ò¬h¡B¥É¤s½b¦Ëµ¥¬°¥D¡A¨ä¥X²{ÀW«×§¡°ª©ó¦Ê¤À¤§¤¤Q¡A¨ä«nÈÁ`©M°ª¹F166.43¡A¨ä¤¤¥H°ª¤s¨~³Ì¬°Àu¶Õ¡A¨ä«nȬ° 63.04¡C¦¹¤D¥Ñ©óªL«a²¨¶}¡A¤j¶q¶§¥úª½®gªL§É¡A¦bªL¤U¤é·Ó¥R¨¬±¡§Î¤U¡A´Ó¸s·í¥H³o¨Ç¶§©Ê´Óª«¬°Àu¶Õ¡C¹ï·Ó°Ï¤´ºû«ù즳ªL¬Û¡A¤U¼h¦a³Q´Ó¸s¥H¥É¤s½b¦Ë¬°¥D¡A¤W¼h´Ó¸s«h¥H»OÆWµØ¤sªQ»P»OÆW¤G¸ªQ¦ûÀu¶Õ¡C ªL¤õ°Ï¸ÕÅç¦a¤§¥ú¦X§@¥Î¦³®Ä¿ç®g¶q¦~§¡È¼W¬°575.733 mol/m2/month¡A¬°¹ï·Ó°Ï¤§¤¿¡A¦Ó¨ä¦U®É¤À¤§¥ú¦X§@¥Î¦³®Ä¿ç®g¶q¦~§¡È³Ì°ª¥i¹F 3.479 mol/m2/hr¡A¨s¨äì¦]À³¬°ªL«a²¨¶}¡A¤j¶q¶§¥ú¥iª½®gªL§É©ÒP¡A¦¹²{¶H»PªL¤õ°Ï¥Ø«e¥H¶§©Ê´Óª«¬°Àu¶Õ¤§´Ó¸s½Õ¬dµ²ªG¤@P¡C ¤õ¨a«á¡AªL¤õ°Ï¦]ªL«aªº²¨¶}¡AªL§Éªº»rÅS¡A¤j¶q¶§¥ú¥iª½®gªL§É¡A¥BªÅ®ð¬y³q©Ê¨Î¡A¨Ï±oªL¤õ°Ï¤§®ð·Å¦~§¡È¤É¬°9.95¢J¡A¸û¹ï·Ó°Ï°ª¥X0.98¢J¡A¨Ã³y¦¨ªL¤õ°Ï¦U®É¤À¤§®ð·Å¦~¥§¡°ª§C(¤é©])·Å®t¤É°ª¬°12.11¢J¡A¸û¹ï·Ó°Ï°ª¥X 2.22¢J¡F¦P²z¡A¥¢¥h¤W¼h´Óª«ªL«aªº¾B½ª«OÅ@¡AªL¤õ°Ïªº¤é·Ó¶q»·°ª©ó¹ï·Ó°ÏªÌ¡A¥B¤gÄ[ªí±°ï¿n³\¦h²`¶Â¦âªº¦Ç¤Æª«¡A§ïÅܤFªí¼h¤gÄ[즳ªº¼ö¶Ç¾É©Ê½è¤Î¤Ï®g²v¡A³y¦¨ªL¤õ°Ïªºªí¤g·Å«×¦~§¡È¼W¬° 12.02¢J¡A¤ñ¹ï·Ó°Ï°ª¥X2.72¢J¡A¨äªí¤g¦U®É¤À¦~¥§¡°ª§C(¤é©])·Å®t¤É°ª¬°9.65¢J¡A¤ñ¹ï·Ó°Ï°ª¥X7.88¢J¡C ªL¤õ°Ï¸ÕÅç¦a©Òµo¥ÍªºªL¤õ«¬ºA¡AÀ³Äݦaªí¤õ¡A¨ä°ª·Å¨Ï¤gÄ[¦³¾÷½è¬´¤Æ¡A°§CªL¤õ°Ïªí¤gªº¦³¾÷½è§t¶q¡FªL§É즳¬\ªK¸°ï¾÷¼h©ó¤õ¨a®É¿U¿N¦¨¦Ç¤À¡Aì§t¾i¤À¦p¶t¡BÁâ¡B¹[±N«·sÄÀ©ñ¥X¨Ó¡A³o¨Ç¶§Â÷¤l·|¸m´«¥X¤gÄ[¤¤ì¦³ªº²BÂ÷¤l¡A¨Ï±oªL¤õ°Ï¤gÄ[ªºpHȤɰª¡F¥Ñ¦Ç¤ÀÄÀ©ñ¥X¨Óªº¥i·»©Ê¾i¤À¡A¨Ï±oªL¤õ°Ï0-5 cm¤g¼hªº¹[¡B¶t¡BÁâ§t¶q¼W°ª¡F¦Ü©óªL¤õ°Ï¤gÄ[¥i·»©ÊÁC§t¶qªº°§C¡A¥i¯à«Y¦]ªL«a²¨¶}¡AªL§É»rÅS¡A¤j¶q¶§¥ú¥iª½·ÓªL§É¡A¾ÉP¤U¼h´Óª«ºØÃþÁc¦h¡A¥B¥Íªø§Ö³t¦ÓZ²±¡A«P¨Ï´Óª«®Ú³¡§l¦¬¥i·»©ÊÁCªº§@¥Î¥[³t¡A¦Ó³y¦¨¦¹¯S®í²{¶H¡C | |
R83605020 | ¸¤d¸U | 84 | 0 | §Q¥ÎRAPD¬ã¨s»OÆWÁJªá§ü±Ú¸s¤§¿ò¶ÇÅܲ§ | Using RAPD markers to study the genetic variation of Amentotaxus formosana populations | «¸®aµØ;¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | ³{¾÷ÂX¤j¦h§Î©Ê®Ö»Ä,¿ò¶ÇÅܲ§,»OÆWÁJªá§ü,±Ú¸s | RAPD,genetic variation,Amentataxus formosana,population | ³{¾÷ÂX¤j¦h§Î©Ê®Ö»Ä(Random Amplified Polymorphic DNA,RAPD)¤ÀªR§Þ³N,ªñ¨Ó³Q¼sªxªºÀ³¥Î¦b¬ã¨s´Óª«ªº¿ò¶Ç¤Î¤ÀÃþÃö«Y¤W,¥»¬ã¨s¤¤§Q¥ÎRAPD¹ï»OÆWÁJªá§ü±Ú¸sªº¿ò¶ÇÅܲ§¶i¦æµû¦ô.¦b¤jªZ¤Î¯ù¯ù¤ú¿à¨â±Ú¸s¤¤¦U¿ï¨ú50®è¼Ë¥»,Á`¦@100®è¼Ë¥»¶i¦æ¤ÀªR,¨Ï¥Î¤F10Ó¤H³y§Ç¦Cªº¤Þ¤l,¦@°O¿ý¤F146±øDNA¤ù¬q,¨ä¤¤18±ø¬°¦h§Î©Ê(12.3%),¨ä¾lªº128±ø¬°³æ§Î©Ê(87.7 %).¤jªZ±Ú¸s¤Î¯ù¯ù¤ú¿à±Ú¸s¤ºªº¥§¡¬Û¦ü«×¤À§O¬°0.9901¤Î0.9894,¨â±Ú¸s¶¡ªº¿ò¶Ç¶ZÂ÷¬°0.0127,Åã¥Ü¥X»OÆWÁJªá§ü¨â±Ú¸sµL±Ú¸s¤À¤Æ²{¶H. | RAPD(Random Amplified Polymorphic DNA) markers have recently been used to estimate genetic variation and taxonomic relationships in plants. In this study, RAPD analysis was performed to determinate genetic variation in 2 populations of Amentotaxus formosana Li. Total 100 samples was used in this study including 50 trees from Tawu population and 50 trees from Tsatsayalai population. Ten arbitrary sequenced primers were used and 146 DNA fragments were recorded. Among them, 18 fragments showed polymorphism(12.3%),and 128 DNA fragments showed monomorphism(87.7%). Average similarity coefficient for Tawu population and Tsatsayalai population are 0.9901 and 0.9894, respectively. Genetic distance between Tawu and Tsatsayalai population was 0.0127. These results suggest that the two populations were not differentiated. |
R81605027 | ªL§Ó¿Ñ | 84 | 0 | »OÆW¨v·£¡B»OÆWÁJªá§ü»P»OÆW¬õ¨§§ü¤§²Õ´°ö¾i | Tissue Culture of Calocedrus formosana (Florin) Florin ¡B Amentotaxus formosana Li. and Taxua mairei | ¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | »OÆW¨v·£,»OÆWÁJªá§ü,»OÆW¬õ¨§§ü,·LÅéÁc´Þ | Calocedrus formosana(Florin).Florin.,Amentotaxus formosana Li. | ¥»¸ÕÅç¹Á¸Õ±´°Q¨Ã«Ø¥ß»OÆW¨v·£(Calocedrus formosana (Florin)Florin)¡B»OÆWÁJªá§ü(Amentotaxus formosana Li.)»P»OÆW¬õ¨§§ü(Taxus mairei)¤TºØ¾ðºØ¨ä²Õ´°ö¾i¤§·LÅéÁc´ÞÅé¨t¡Cªì¨Bµ²ªG¦p¤U¡G»OÆW¨v·£ªí±®ø¬r¸ÕÅ礧µ²ªG¡AºØ¤l¥i¹F90%¤§µL¦Ã¬V²v¡A¥¼¦¨¼ôF«h¥i¹F¹s¦Ã¬V¡A4-6Ó¤ë¹ê¥Í]²ô¬q¥i±±¨î¦b92.5%µL¦Ã¬V²v¡A2-3¦~¥Í¹ê¥Í]²ô¬q±±¨î¦Ã¬V¶È¯à¹F¨ì57.5%¤§µL¦Ã¬V²v¡A¥B°ö´ÓÅé©ó®ø¬r«á³£½Å¤Æ¦º¤`¡C¦b¾¹©x§Î¦¨¤è±¡G¦¨¼ôF°ö´Ó©óWPM¡BMS¡BB5¤TºØ°ò¦°ö¾i°ò¹ïµLµß]¤§»¤¾É®ÄªG³Ì¦n¡C¥¼¦¨¼ôF°ö¾i©ó²K¥[600mg/l casein hydrolsate¡B500mg/l yeast extract¡B0.5ppmBA¤Î1ppmNAA¤§WPM°ö¾i°ò¤¤¡A¥i»¤¾É¥X¦hªÞÅé¡CµLµß]±a¸`²ô¬q¦b²K¥[0.05ppmNAA»P0.5ppmBA¤§WPM°ö¾i°ò¤¤¥i»¤±o³Ì¦hµÅªÞ¤§µo¥Í¡C4-6Ó¤ë¹ê¥Í]°wª¬¸±a¸`²ô¬q¦b§t¦³0.05ppm NAA¤Î1ppmBA¤§³B²z¥i»¤¾ÉµÅªÞ¤§µo¥Í¡AÅ쪬¸°ö¾i©ó1ppmBA»P0.05ppm NAA¤§WPM°ö¾i°ò¤¤¥i»¤¾É§Î¦¨µÅªÞ¡A¦ýªÞÅéÂO¥Íª¬¨Ã¬Á¼þ½è¤Æ¡A¦Ó¦b§t¦³0.01ppmTDZ»P0.05ppmBA¤§³B²z¥iÀò±o60%¤§¤£©wªÞ»¤¾É²v¡C¡¦X²Õ´¦b§t¦³1ppmNAA¤Î0.1ppmBA¤§MS°ö¾i°ò»¤¾É®ÄªG³Ì¨Î¡C»OÆWÁJªá§ü¤§ªí±®ø¬r¸ÕÅçµ²ªG¡A¥H·s±é¥i±±¨î¹F78.2%µL¦Ã¬V²v¡A 1-2¦~¥ÍªK±øÁö¥i¹F94%¤§µL¦Ã¬V²v¡A¦ý°ö´ÓÅé©ö½Å¤Æ¦º¤`¡C¥H·s±é¬°°ö´ÓÅé°ö¾i©ó²K¥[0.1ppmNAA»P0.1ppmBA¡B0.1ppmNAA»P1ppmBA¡B1ppm2,4-D»P 0.1ppmBA¤TºØ³B²z¥i±o¡¦X²Õ´³Ì¨Î¤§»¤¾É¡C»OÆWÁJªá§ü¤§¶¯ªá§Ç©ó§t¦³ 30%coconut milk¡A1000mg/lcasein hydrolysate¡A1600mg/lglutamine¡A 1000mg/lYeast extract¡A¤Î2%maltose»P1.25ppmBA¤§1/2MS°ö¾i°ò¤¤¸g¶Â·t³B²z¥i»¤¾É¥X¡¦X²Õ´¡C»OÆW¬õ¨§§ü¤§ºØ¤l¸gªí±®ø¬r¥i¹F¹s¦Ã¬V²v¡A¤Q¦~¥Í·í¦~ªK±ø¥i±±¨î¹F85.6%µL¦Ã¬V²v¡C¦¨¼ôF¸m©óDCR¡BWhite¡BB5¤TºØ°ö¾i°ò¤¤¡A¥HDCR»¤¾ÉµoªÞ²v³Ì¨Î¡A¸gÄ~¥N«á25%¯à§Î¦¨´Ó®è¡C¤Q¦~¥Í·í¦~ªK±ø¦b§t1ppmNAA»P2 ppmKT³B²z»¤¾É¡¦X²Õ´®ÄªG³Ì¨Î¡C | This study describes the
development conditions and the propagation technique by in vitro culture for
the Calocedrus formo- sna(Florin). Florin. , Amentotaxus formosana Li. and
Taxus mairei. The primary results are as follow: In Calocedrus formosana(Florin).
Florin.,the mature embryos¡Bimmature embyros¡Bthe needle-like leaves with node
and scale- like leaves from 4-6 month-old seedling ; and 5-cm-long shoot tip
from a lateral branch of 2-3-year-old tree were used as explants¡CIn the
surface sterilization: the immature embryos can overcome thecontamination and
the seed could get the 90% no contamination¡Athe explants from 4-6-months
seedling could get the 92.5% non-contamination¡CBut the explants from mature
trees only could be controled at
57.5% non-contamination,finally,the expla- nts will get brown and death¡CThe medium of MS¡BWPM and B5 get the best rsults to establish sterile plants¡CImmature embryos will induce the multi buds in the basal medium of WPM which were supplemented with 0.5 ppm BA and 1 ppm NAA ¡CThe needle with node from sterile plants will from the buds in the supplement of 0.05 ppm NAA and 0.5 ppm BA treament¡C Amentotaxus formosana Li. achieved the best control of 78.2 % non-contamination¡CCali will be induced at the basal medium of WPM which were supplemented with 1 ppm 2,4-D and 0.1 ppm BA¡C Taxus mairei overcomes the contaimation in the surface sterilization¡CThe embyro shows the best germination in the basal medium of DCR¡CCali will be induced in the B5 medium supplement- ed with 1 ppm NAA and 2 ppm KT¡C |
ªL§Ó¿Ñ | 84 | 0 | »OÆW¨v·£¡B»OÆWÁJªá§ü»P»OÆW¬õ¨§§ü¤§²Õ´°ö¾i | Tissue Culture of Calocedrus formosana (Florin) Florin ¡B Amentotaxus formosana Li. and Taxua mairei | ¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | »OÆW¨v·£,»OÆWÁJªá§ü,»OÆW¬õ¨§§ü,·LÅéÁc´Þ,´ËªL | Calocedrus formosana(Florin).Florin.,Amentotaxus formosana Li.,Taxus mairei,micropropagation,FORESTRY | This study describes the development conditions and the propagation technique by in vitro culture for the Calocedrus formosna(Florin). Florin. , Amentotaxus formosana Li. And Taxus mairei. The primary results are as follow: In Calocedrus formosana(Florin). Florin.,the mature embryos¡Bimmature embyros¡Bthe needle-like leaves with node and scale- like leaves from 4-6 month-old seedling ; and 5-cm-long shoot tip from a lateral branch of 2-3-year-old tree were used as explants¡CIn the surface sterilization: the immature embryos can overcome the contamination and the seed could get the 90% no contamination¡Athe explants from 4-6-months seedling could get the 92.5% non-contamination¡CBut the explants from mature trees only could be controled at 57.5% non-contamination,finally, the explants will get brown and death¡CThe medium of MS¡BWPM and B5 get the best rsults to establish sterile plants¡CImmature embryos will induce the multi buds in the basal medium of WPM which were supplemented with 0.5 ppm BA and 1 ppm NAA ¡CThe needle with node from sterile plants will from the buds in the supplement of 0.05 ppm NAA and 0.5 ppm BA treament¡CAmentotaxus formosana Li. achieved the best control of 78.2 % non-contamination¡CCali will be induced at the basal medium of WPM which were supplemented with 1 ppm 2,4-D and 0.1 ppm BA¡CTaxus mairei overcomes the contaimation in the surface sterilization¡CThe embyro shows the best germination in the basalmedium of DCR¡CCali will be induced in the B5 medium supplemented with 1 ppm NAA and 2 ppm KT¡C |
||
°ª·¶¼ü | 83 | 0 | ¥xÆWõѤ§²Õ´°ö¾i | Tissue Culture of Zelkova Serrate | ¤ý¨È¨k ,«¸®aµØ | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ¥xÆWõÑ,·LÅéÁc´Þ¨t²Î | ¥»¸ÕÅç¹Á¸Õ«Ø¥ß¥xÆWõÑ¡]Zelkova
serrata¡^¤§·LÅéÁc´Þ¨t²Î¡Aªì¨Bµ²ªGÀò±x¡G¥H¤p]¤§±a¸`²ô¬q¡AF¡A³»ªÞ¡A¤l¸¡A»PF¶b¬°°ö´ÓÅé¡A°ö¾i©ó²K¥[cytokinin¡]BA©Îkinetin¡^»Pauxin¡]NAA¡^¤§WPM°ö¾i°ò¡A¥i¥H»¤±o¦hªÞÅé©Î¤£©wªÞ¡C³Ì¾A©ó¦UºØ°ö´ÓÅ黤¾ÉªÞÅéµo¥Í¤§´Óª«¥Íªø½Õ¸`¾¯¤À§O¬°¡G¤p]±a¸`²ô¬q¡Glppm BA¡FF¡G3
ppm BA»P0.01ppm NAA¡F¤l¸¡G0.01-0.1ppm TDZ¡FF¶b¡G5ppm BA»P0.5ppm NAA¡C»¤±o¤§ªÞÅé²¾¦Ü§t1ppm GA3¤§WPM©TºA°ö¾i°ò¤¤©âªø¡A©âªø¤§ªK±ø¸g¤ÁÂ÷²¾´Ó©ó§t2%½©¿}»P
1ppm IBA ¤§WPM°ö¾i°ò¤¤µo®Ú²v¥i¹F100%¡C ¥HÄa¯B°ö¾i¤§²ÓM°µ¬°¤ÀÂ÷ì¥Í½èÅ骺§÷®Æ¡A¸g2% cellulysin »P0.5% pectolyase Y-23 ¤§»Ã¯À·»²G³B²z¡Aì¥Í½èÅ馬¶q¬Æ¨Î¡A¥i¹F 3.4¡Ñ105/ml¡C°ö¾i¤T¤Ñ«á¨ã¬¡¤Oªºì¥Í½èÅé¬ù¬°80%¡A¸¤ùì¥Í½èÅé¤ÀÂ÷§xÃø¡A»Ý¶i¤@¨B¬ã¨s¡C |
|||
¤ý¤¶¹© | 83 | 0 | »OÆWÁJªá§ü±Ú¸s¦P¦ì»Ã¯ÀÅܲ§¤§¬ã¨s | Allozyme Variation in populations of Amentotaxus Formosana Li | «¸®aµØ ,¤ý¨È¨k ,ªLÆg¼Ð | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | ÁJªá§ü±Ú¸s,¦P¦ì»Ã¯ÀÅܲ§ | »OÆWÁJªá§ü¬°»OÆW¤§¬Ã¶Qµ}¦³¤§»r¤l´Óª«¡A§Q¥Î¤ô¥¦¡¾ý¯»½¦¹qªaªk¡A´ú©w±Ú¸s¤º¿ò¶Çª[²§«×¤Î±Ú¸s¶¡¿ò¶Ç¤À¤Æ¡CÆ[´ú10ºØ»Ã¯À¨t²Î¡A20Ó°ò¦]®y¤¤¶È¦³¤@Ó°ò¦]®y¬°¦h§Î©Ê¡C¤GÓ±Ú¸s¤¤¡A¦h§Î©Ê°ò¦]®yPGI-1¡A¦b¤jªZ±Ú¸s¦³¤GÓµ¥¦ì°ò¦]¡A¯ù¯ù¤ú¿à±Ú¸s¬°³æ§Î©Ê¡A¶È¨ãPGI-1-Bµ¥¦ì°ò¦]¡C¤jªZ±Ú¸s¤º¶È¥X²{¨âºØ°ò¦]«¬¡]AB¡ABB¡^¡APGI-1-AªºÀW²v¦b·U¦~»´ªº¦~ÄÖ¼h¥X²{¤§²§µ²¦X©Ê¤ñ²v·U°ª¡]25%¡^¡C¤jªZ©M¯ù¯ù¤ú¿à±Ú¸sªº¥§¡²§µ²¦X©Ê´Á±æÈ¤À§O¬°0.008¤Î0¡A¨CÓÅé²§µ²¦X©Ê°ò¦]®y¦Ê¤À¤ñ¤À§O¬°0.09%¤Î0¡A¨C°ò¦]®yµ¥¦ì°ò¦]¥§¡¼Æ¥Ø¤À§O¬°1.05¤Î1¡A¨C°ò¦]®y¦ì°ò¦]ªº¦³®Ä¼Æ¥Ø¤À§O¬°1.01¤Î1¡C³o¨Ç¼ÆÈ»P¨ä¥L°w¸¾ð¬Û¤ñ¡A»OÆWÁJªá§üªºÈ¬Æ§C¡AÅã¥Ü¿ò¶Çª[²§«×«D±`¤p¡C¥HF-statistics¤Î°ò¦]ª[²§«×¤ÀªR±Ú¸s¶¡¤Î±Ú¸s¤º¿ò¶ÇÅܲ§¤À°t¤ñ²v¡Aµ²ªGµo²{¤j³¡¤Àªº¿ò¶ÇÅܲ§¦s¦b©ó±Ú¸s¤º¡A¦Ó±Ú¸s¶¡¤§Åܲ§¶q¤£¤Î5%¡AÅã¥Ü¤GÓ±Ú¸s¶¡¨Ã¨S¦³©úÅ㪺¿ò¶Ç¤À¤Æ¡C | ¡@¡@Genetic diversity within and
genetic differentiation among two populations, Ta-Wu and Tsa-Tsa-Ya-Lai, of
the endangered species Amentotaxus formosana Li. in Taiwan were investigated
using horizontal starch gel electrophoresis. Ten enzyme systems including 20
putative loci from young leaf tissue were assayed, with only 1 (PGI-1) of the
20 loci being polymorphic. The mean expected heterozygosity, the percent
heterozygous / individual, the number of allele / locus, and the effective
number of allele / locus was 0.008, 0.0009, 1.05, and 1.01, respectively, for
the Ta-Wu population. No variation in band mobility was obeserved in any of
these enzyme systems of the Tsa-Tsa-Ya-Lai population. The low degree of
genetic variation in contrast with those reported from surveys of allozyme
variation in coniferous species indicates that Amentotaxus formosana Li. is
genetically depauperate. ¡@¡@PGI-1-A, in addition to PGI-1-B was found only in Ta-Wu population, and two genotypes AB,BB were observed so far. It was found that PGI-1-A has higher frequency (0.125) in younger cohort than older (0.056), and heterozygote percentage of total individuals with DBH smaller than 5 cm is 25%. ¡@¡@Partitioning of the genetic variation into within-and among-population components by using F-statistics and gene diversity analysis led to an estimate of within population variation amounting over 95% of total variation. These results suggest that no differentiation between these two populations. |
||
ªL±Ó©y | 83 | 0 | »OÆW«ó¬f»P¬õÀÌì¥Í½èÅé¿Ä¦X»P¤H¤uºØ¤l»s§@¤§ªì¨B¬ã¨s | A preliminary study on the protoplast fusion of chamaecyparis obtusa var formosana and chamaecyparis formosensis and production of artificial seed | ¤ý¨È¨k ,«¸®aµØ | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | |||||
§õ«ØÀM | 83 | 0 | ¤£¦PºØ·½«CèòR¦P¦ì»Ã¯ÀÅܲ§¤§¬ã¨s | Allozyme variation of different provenances of cyclobalanopsis glauca | «¸®aµØ ,¼ï´I«T ,¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | |||||
¦¶«ØµØ | 83 | 0 | »OÆWªo§ü¡B»OÆWÁJªá§üÅé²ÓM¤Àµõ¡B®Ö«¬¤Î®Ú¦y¤À¥Í²Õ´¶WÅã·Lºc³y¤§¬ã¨s | Studies on mitosis, karyotype and ultrastructure of root tip meristem of keteleeria davidiana var formosana and amentotaxus formosana | «¸®aµØ ,¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | |||||
¦ó®a¦W | 82 | 0 | ¤£¦P·Å«×¹ï»OÆW§ü²Õ´°ö¾i]»P¹ê¥Í]¾i¤À¿@«×¤§¼vÅT | The effects of various temperatures on the nutrient concentration of tissue cuture plants and seedlings of Taiwania | «¸®aµØ ,¤ý¨È¨k | °ê¥ß»OÆW¤j¾Ç | ´ËªL¾Ç¬ã¨s©Ò | ºÓ¤h | |||||
R79605035 | §õÂí¦t | 81 | 0 | ¬õÀ̤ӱڸs¦P¦ì»Ã¯ÀÅܲ§¤§¬ã¨s | Allozyme Variation in Five Populations of Chamaecyparis | «¸®aµØ;¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | ¬õÀÌ,±Ú¸s | Taiwania cryptomerioides,tissue culture,micropropagation | ¥»¹êÅç§Q¥Î¬õÀÌ34Ó®a¨t340®è¤@¦~¥Í]¤ì,´ú©w±Ú¸s¤º¿ò¶Çª[²§«×¤Î±Ú¸s¶¡¿ò¶Ç¤À¤Æ¡C21Ó°ò¦]®y¤¤¦³¤Ó¬°¦h§Î©Ê¡C¨C¤@±Ú¸s¦h§Î©Ê°ò¦]®y¥§¡ ¤ñ²v¬°21.1% (99%¦h§Î©Ê¼Ð·Ç¤U) ¥§¡²§µ²¦X©Ê´Á±æÈ½d³ò±q0.056 ¨ì 0.098¡C¨C¤@ÓÅé²§µ²¦X©Ê°ò¦]®y¦Ê¤À¤ñ½d³ò±q5.2%¨ì 10.7% ,¨C°ò¦]®yµ¥¦ì°ò¦]¼Æ¥Ø½d³ò±q1.06 ¨ì 1.11 »P¨ä¥L°w¸¾ðºØ¬Û¤ñ¬õÀ̦³¸û§Cªº²§µ²¦X©Ê´Á±æÈ¤Î¨C°ò¦]®yµ¥¦ì°ò¦]¼Æ¥Ø ,³oÓµ²ªG¥i¯à¬°®qÀ¬±Ú¸s«¬ºAªº¤Ï¬M¡C¥H F-statistics ¤Î°ò¦]ª[²§«×¤ÀªR,±Ú¸s¶¡¤Î±Ú¸s¤º¿ò¶ÇÅܲ§¤À°t¤ñ²v,µ²ªGµo²{±Ú¸s¤ºªºÅܲ§¶q¥eÁ`Åܲ§¶q91% ,±Ú¸s¶¡¥u¥e9%¥Ñ´ÏÄõ¤Î¥|¸W¨â±Ú¸s¥i¬Ý¥X,ÁöµM³o¨âÓ±Ú¸s¤À¥¬¤£¦P®ü©Þ(¤À§O¬° 1200¤½¤Ø¨ì1800¤½¤Ø) ¤Î¤£¦P¤è¦ì(ªF¥_»P¦è«n)¦ý«o¦³·¥¬Ûªñªº¿ò¶Ç¬Û¦ü©ÊÈ¡C³oÓµ²ªGÅã¥Ü¬õÀ̤ѵM±Ú¸s¯Ê¥F¦¸µ²ºcªº¤À¤Æ,¨äì¦]¥i¯à¬°±Ú¸s¶¡°ò¦]¬y°Ê¯Ê¥F¦³®Ä»Ùê©ÒP¡C¦Ó±Ú¸s¤§¿ò¶Ç¶ZÂ÷¶¡¨Ã¨S¦³«Ü°ªªº¬ÛÃö©Ê¡C |
|
R79605018 | §Eª÷¯q | 81 | 0 | »OÆW§ü¤§·LÅéÁc´Þ | The Micropropagation of Taiwania cryptomerioides | «¸®aµØ;¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¾Ç¨t | ºÓ¤h | »OÆW§ü,²Õ´°ö¾i,·LÅéÁc´Þ | Taiwania cryptomerioides,tissue culture,micropropagation | ¥»¸ÕÅç¹Á¸Õ«Ø¥ß¥xÆW§ü ( Taiwania cryptomerioides ) ¤§·LÅéÁc´ÞÅé¨t¡Cªì¨Bµ²ªGÀò±x¡G¥H5¦~¥Í¥xÆW§ü³»ªÞ²ô¬q¬°°ö´ÓÅé, °ö¾i©ó§t 10 mg/l BA©Î0.5 mg/l kinetin©Î1.6 mg/l 2,4-D ¤§B5°ö¾i°ò¤¤¤§ªÞÅ黤¾É®ÄªG³Ì¦n¡F°ö¾i°ò¤¤»Ý²K¥[0.2%¬¡©ÊºÒ, °ö´ÓÅé¥H¥DªK±a³»ªÞ¤§²ô¬q¬°¨Î, ±N°ö´ÓÅéÁa妨¨â¥b, 屴¤U¥©ñ, »¤¾ÉªÞÅ餧®ÄªG³Ì¦n¡C»¤±o¤§ªÞÅé²¾¦Ü§t0.1 ©Î0.4 ©Î1.6 mg/l IBA©Î1.6 mg/l 2,4-D¤§B5°ö¾i°ò, ªÞÅé©âªøªº®ÄªG³Ì¦n¡C±N©âªø¤§ªÞÅ骽±µÉç´¡©ó¥H¬Ã¯]¥Û¡Bµí¥Û¤Îªd¬´¤gµ¥¤ñ¨Ò²V¦X¤§¤¶½è¤¤, ¸m©ó±K¶°¼QÃú¨t²Î¤U, µo®Ú (¦s¬¡) ²v¥i¹F42.8% ¡C¦Ó¥H25¥Í¥xÆW§üµÞÄô²ô¬q¬°°ö´ÓÅé, °ö¾i©óB5°ö¾i°ò¤¤, ¥Ø«e¶È¯à»¤±oªÞÊ^¡C | This study tries to establish a micropropagation model of Taiwania cryptomerioides. The best model of buds inducing for 5-year-old Taiwania is to put the explants of nodal stem segments with terminal buds on B5 medium containing 10 mg/l BA or 0.5 mg/l kinetin or 1.6 mg/l 2,4-D and 0.2% charcoal. Transfer the induced buds to B5 medium containing 0.1 or 0.4 or 1.6 mg/l IBA or 1.6 mg/l 2,4-D and 0.2% charcoal for well elongation of buds. Then, transfer the elongated buds to the medium mixing with equal perlite, vermiculite and peat under the well-controlled sprinkling system for rooting . The rooting (survival) rate is about 42.8%. Axillary buds have been induced from the nodal stem segments of epicormics of 25-year-old Taiwania on B5 medium supplemented with cytokinin (BA) and auxin (NAA), too. |
¨H±Ó®S | 80 | 0 | »È§ö¤§²Õ´°ö¾i | Tissue culture of ginkgo biloba | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | »È§ö,²Õ´,°ö¾i | ¥»¸ÕÅç¹Á¸Õ±´°Q»È§ö(Ginkgo biloba L.)¦b¸ÕºÞ¤º¤§¥Íªø²ß©Ê¨Ã«Ø¥ß¨ä²Õ´°ö¾i¤§Ác´ÞÅé¨t¡Aªì¨Bµ²ªG¡G¦bªí±®ø¬r¤è±¡AºØ¤l¥i¹F¹s¦Ã¬V¡A¢³Ó¤ë¹ê¥Í]²ô¬q¤Î¦¨¼ô®èµÅªÞ°ö´ÓÅ餧µL¦Ã¬V²v¤À§O±±¨î¦b50¢M¤Î43.3¢M¡C¦b¦hªÞÅ黤¾É¤è±¡A¶È¥HF¶b¬°°ö´ÓÅé°ö¾i¥iÀò±o¦hªÞÅé¡A©óWPM °ö¾i°ò¡A²K¥[1 ppm BA¡FF°ö´ÓÅé°ö¾i©óMS°ö¾i°ò²K¥[1600 mg/l ¾¢Ói»Ä(glutamine) 1000 mg/l ¤ô¸Ñ¹T³J¥Õ(casein hydrolysate) ¡B30¢M·¦¤l¥Ä(coconut milk)¡B1 ppm BA·|¦³ªÞÅé²£¥Í¡A¦ü¬°§÷®Æ¤§¤l¸¶¡ªÞ¡F¤l¸±a¦³ì¸Å餧°ö´ÓÅé©óMS°ö¾i°ò¡A²K¥[1¡B5 ppm Kinetin¡A¥i»¤¾É¸¤ùµo¥Í¡A¦Ó¤¤é¥ÍµLµß]¤§¤l¸«h¥i»¤¾É¡¦X²Õ´¡F¦¨¼ô®èµÅªÞ°ö´ÓÅé¡A©ó§tcytokinin¤§MS°ö¾i°ò¤¤°ö¾i¯u¸±²¦±ª¬¶}®i¥B©ö¬Á¼þ½è¤Æ¡A°ö¾i¬ù¤GÓ¤ë«á½Å¤Æ¡C»¤¾É§Î¦¨¤§¦hªÞÅé¤Î¸©ó¤£§t¥ô¦ó´Óª«¥Íªø½Õ¸`¾¯¤§MS²GºA°ö¾i°ò¤¤¦ùªø®ÄªG³Ì¨Î¡C¡¦X²Õ´¤§»¤¾É¡A¥HF°ö´ÓÅé©óMS°ö¾i°ò¡A²K¥[5 ppm Kinetin¡B2 ppm NAA¥ú·ÓÀô¹Ò¤U»¤¾É®ÄªG¸û¨Î¡A²ÓM¥i¤À¤Æ¥XºûºÞ§ô¡F²K¥[1 ppm Kinetin¡B2 ppm NAA»¤¾É¤§Â¡¦X²Õ´¡A«ùÄò¥Íªø±¡§Î³Ì¦n¡A¸Ó¡¦X²Õ´¸g2 ppm ABA ³B²z¢²¤Ñ«á¤§Äa¯B²ÓM¡Aªí±§Î¦¨ºñ¦â²yª¬²Õ´¥B¤w¤À¤Æ¦¨ºÞM¡C¬Á¼þ½è¤Æ²{¶H¦bªÞÅé¥HBA»¤¾É¤Î²GºA°ö¾i°ò¸ÕÅçªÞÅé¦ùªø®É¡A²£¥ÍÀW²v¸û°ª¡AÂǵÛÁYµuªÞÅé°±¯d©ó²GºA°ö¾i°ò¤§®É¶¡¥i´î¤Ö¬Á¼þ½è¤Æ²{¶H¡C | |||
¾G·ç¤¯ | 80 | 0 | ¤£¦P·Å«×»PװŹï»OÆW§ü²Õ´°ö¾i]»P¹ê¥Í]¤§¥Íªø®ÄÀ³ | The effects of various temperatures and branch prunning on the growth of tissue culture plants and seedling of taiwania | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ×°Å,]¤ì¥Íªø,¥xÆW§ü | ¥»¸ÕÅç«Y¥H°ö¨|¤@¦~¥Í¤§»OÆW§ü¹ê¥Í]¤Î²Õ´°ö¾i]©ó§÷®Æ¡A¸m©ó»OÆW¤j¾Ç¤H¤u®ðԫǷūǤ£¦P·Å«×³B²z¤U¤@¦~¡AÆ[¹î¤£¦PºØÃþ]¤ì¦b¤£¦P·Å«×³B²z¶¡¤§®ÄÀ³¡A¸ÕÅç¤À¨â¶¥¬q¡G 1.¦Û¥Á°ê¤K¤Q¦~¤G¤ë¦Ü¤K¤Q¤@¦~¤G¤ë½Õ¬d]°ª¡B°ò®|¡B°¼ªK¡B¸ºñ¯À§t¶q¡B°®«¨Ãpºâ¤Î«~½è«ü¼Æ¡A¥Hµû©w¤£¦PºØÃþ]¤ì¤§¥Íªø®t²§¡A¨Ã¥H±´°Q¤£¦P·Å«×³B²z¹ï¤£¦P]¤ì¶¡®ÄÀ³¡C 2.¤K¤Q¦~¤K¤ë¶i¦æ]¤ìªK±ø¤£¦P±j«×¤§×°Å¡A¦Ü¤K¤Q¤@¦~¤G¤ëµ²§ô¡A¥HÁA¸ÑªK±ø¤£¦Pװűj«×¤§®ÄÀ³¡A¨Ã¤ñ¸û¨ä¹ï¥Íªø¤Î]¤ì«~½è¤§¼vÅT¡C¦U¥Íªø©Êª¬¸g²Îp¤ÀªR¡A¨äµ²ªG¦p¤U¡G (1)´N¥Íªø©Êª¬¦Ó¨¥¡A¤£¦P]¤ì¶¡¤§®t²§·¥¬°ÅãµÛ¡Aºî¦X¦Ó¨¥¡A²Õ´°ö¾i]¥ÍªøÀu©ó¹ê¥Í]¡C (2)¤£¦P·Å«×³B²z¹ï]¤ì¥Íªø¤Î«~½è¦³ÅãµÛ¼vÅT¡A¨âºØ]¤ì¦b¤TºØ·Å«×³B²z¤U¬Û¸û¡A¥H¥Õ¤Ñ25¢J©]¶¡20¢J¥Íªø¸ûÀu¡A]¤ì«~½è¸û¨Î¡C (3)]¤ìװŤ§ªì¦³§U]¤ì«~½è§ïµ½¡AµM]¤ì׫e¥b¦~«á¥Íªøµ²ªG¡AÅã¥ÜT ¡þR È»P±é¨t¥Íªø´£ª@¡Aªø´Á®ÄÀ³¤W¡A¦³]¤ì«~½èº¥¦HºÃ¼{¡A¦b]°ª¡B°ò®|¥Íªø¤Î°¼ªK²b¥Íªø®t²§¨Ã¤£ÅãµÛ¡C |
|||
¬x°ö¤¸ | 80 | 0 | ¤£¦PºØ·½»OÆWõѦP¥\酶Åܲ§¤§¬ã¨s | Isozyme variations in different provenances of zelkova serrata | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ¥xÆWõÑ,¦P¥\酶,Åܲ§,·®¬ì | ZELKOVA SERRATA | ¥xÆWõÑ(Zelkova serrata) ÄÝ·®¬ì¡A¬°¥xÆWì²£¤§Àu¨}Áï¸¾ðºØ¡F¥»¬ã¨s¥H¤G¦~¥Í¤p]¤§¸¬°§÷®Æ¡AÂÇ»E¤þ²m²¸Ói½¦¹qªa¤ÀÂ÷§Þ³N¡A±´°Q3 Ӻط½4 ºØ×Q¨t²Î¡]½\Ói»Ä¯ó²¸¤A»ÄÂà®ò°ò×Q¡Bà¤Æ×Q¡B²õ¯ó»Ä²æ²B×Q¡B¹L®ñ¤Æ×Q¡^¤§6 Ó°ò¦]®y¦P¥\×Q°ò¦]«¬¤§¿ò¶ÇÅܲ§¡F¦P®É±´°Q¤£¦P¸ÄÖ¤§¹qªa¤ÀÂ÷µ²ªG¦³µL®t²§¡C¹êÅçµ²ªGÅã¥Ü¡A¥xÆWõѺط½¤º²§½èµ²¦XÅ餣¨¬¡A¦P½èµ²¦XÅé¹L¶q¡A³B©ó«D¥¿Åª¬ºA¡FºØ·½¤§¤À¤Æµ{«×¸û§C¡A¤j³¡¤ÀÅܲ§¦s¦bºØ·½¤º¡AºØ·½¶¡¤§Åܲ§¬ù¦ûÁ`Åܲ§¤§3%¡CºØ·½¤º¦P¥\×Q¤§Åܲ§¡A®Ú¾Ú¦h§Î©Ê°ò¦]®y¼Ð·Ç2 ¡]¡Ø0.99¡^Åã¥Ü¡A61.1% ¤§°ò¦]®y¬°¦h§Î©Ê¡C6 Ó°ò¦]®y©Ò¦³¼Ë¥»¤§²§½èµ²¦X©Ê¥§¡È¬°0.159 ¡A¨CÓ°ò¦]®y¤§¥§¡µ¥¦ì°ò¦]¼Æ¬°2.000 ¡CºØ·½¦P¥\×Q¤§¤À¤Æ¡A©Ò¦³°t¹ï²Õ¦X¡AºØ·½¶¡¤§¥§¡¿ò¶Ç¶ZÂ÷¬°0.016 ¡A¬GºØ·½¤§¤À¤Æ»P¦aÂ÷¶ZÂ÷¤§¹jÂ÷µL©úÅãÃö«Y¡C¤£¦P¸ÄÖ¤§¹qªa¤ÀÂ÷µ²ªGÅã¥Ü¡A½\Ói»Ä¯ó²¸¤A»ÄÂà®ò°ò×Q(GOT) ¡Bà¤Æ×Q(EST) »P²õ¯ó»Ä²æ²B×Q(SKDH)¥H·s¸¸û¬°²M´·¡A¹L®ñ¤Æ×Q(PER) «h¥H§¹¥þ¦¨¼ô¤§¦Ñ¸³Ì²M´·¥B§¹¾ã¡C | ||
½²©vèû | 79 | 0 | ³·±ùÂÅÑÛ¤§²Õ´°ö¾i | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ³·±ùÂÅÑÛ,²Õ´°ö¾i,·LÅéÁc´Þ,¦hªÞÅé,¤£©wªÞ,ì¥Í½èÅé | ¥»¸ÕÅç¹Á¸Õ«Ø¥ß³·±ùÂÅÑÛ(Eucalyptus
saligna)¤§·LÅéÁc´ÞÅé¨t¡Aªì¨Bµ²ªGÀò±x¡G¥H¤p]¤§±a¸`²ô¬q¡AF¡A³»ªÞ¡A¤l¸»PF¶b¬°°ö´ÓÅé¡A°ö¾i©ó²K¥[Cytokinin (BA ©ÎKN ) »PAuxin
(NAA) ¤§B °ö¾i°ò¡A¥i¥H»¤±o¦hªÞ©Î¤£©wªÞ¡C³Ì¾A©ó¦UºØ°ö´ÓÅ黤¾ÉªÞÅéµo¥Í¤§´Óª«¥Íªø½Õ¸`¾¯³B²z¤À§O¬°¡G¤p]¤§±a¸`²ô¬q¡G1 ppm KN ¡AF¡G0.5ppm BA ¡A³»ªÞ¡G1 ppm BA »P0.5
ppm NAA¡A¤l¸¡G1 ppm BA »P0.1 ppm NAA, F¶b: 1 ppm BA »P0.5 ppm NAA¡C»¤±o¤§ªÞÅé²¾¦Ü§t1%½©¿}¤§MS©TºA°ö¾i°ò©Î§t2%½©¿}¤§B5 ²GºA°ö¾i°ò¡A¸`¶¡¥iÄ~Äò©âªø¡C©âªøªºªK±ø¸g¤ÁÂ÷²¾´Ó©ó§t1-2%½©¿}»P1 ppm NAAªºMS©ÎB5 °ö¾i°ò¤¤¡Aµo®Ú²v¥i¹F100%¡C¦A¥Í¤§´Ó®è©ó·Å«Ç¤¤°·¤Æ¨}¦n¡A¦s¬¡²v¬ù¬°90% ¡A¥Íªø3Ó¤ë«á]°ª¥i¹F8 cm ¡C¨ú¦Û8¦~¥Í¦¨¼ô¤ì¤§°ö´ÓÅé¥ç¥i»¤±o¦hªÞÅé¡AµM¥Íªø¸ûºC¡A¤´°±¯d¦bªÞÅé¼W´Þ»P©âªø¤§¶¥¬q¡C ¥t¥HÄa¯B°ö¾i¤§²ÓM°µ¬°¤ÀÂ÷ì¥Í½èÅ骺§÷®Æ¡A¸g1% Cellulysin »P0.2% Pectolyase Y-23»Ã¯À·»²G³B²z¡Aì¥Í½èÅ馬¶q¬Æ¨Î¡A¥i¹F1.5¡Ñ10 /ml ¡C°ö¾i3¤Ñ«á¨ã¬¡¤O¤§ì¥Í½èÅé¬ù¬°78% ¡A¨ä¤¤86% §Î¦¨²ÓM¾À¡C |
||||
J¤åµ× | 78 | 0 | §ü¤ì¤§·LÅéÁc´ÞÁÖì¥Í½èÅé¤ÀÂ÷ | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | §ü¤ì,·LÅéÁc´Þ,ì¥Í½èÅé,¤ÀÂ÷,°ö¾i°ò,Äa¯B²ÓM | §ü¤ì(Cunninghamia lanceolata (Lamb.)
var. lanceolata)¤§²ô¬q°ö´ÓÅé¸g¸m¤H²K¥[BA l ppm¤ÎNAA
0.05 ppm¤§B5°ö¾i°ò¤¤¡A¥i»¤¥X°·§§¤§ªÞÅé¡FY¥H¥¼¦¨¼ôF¬°°ö´ÓÅé¡A«h¥H¤K¤ëµo¨|¦Ü±ßF¶¥¬q¤§¥¼¦¨¼ôF¡A¸m©ó²K¥[BA 3 ppm ¤ÎNAA
0.01 ppm¤§B5°ö¾i°ò¤¤¡A¥i»¤¥X¸û¦hªÞÅé¡CÀH«á±NªÞÅé°ö¾i©óMS°ö¾i°ò¤¤¡A¨Ï¤§©µ¦ù¦¨ªK±ø¡C±N¦¹ªK±ø¥HNAA 0.3-0.5 ppm»¤®Ú¡A¤@Ó¤ë«áµo®Ú²v¬ù57-69% ¡F¦¹µLµß]²¾¤J·Å«Ç¤¤°·¤Æ¡A¬ù¦³80%]¤ì¥i¦s¬¡¡A¦s¬¡¤§]ªL¤GӤ밪¥Íªø¬ù3¤½¤À¡C²ô¬qY¸m©ó²K¥[NAA 1-3 ppm ¤§MS°ö¾i°ò¤¤¡A¥i»¤¥X¡¦X²Õ´¨Ã¦³¤£©w®Ú¤§¤À¤Æ¡F¤¡B¤»¡B¤C¤ë¥¼¦¨¼ôF»¤¾É¡¦X²Õ´®ÄªG¡A¥H¤C¤ë¤§¥¼¦¨¼ôF³Ì¨Î¡A¨Ã¤À¤Æ§Î¦¨¤£©w®Ú¡C ¨ú§ü¤ìµLµß]¤§¸¬°ì¥Í½èÅé¤ÀÂ÷§÷®Æ®É¡A¥H±Ä¥Î0.5%ÅÖºû¯À ¡B0.5%¥bÅÖºû¯À ¤Î0.5%ªG½¦ ¤§»Ã¯À²V¦X·»²G³B²z21¤p®É¡A¥i¹F³Ì¤j²£¶q1.8¡Ñ10 /g¤ÀÂ÷®É¨Ï¥Î¤§º¯³zÀ£¾¯·»²G®ûªw90¤ÀÄÁ¡A¥i´£°ªì¥Í½èÅé²£¶q¡C Y¨úÄa¯B²ÓM¬°ì¥Í½èÅé¤ÀÂ÷§÷®É¡A¥H2%ÅÖºû¯À¡B0.5%¥bÅÖºû¯À ¤Î0.5%ªG½¦¤§»Ã¯À²V¦X·»²G³B²z8¤p®É¡A²£¶q³Ì°ª¡F¦Ó¥HNAA 5 ppm°ö¾i¤§Äa¯B²ÓM¡Aì¥Í½èÅé²£¶q¹F³Ì°ª1.9¡Ñ10 /ml ¡Cì¥Í½èÅé°ö¾i°ò¤º§t¿@«×12% (W/V) ¸²µå¿}¡A¥i°§Cì¥Í½è½¤¬ð¥X¤§¤ñ¨Ò¡A¥B©ó°ö¾i¹Lµ{¤¤³vº¥°§C¸²µå¿}¿@«×¡A¦³§U©óì¥Íª«½èÅé¦s¬¡¡Cì¥Í½èÅé©ó°ö¾i¤G¤Ñ«á§Î¦¨²ÓM¾À¡A8¤Ñ«áì¥Í½èÅéªì¦¸¤Àµõ¡A14¤Ñ«á§Î¦¨4-5 Ó²ÓM¤§·L²ÓM¹Î¡A¦ý¦¹·L²ÓM¹Î¨Ã¥¼¦AÄ~Äò¼W´Þ¡C |
||||
§õ±R»Ê | 77 | 0 | ¬h§üºØ·½¸ÕÅç¤Q¤¦~¥ÍªL¤ì¤§¥Íªøªí²{ | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ¾ð¤ì,¬h§ü,¥Íªø | TREE,WILLOW,FIR,GROW | ¥»¸ÕÅç©Ò¥Î¤§]¥»«Y©ó1972¦~¦Û¤é¥»¤Þ°_86Ó¬¡·½¤§ºØ¤l°ö¦Ó¦¨¡A©ó1974¦~¬K®â´Ó©ó¥þ¬Ù¤CÓ¸ÕÅç¦a¡A1976¦~¶i¦æ²Ä¤@¦¸½Õ¬d¡A1982¦~¶i¦æ¤G¦¸½Õ¬d¡A¤S©ó1987¦~¶i¦æ²Ä¤T¦¸½Õ¬d¡A½Õ¬d¦U¸ÕÅç¦aªL¤ì¤§¾ð°ª¡B¯Ý®|¡B¤OªKªø¡BªK¤U°ª¡B¾ð«a´T¡Bµ²¹ê²v¡BªQ¹«®`¡B¦s¬¡²v¡B¥§¡³æ¤ì§÷¿n¡A¥H¼h¯Å½Æ¦]¤l¼Ò¦¡¤ÀªR½Õ¬d¸ê®Æ¡A¨ä¦pªG¦p¦Z¡G ¦U¸ÕÅç¦a¤§¾ð°ª¥Íªø¥H¨F¨½¥P³Ì¨Î¡A·ËÀY¦¸¤§¡AÃö¤s³Ì®t¡A¯Ý®|¥Íªø¥H´ÏÄõ¤s35ªL¯Z³ÌÀu¡Aªü¨½¤s¦¸¤§¡AÃö¤s³Ì®t¡F¤OªK¥H¥É¨½³Ìªø¡A·ËÀY³Ìµu¡AªK¤U°ª¡A¥H·ËÀY³Ì°ª¡Aªü¨½¤s³Ì§C¡F¾ð«a´T¥H¥É¨½³Ì¤j¡AÃö³Ì¤p¡Fµ²¹ê²v¥É¨½³ÌÂסA¨F¨½¥P³Ì§C¡FªQ¹«®`¥H¥É¨½³ÌÄY«¡A´ÏÄõ¤s46ªL³Ì»´·L¡FªL¤ì¦s¬¡²v¥H·ËÀY³Ì°ª¡A¥É¨½³Ì§C¡F¥§C³æ¤ì§÷¿n«h¥H´ÏÄõ¤s35ªL¯Z³Ì¤j¡AÃö¤s³Ì®t¡C ¦U¸ÕÅç¦a¥§¡³æ¤ì§÷¿n¥Íªø³ÌÀu¤§ºØ·½¦p¤Uªí¡G ¢z¢w¢w¢w¢w¢s¢w¢w¢w¢w¢w¢w¢w¢s¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢{ ¢x¹êÅç¦a ¢x °Ï °ì ¢x ºØ ·½ §O ¢x ¢u¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢t ¢x·Ë ÀY ¢x ¥|°ê,¤E¦{ ¢x48,53,91,57,49,61,54,98,68,95 ¢x ¢u¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢t ¢x¨F¨½¥P ¢x ¥|°ê,Ãö¦è ¢x98,97,45,71,48,94,91,99,52,56 ¢x ¢u¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢t ¢xªü¨½¤s ¢x Ãö¦è,¥|°ê ¢x43,45,58,94,57,99,97,91,52,49 ¢x ¢u¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢t ¢xÃö ¤s ¢x ¤E¦{,¥|°ê ¢x52,1003,50,57,91,45,49,15,54,59 ¢x ¢u¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢t ¢x¥É ¨½ ¢x ¤E¦{,¥|°ê ¢x58,53,60,91,54,57,72,67,52,50 ¢x ¢u¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢t ¢x´ÏÄõ¤s35¢x¤E¦{,ÃöªF¢± ¢x56,50,57,4,55,60,54,44,94,76 ¢x ¢u¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢q¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢t ¢x´ÏÄõ¤s46¢x¤E¦{,ÃöªF¢± ¢x52,62,4,61,72,8,70,68,54,93 ¢x ¢|¢w¢w¢w¢w¢r¢w¢w¢w¢w¢w¢w¢w¢r¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢w¢} 2¦~¥Í¾ð°ª»P4¦~¥Í¾ð°ª¤Î10¦~¥Í¡B15¦~¥Í¾ð°ª¶¡§eÅãµÛ¥¿¬ÛÃö¡A±©¨ä¬ÛÃö«Y¼Æ§e»¼´î©ÊÁͶաA¬G¦´Á¥ÍªøY¥Hªø½ü¥ï´Á¬h§ü§@¬°¿ïºØ¨Ì¾Ú®É¡A¦ü©yÂÔ·V¡C |
|||
½²¨Î»T | 77 | 0 | ¥xÆW«ó¬f»P¬õÀ̲Õ´°ö¾i¤§¤j¶qÁc´Þ | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ¥xÆW,«ó¬f,¬õÀÌ,²Õ´,°ö¾i,Ác´Þ | TAIWAN,CYPRESS,CYPRESS,TISSUE,CULTIVATION,REPRODUCE | ¥»¬ã¨s¤§¥Øªº¦b©ó©úÁA¥xÆW«n°w¸¾ð¤@¯Å¤ì¤§¥xÆW«ó¬f»P¬õÀÌ¡A¨äÀ³¥Î²Õ´°ö¾i¤§¥i©Ê»P§Þ³N¡A»¤¾É¾¹©xµo¥Í¤ÎÅéF²£¥Í¡A¥H¹F¨ì¤j¶qÁc´Þ]¤ì¤§¥Øªº¡C¬ã¨s§÷®Æ¥H¥xÆW«ó¬f»P¬õÀ̤§¤l¸¡B°w¸¡B¤UF¶b¡B±a°w¸¤§²ô³»¡B²ô¬q¡B¦¨¼ôF¡B¥¼¦¨¼ôF¬°°ö´ÓÅé¡A°ö¾i©óWPM¡]modified¡^°ò¥»°ö¾i°ò¤¤¡A²K¥[NAA ¡]0-10 mg¢Al ¡^¡ABAP¡]0-20 mg¢Al ¡^¤£¦P¿@«×²Õ¦X¤§°ö¾i°ò¡A¥H»¤¾É¡¦X²Õ´¡A¤£©wªÞ¡B¦hªÞÅé©ÎÅéF¤§²£¥Í¡C µ²ªGÅã¥Ü¥H¤£¦P°ö¾i°ò¡A»¤¾ÉªÞÅé§Î¦¨¤§³~³w¦³¤TºØ¡G¢°¡Oª½±µ©ó°ö´ÓÅé¡]¤l¸ªí±¡B¤l¸°ò³¡¡B°w¸ªí±¡B°w¸°ò³¡¡B±a°w¸¤§²ô³»°ò³¡¡^²£¥Í¤£©wªÞ¡F¢±¡O¥Ñ°ö´ÓÅé¡]¤l¸¡B°w¸¡B¤UF¶b¡B±a°w¸¤§²ô³»¡B¬Æ¬q¡B¦¨¼ôF¡B¥¼¦¨¼ôF¡^¸g¡¦X²Õ´²£¥Í¤£©wªÞ¡F¢²¡O¥H±a°w¸¤§²ô³»¡B²ô¬q¬°°ö´ÓÅé¡A¥i»¤¾É¦hªÞÅé²£¥Í¡C ±N©Ò»¤±o¤§ªÞÅé¤À¤Á²¾´Ó¦ÜW15¡]NAA 0.1¡BBAP 0.5 mg¢Al ¡^°ö¾i°òÄ~¥N°ö¾i¡A¥iÀò±oªÞ¸s¤§¤j¶q¼W´Þ¡A¨ä³t«×¤Î¼Æ¶q§¡·¥¬°Åå¤H¡A¤×¨ä¥xÆW«ó¬f¥H¦¨¼ôF¡B¥¼¦¨¼ôF¬°°ö´ÓÅé¡F¬õÀÌ¥H±a°w¸¤§²ô³»¬°°ö´ÓÅé®É¡A¥i¹F¨ì³Ì¨Î¤§¼W´Þ®ÄªG¡C±NªÞÅé²¾¦Ü¤£§t¥ô¦ó´Óª«¥Íªø½Õ¸`¾¯¤§°ö¾i°ò¤¤¡A¸g¬ù30¤Ñ¥ª¥k¡A¥i«P¨ÏªK±ø¦ùªø¨Ã»¤¾Éµo®Ú¦Ó¦¨¬°¤@§¹¾ã´Ó®è¡AÀH«á±N¤p´Ó®è²¾¦Ü¥Hµí¥Û¡B¬Ã¯]¥Û¡Bªd¬´¤gµ¥¤ñ¨Ò²V¦X¤§¤¶½è¤¤¹¥¤Æ¥X®â¡A¤£¶È¥Íªø¨}¦n¡A¥B¦s¬¡²v¥i°ª¹F97¢H¥H¤W¡C¦ôp¤@¦~¤ºÁc´Þ8¼Æ¶q¡A³Ì¤Ö¥i¹F3.1¡Ñ10^8Ó´Ó®è¡C ¥xÆW«ó¬f¡]¦¨¼ôF¡B¥¼¦¨¼ôF¡B±a°w¸¤§²ô³»¡^»P¬õÀÌ¡]±a°w¸¤§²ô³»¡^¤§°ö´ÓÅé¡A©T©w¥HW14¡]NAA 0.5¡ABAP 2 mg¢Al ¡^°ö¾i°ò¡A¸gÄ~¥N°ö¾i2-3¥N«á¡F©Î¦AÂà´«¦ÜW15¡]NAA 0.1¡BBAP 0.5 mg¢Al ¡^°ö¾i°ò¡F©Î¬O©~©w¥HW15°ö¾i°ò¦æÄ~¥N°ö¾i¡A§¡·|²£¥ÍÅéF¡C |
|||
§d²QµØ | 77 | 0 | ¥xÆW§ü¤Î«Â¤ó«Ò§ü¤§²Õ´°ö¾i | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ¥xÆW,¥xÆW§ü,«Â¤ó«Ò§ü,²Õ´,°ö¾i | TAIWAN,TAIWANIA-CRYPTOMERIOIDES-HAY,PSEUDOTSUGA-WILSONIANA-HAY,TISSUE,CULTIVATION | ¥xÆW§ü¡]Taiwania
cryptomerioides Hay¡O¡^4Ó¤ë¥Í¹ê¥Í]²ô¬q°ö´ÓÅé¡A¥Î50 ppm Ampiciline¡B®ûªw15¤ÀÄÁ¡A¹ï²Óµß¦Ã¬V¤§§í¨î®ÄªG¥i¹F75¢H¡B¥BµLÃÄ®`¡F¸Ó°ö´ÓÅé©ó¢Ð5 °ö¾i°ò¡A¥[¤W0.1©Î0.01ppm MAA ¤Î1©Î3 ppm BA¡A¥i»¤±o¦hªÞÅé¡F¤ÁÂ÷¤§ªÞÅé¸g¢Ð5 ¥[¤W0.05
ppm NAA ¤§»¤®Ú°ö¾i°ò¥i100¢Hµo®Ú¡A§¹¾ã´Ó®è¡A¨Ã¥i¥¿±`ª½¥ß¥Íªø©ó·Å«Ç¡F¥t¥Ñ¦hªÞÅé²ô¬q»¤¦Ü¤§Â¡¦X²Õ´¡A¤£½×¸g¥Ñ©TºA°ö¾i©ÎÄa¯B°ö¾i¡A§¡¤À¤Æ¦¨¤£©w®Ú¡C¦b¦¨¼ôF¤§°ö¾i¤è±¡A¥i»¤¦ÜÂH¸Y©Ê¤§Â¡¦X²Õ´¡F¥t¥~¥H50-60¦~¥ÍªL¤ì·í¦~¥ÍªK±ø¬°°ö´ÓÅé¡Aµ²ªG¦h½Å¤Æ¦º¤`¡A¶È¤Ö¼ÆªK±øµÞµo¥X°¼ªÞ¡C «Â¤ó«Ò§ü¡]Pesudotsuga wilsoniana Hay¡O¡^¤§¤WF¶b°ö¾iµ²ªG¡A©ñ©óMS¡BDCR ¡BCheng ¤TºØ°ö¾i°ò¤¤¡A¥HMS¤ÎCheng °ö¾i°ò¯à»¤¦Ü¸û¦h¤§ªÞÅé¡AµM¨ä¤¤¶È4¢H¤§ªÞÅé¥i»¤±o®Ú¨t¡C°ö®ÚÅé©ó¤£§tBA¤§°ö¾i¡A¥i§Î¦¨ÃP³n¤§Â¡¦X²Õ´¡F²K¥[BAªÌ«h§Î¦¨ºñ¦â¡B°íµw¤§Â¡¦X²Õ´¡Aªí¼h¨Ã¤À¤Æ¦¨¥Õ¦â¡Bµ³¤òª¬¤§²ÓM¸s¡C |
|||
¾|¤B¼z | 76 | 0 | ¥xÆW¤TºØ©T¦³°w¸¾ð¤§²Õ´°ö¾i | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ¥xÆW,°w¸¤ì,µØ¤sªQ,¡¦X²Õ´,¬õ¨§§ü,¥xÆW§ü | TAIWAN | ¨úµØ¤sªQ¦¨¼ôF¡BF¶b¡B¤l¸¡B°w¸¡B²ôµ¥¬°°ö´ÓÅé¡A¥HMS°ö¾i°ò§@¬°°ò¥»°ö¾i°ò¡A¥Ñ¸ÕÅçµ²ªGÅã¥Ü¡A¦b¦¨¼ôF»P¥¼¦¨¼ô¤§°ö¾i¤¤¡A²K¥[1-6 mg/l 2,4-D ¡Ï¢°mg/l BA¡A¬Ò¥i±o¦X¯²Â´¡A³æ¿W¨Ï¥Î§C¿@«×Auxin¡]2,4-D
or NAA¡^ªÌ¡A¡¦X²Õ´¤§»¤µo¸ûºC¡C ²K¥[0.5 mg/l 2,4-D ¡Ï¢²mg/l BAªÌ¡A¸g·t¤¤³B²z¥i¨Ï¦¨¼ôF¤£¸g¥Ñ·U¦X²Õ´ª½±µ§Î¦¨¦hªÞÅé¡A¦Ó§t¢²mg/l 2,4-D ¡Ï¢±mg/l BA®É¡A«h¥i©ó¤l¸µÅ³¡²£¥ÍªÞÅé¡C §÷®Æ±Ä¶°¤§©u¸`¤Îµo¨|´Á¡A·|¼vÅT¡¦X²Õ´¥Í¦¨¤Î¾¹©x¤À¤Æ¡A¬õ¨§§ü©ó¤E¡B¤Q¤ë¶¡±Ä±o¤§°¼ªÞ¦b§t¢±mg/l NAA¡Ï¢°mg/l BA¤¤¥i±o¡¦X²Õ´¡A¦Ó¦b¤Q¤G¤ë©³±Ä±o¤§°¼ªÞ¡A¶È¦³µÞµoªø¦ÓµL¡¦X²Õ´²£¥Í¡C »OÆW§ü¦¨¼ôF¸m©ó§t¢²mg/l 2,4-D ¤§B5°ö¾i°ò¡A¥i»¤¥X¡¦X²Õ´¡AµM©¹©¹¦³¨Åª¬ÂH²G²£¥Í¡A¤l¸»PF¶b©ó¢²mg/l 2,4-D ¡Ï¢°mg/l BA¤§B5°ö¾i°ò¡A¥ç¥i±o¡¦X²Õ´¡AÄ~¥N°ö¾i«á¡A¥ç²£¥Í¦p«ez¤§±¡ªp¡A¦ý¥H0.5-1 mg/l ¤§penicillin¤Îrifampinicµ¥§Ü¥Í¯À¡A«h¥iÀò±o20-30¢H¤§±±¨î²v¡C |
|||
±i°ê·© | 76 | 0 | ¤£¦PºØ·½År¤j§ü¦P¦ì»Ã¯ÀÅܲ§¤§¬ã¨s | «¸®aµØ ,¤ý¨È¨k | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ºÓ¤h | ¾ð¤ì,År¤j§ü,¦P¦ì»Ã¯À,¹L®ñ¤Æ¦P¦ì»Ã¯À,à¦P¦ì»Ã¯À | CUNNINGHAMIA KONISHII HAY,ISOPEROXIDASE,ISOESTERASE | ¥»¹êÅç«Y§Q¥Î¹qªa¤ÀÂ÷ªk¤Î²Õ´¤Æ¾Ç¬V¦â§Þ³N¡A¬ã¨s¹L®ñ¤Æ¦P¦ì»Ã¯À¡]isoperoxidase¡^¤Îà¦P¦ì»Ã¯À¡]isoesterase ¡^©óÅr¤ì§ü¡]Cunninghamia konishii Hay¡^¤£¦P²Õ´¡B¤£¦PµÞµo¶¥¬q¤Î¤£¦PºØ·½]¤ì¤§Åܲ§±¡§Î¡C ¦U²Õ´¤¤¦@¥X²{29±ø¹L®ñ¤Æ¦P¦ì»Ã¯À±a¡B10±øà¦P¦ì»Ã¯À±a¡A¨ä«¬¦¡¤Î¿@«×ÀH²Õ´¡B¦¨¼ô«×¤§¤£¦P¦Ó²§¡C¤£¦PµÞµo¶¥¬q¤¤¦@¥X²{26±ø¹L®ñ¤Æ¦P¦ì»Ã¯À±a¡B19±øà¦P¦ì»Ã¯À±a¡A¨â¦P¦ì»Ã¯À±a©óF³¡§¡ÀHµoªÞ¤§¶i¦æ¦Ó¼W¥[¡FF®Ú¤§¹L®ñ¤Æ¦P¦ì»Ã¯À¸û¤l¸¦h¡A¦Óà¦P¦ì»Ã¯À«h¬Û¤Ï¡C ¤£¦PºØ·½]¤ì¹L®ñ¤Æ¦P¦ì»Ã¯À¤Îà¦P¦ì»Ã¯ÀÅܲ§¤è±¡A¨|]©Ò¥ÎºØ¤l«Y±Ä¦Û4Ӻط½¡B20®è¥À¾ð¡AªÞ¶b¥X²{¤§¥®]¬°¸ÕÅç§÷®Æ¡Aµ²ªG¦p¤U¡G ¢°¡D©Ò¦³ºØ·½¤¤¦@¥X²{29±ø¹L®ñ¤Æ¦P¦ì»Ã¯À±a¡B20±øà¦P¦ì»Ã¯À±a¡C¥H¨ä©ó¦UºØ·½¤¤¥X²{ÀW«×¶i¦æ¥d¤è¤ÀªR¡A¹L®ñ¤Æ¦P¦ì»Ã¯À±a°£»Ã¯À±a18¡B21¡B27¡B28¡B29®t²§¤£ÅãµÛ¥~¡A¨ä¾l§¡§e·¥ÅVµÛ®t²§¡Fà¦P¦ì»Ã¯À±a°£»Ã¯À±a8¡B12¡B13¡B14®t²§¤£ÅãµÛ¥~¡A¨ä¾l§¡§eÅãµÛ©Î·¥ÅãµÛ®t²§¡C ¢±¡D¥H¥d¤è¤À¥¬¤ÀªR¨âºØ·½¶¡¤§Åܲ§®É¡A¤GºØ¤£¦P»Ã¯À¦U¦³6²Õ°t¹ï¡A¬Ò§e·¥ÅãµÛ®t²§¡F¦Ó¥H°Ï§O¦ôȤÀªR®É¡A«h6¹ï¥ç§¡§e·¥ÅãµÛ®t²§¡C ¢²¡DÅܲ§¤ÀªRµ²ªG¹L®ñ¤Æ¦P¦ì»Ã¯À¦³»Ã¯À±a10¡B11¡B22¡B24µ¥¢³±aÅãµÛÅãµÛ®t²§¡Fà¦P¦ì»Ã¯À«h¦³»Ã¯À±a1¡B2¡B9¡B10¡B16¡B17¡B19¡B20µ¥8±a§eÅãµÛ©Î·¥ÅãµÛ®t²§¡A¤Wz¤§»Ã¯À±a¥i°µ¬°°Ï§OºØ·½¤§¨Ì¾Ú¡C¨âºØ»Ã¯À¤¤¤j¦h¼Æ»Ã¯À±a¤§Åܲ§¦¨¤À¥HºØ·½¤º¸ûºØ·½¶¡¬°¤j¡C |
|||
¤ý¨È¨k | 75 | 0 | ¥xÆWªo§üªº¥Í´Þ¶g´Á»P¨ä¸Ñå¾Ç¬ã¨s | ¼B´Å·ç | °ê¥ß¥xÆW¤j¾Ç | ´ËªL¬ã¨s©Ò | ³Õ¤h | ¥xÆW,ªo§ü,¥Í´Þ¶g´Á,¨t²Î¤ÀÃþ¾Ç,¨|ªL¾Ç | TAIWAN | ¤@¡B¥»¬ã¨s©Ò¥Î¤§¥xÆWªo§ü§÷®Æ¡A«Y¥H®â´Ó©ó¥x¥_´Óª«¶éªÌ¬°¥D¡A¦Ó¥H©WªL¤§¤ÑµM¥ÍªÌ¬°»²¡Cªì´ÁÆ[¹î¤D¦Û¥Á°ê69¦~11¤ë°_¡A¦Ü71¦~4¤ë¬°¤î¡C¨ä«á¦b71¦~4¤ë¦Ü76¦~4¤ë¶¡´¿Ä~Äò±Ä¶°¤ÎÆ[¹î¡C©Ò±Ä¶°»PÆ[¹î¤§¥xÆWªo§ü³¡¥÷¡A¥]¬A¤£¦P®É´Á¤§Àç¾i¾¹©x¡A¦pªK¡B¸»P¥Í´Þ¾¹©x¡A¦p»Û¡B¶¯ªá¤ÎªG¹ê¡C§Q¥Î©ñ¤jÃè¡BNikon FX35A ¥ú¾ÇÅã·LÃè¤Î¤é¥ßS-550©ÎS-520±½´y¦¡¹q¤lÅã·LÃèµ¥¥J²ÓÆ[¹î¨ä¥~§Î¡AµM«áÄá¼v¨Ã¬ö¿ý¡AÚ¯à¤F¸Ñ¨ä¦b¥Íª«¾Ç¤W¤§¯S·L¡A¥Dn¬°¨ä¥Í´Þµo¨|¤§¹Lµ{¡A¥ç§Y¨ä¥Í¬¡¥v¡C ¤G¡B®Ú¾ÚÆ[¹î¡A¥xÆWªo§üÀç¾iªÞ¤§¬¡°Ê¡A¥i¤À¬°¤TӮɴÁ¡G§Y¡]1¡^²Ä¤@¥Íªø´Á¥Ñ4¤ë¤W¦¯¦Ü6¤ë¤U¦¯¡F¡]2¡^²Ä¤G¥Íªø´Á¥Ñ7¤ë¤W¦¯¦Ü10¤ë¤U¦¯¡F¡]3¡^ÀR¤î´Á¥Ñ11¤ë¤W¦¯¦Ü²Ý¦~3¤ë¤U¦¯¡C¦bÀR¤î®É´Á¡AÀç¾iªÞ³»ºÝ¤º³¡¤À¥Í²Õ´¤§Åé¿n¸û¤j¡A¦Ó¥Íªø¬¡°Ê©ô²±®É´Á¡AÅé¿n¤Ï¦ÓÅܤp¡A¦¹·íµM¤D¥Ñ©ó¸Ó³¡¤À²Õ´¤§¤À¤Æ»P¾i¤À¤§®ø¯Ó¨ÏµM¡C¥Í´ÞªÞ¥Ñ³¡¤ÀµÅªÞÂàÅܦӦ¨¡A³q±`¦b¨C¦~7¡B8¤ë¶¡¶}©l¤À¤Æ¡C ¤T¡B¥xÆWªo§üªº¶¯²AªáµÛ¥Í¦b¤pªKªº³»ºÝ©Î¸µÅ¡A³q±`²£¥Í3-7¦·¦Ó§Î¦¨¤@ÀYª¬ªá§Ç¡C3¤ë¤W¦¯¡A¦bªÞÅì®i¶}¤§«á¡A²Aªá©l¦æÅS¥X¡C2¤ë¤W¦¯¦¨¹Î¤§ÌUì²ÓM¤£Â_¶i¦æ¤Àµõ¡A§Î¦¨ªá¯»¥À²ÓM¡A¸gµu¼È¥ð¯v«á¡A2¤ë©³ªá¯»¥À²ÓM©¼¦¹¤ÀÂ÷¡C¦Ü3¤ë¤W¦¯¡A¶¯²Aªá¦bªá§Ç¤¤®i¶}¤§»Ú¡A¥À²ÓM¶}©l¦æ´î¼Æ¤Àµõ¡A¦b¨â¦¸¤Àµõ³sÄò¶i¦æ¤§«á¡A¹E§Î¦¨¥|¤À¤lÅé¡C·íÌU¤lÅn®i¶}®É¡A¥|¤À¤lÅé¤D¤ÀÂ÷¦Ó¦¨¬°´åÂ÷¤§¤pÌU¤l¡A§Yªá¯»¡C¦¹®Éªá¯»²ÓM¤Àµõ¦Ó§Î¦¨°h¤Æì¸Åé²ÓM¡B¤@¥Í´Þ²ÓM¤Î¤@ºÞ²ÓM¡Cªá¯»Ån¦¨¼ô¡A§Y¦æÁaµõ¡A¥H´²¥Xªá¯»¡C¥xÆWªo§üªº¶Ç¯»¦Ü±Âºë¡A¬ù»Ý2Ó¤ë¡C ¥|¡B»ÛªáªÞ°_·½©óc¤ù¤§ªÞì¡C11¤ë¤¤¦¯¡A¥i¬Ý¨ì¥Ñ¯]Åìªñªñ¶b¤@±¤§ªí¥Ö²ÓM©Ò§Î¦¨ªº¯]ì¡A¦Ü12¤ë¤W¦¯¤w¤À¤Æ¦¨µ¥°ª¦Ó¬°¼Æ¬ù6Ó²ÓM¤§¯]¤ß»P¯]¥Ö¡C¸g¹L¥ð¯v¡A¦Ü2¤ë©³¡A¯]¥Ö¥Íªø¥[³t¡A¶W¹L¯]¤ß¡A¦¹®É¥i¨£¯]¤Õ¡C¦b3¤ë¤U¦¯¡AÌUì²ÓM¤À¤Æ¡A¦¨¬°¤jÌU¤l¥À²ÓM¡C¥xÆWªo§ü¦b4¤ë¤W¦¯¡Aªá¯»§Y¥i¸´²¦Ü¯]¤Õ¡A¶Ç¯»«á¡A¤º°¼¤§¯]¥Ö²ÓM¦V¤¤¥¡©µ¦ù¡A¥Rº¡¯]¤Õ¦Ó±N¤§ªý¶ë¡A¨Ï¯]¤ÕÃö³¬¡C¦¹®É¤jÌUì²ÓM¶i¦æ´î¼Æ¤Àµõ¡A§Î¦¨½u§Î¤§¥|¤À¤lÅé¡A¨ä¤¤3Ó²ÓM±`¥ß§Y°h¤Æ¦ÓµäÁY¡A¶È¦s¤@Ó¤jÌU¤l²ÓM¡C¦¹¤@¤jÌU¤l²ÓM¤§®Ö¡A³sÄò¶i¦æ¤Àµõ¥H§Î¦¨°t¤lÅé¡C»Û°t¤lÅé°_ªì¬°¤@´åÂ÷¤§¦h®ÖÅé¡AÀH«á²ÓM¾À¶}©l¥X²{¡A»Û°t¤lÅé©lµo¨|¬°¤@¹ê¤ß¤§¦h²ÓM²Õ´¡C¦b¦¹°t¤lÅé§Î¦¨¤§¦P®É¡A¤Wªí¥Ö¤º¦³¨Çì¸Åé²ÓM§Y¤pÅnM§Î¦¨ÂçZ¾¹©lì²ÓM¡A¤Àµõ§Î¦¨ì©lÀV²ÓM¡B¤¤¥¡²ÓM¡]¦¹²ÓM«áÅܦ¨¤@¸¡·¾²ÓM®Ö»P§Z®Ö¡^¡C6¤ë¤¤¦¯¦b±Âºë¤§«á¡A§Y§Î¦¨¨üºë§Z¡C¨üºë§ZÀH¶i¦æ¤Àµõ¡Aµo¨|¦Ó§Î¦¨F¡C¥xÆWªo§üªºìF«Y¥Ñ4¼hªº16Ó²ÓM©Ò¦¨¡F¦´ÁªºF¬°¤Àµõªº¦hF¡A¥X²{©ó³Ì«á§Î¦¨ªºFºÞ¤§¤W¡F8¤ë¤U¦¯¡A±ß´ÁªºF¤º¦UºØ¾¹©x¤w¤À¤Æ§¹¦¨¡AFªº¤l¸¦³2-5ªT¡AµoªÞ®É¤£¥X¤g¡CºØ¤l¦b10¤ë«Ý¦¨¼ô¡AÀHºØ¤l¤§¦¨¼ô¡AªGÅì¦b11-12¤ë±i¶}¡A¥H´²¥XºØ¤l¡CºØ¤l¸´²«á¡A²AªG¥iÄ~Äò¯d¦s¦b¥À¾ð¤W1-2¦~¡C ¤¡B®Ú¾Ú²Îp¡A¥xÆWªo§üªººØ¤l85¢H¬°ªÅ²É¡AµoªÞ²v¶È¬°0.5¢H¡A¥i¯à«Y¦]¦Ûªá¶Ç¯»¤§¬G¡CµoªÞ®É¡AF®Ú¥Íªø¨³³t¡A3¤Ñ¤º¥iªø¦Ü2-3¤½¤À¡AµL®Ú¤ò¡F¥®²ô¤W«h±K§G»È¥Õ¦â¤§µ³¤ò¡A·sªø¥X¤§¥®¸8-10ªT¡A§eÁ³±Ûª¬±Æ¦C¡A¸I¤w¦³©úÅ㤧®ð¤Õ±a¡C ¤»¡B´N§@ªÌ¥»¦¸¤§Æ[¹î»P¬ã¨s¡A¤wª¾¥xÆWªo§ü¤§¥Í¬¡¥v¬ù»Ý16Ó¤ë©l¯à§¹¦¨¡C ¤C¡B¤S¥»¤å¥t±N¥xÆWªo§ü¤§¥Í¨|²ß©Ê¡B¤ÑµM¥Í¨|¦aÀô¹Ò¡A½Ñ¦p®ðÔ¡B¥Í¨|¦a¤gÄ[¡B¦ñ¥Í´Óª«¤Î¨ä¦a²z¤À§G¡F¥t±N¥xÆWªo§ü¤ì§÷©Ò§t¤§ºëªo¡B¥®]©I§l¶q¤Î¬V¦âÅéµ¥§¡´¿§ãnµ¹¤©±Ôz¡AÂÇ¥H¨Ñ¨t²Î¤ÀÃþ¾Ç¤Î¨|ªL¾Ç¬ã¨s¤W¤§°Ñ¦Ò¡C |