Using genetic risk score approaches to infer whether an environmental factor attenuates or exacerbates the adverse influence of a candidate gene

Wan-Yu Lin^{1,2}*, Yu-Shun Lin¹, Chang-Chuan Chan^{2,3}, Yu-Li Liu⁴, Shih-Jen Tsai^{5,6}, Po-Hsiu Kuo^{1,2}

¹ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan

² Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan

³ Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan

⁴ Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan

⁵ Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan

⁶ Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan

⁷ Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan

* Corresponding author:

Wan-Yu Lin, Ph.D. Room 501, No. 17, Xu-Zhou Road, Taipei 100, Taiwan Phone/Fax: +886-2-33668106; E-mail: <u>linwy@ntu.edu.tw</u>

Figure S1 Empirical type I error rates under the nominal significance level of 0.05 (binary trait)

Figure S2 The sensitivity of the marginal-association filtering in ENET, LASSO, and SBERIA, for continuous traits and P(E = 1) = 0.2

Figure S3 The positive predictive value of the marginal-association filtering in ENET, LASSO, and SBERIA, for continuous traits and P(E = 1) = 0.2

Figure S4 Power given a significance level of 0.05, for continuous traits and P(E = 1) = 0.5

Figure S5 Percentages of sign-misspecifications for γ_{Int} , under continuous traits and P(E = 1) = 0.5

Figure S6 Power given a significance level of 0.05, for continuous traits and a continuous E

Figure S7 Percentages of sign-misspecifications for γ_{Int} , under continuous traits and a continuous *E*

Figure S8 Power given a significance level of 0.05, for binary traits, P(Y = 1) = 0.1, and P(E = 1) = 0.2

Figure S9 Percentages of sign-misspecifications for γ_{Int} , under binary traits, P(Y = 1) = 0.1, and P(E = 1) = 0.2

Figure S10 Power given a significance level of 0.05, for binary traits, P(Y = 1) = 0.4, and P(E = 1) = 0.2

Figure S11 Percentages of sign-misspecifications for γ_{Int} , under binary traits, P(Y = 1) = 0.4, and P(E = 1) = 0.2

Figure S12 Power given a significance level of 0.05, for binary traits, P(Y = 1) = 0.1, and P(E = 1) = 0.5

Figure S13 Percentages of sign-misspecifications for γ_{Int} , under binary traits, P(Y = 1) = 0.1, and P(E = 1) = 0.5

Figure S14 Power given a significance level of 0.05, for binary traits, P(Y = 1) = 0.4, and P(E = 1) = 0.5

Figure S15 Percentages of sign-misspecifications for γ_{Int} , under binary traits, P(Y = 1) = 0.4, and P(E = 1) = 0.5

Figure S16 The sensitivity of the marginal-association filtering in ENET, LASSO, and SBERIA, for binary

traits, P(Y = 1) = 0.4, and P(E = 1) = 0.5

Figure S17 The positive predictive value of the marginal-association filtering in ENET, LASSO, and SBERIA, for binary traits, P(Y = 1) = 0.4, and P(E = 1) = 0.5

Figure S18 Power given a significance level of 0.05, for binary traits, P(Y = 1) = 0.1, and a continuous E

Figure S19 Percentages of sign-misspecifications for γ_{Int} , under binary traits, P(Y = 1) = 0.1, and a continuous E

Figure S20 Power given a significance level of 0.05, for binary traits, P(Y = 1) = 0.4, and a continuous E

Figure S21 Percentages of sign-misspecifications for γ_{Int} , under binary traits, P(Y = 1) = 0.4, and a continuous E

Figure S22 Average time spent (in seconds) for each simulation replication, under H_0 , for continuous traits.

Figure S23 Average time spent (in seconds) for each simulation replication, under H_0 , for binary traits.

Figure S24 Average time spent (in seconds) for each simulation replication, under H_1 , for continuous traits and P(E = 1) = 0.2

Figure S25 Average time spent (in seconds) for each simulation replication, under H_1 , for continuous traits

and P(E = 1) = 0.5

Figure S26 Average time spent (in seconds) for each simulation replication, under H_1 , for binary traits,

P(Y = 1) = 0.1, and P(E = 1) = 0.2

Figure S27 Average time spent (in seconds) for each simulation replication, under H_1 , for binary traits,

P(Y = 1) = 0.4, and P(E = 1) = 0.2

Figure S28 Average time spent (in seconds) for each simulation replication, under H_1 , for binary traits,

P(Y = 1) = 0.1, and P(E = 1) = 0.5

Figure S29 Average time spent (in seconds) for each simulation replication, under H_1 , for binary traits,

P(Y = 1) = 0.4, and P(E = 1) = 0.5