Methods and applications for geneenvironment interaction analysis

林菀俞 (Wan-Yu Lin)

2019.11.04

http://homepage.ntu.edu.tw/~linwy/

Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan

Importance of gene-environment interactions

- A different effect of an environmental exposure on disease risk in subjects with different genotypes
- A different effect of a genotype on disease risk in subjects with different environmental exposures
- Gene-by-drug interactions
- Gene-by-treatment interactions
- While hereditary materials are inborn, environmental exposures can be changed

Three scales of G x E interaction analysis

- SNP x E interaction analysis
 ➤ whether p < 5 × 10⁻⁸ (0.05/1,000,000)
- Gene x E interaction analysis > whether $p < 2.5 \times 10^{-6}$ (0.05/20,000)
- GRS x E interaction analysis
 - GRS: Genetic risk score

> whether p < 0.05 (0.05/1)

Figure 2. Association between the GRS and BMI in the inactive and 'combined active' groups (N = 111,421). Physical activity was estimated according to the Cambridge Physical Activity Index (CPAI), where the inactive group is defined as individuals with a CPAI of 1 and the 'combined active' group as individuals with a CPAI of 2–4. doi:10.1371/journal.pgen.1003607.g002

Ahmad S et al., PLoS Genet 2013;9:e1003607.

97 BMI-associated SNPs

Locke AE *et al. Nature*, 2015; 518(7538):197–206 (322,154 individuals of European descent and 17,072 individuals of non-European descent)

In Taiwan Biobank	BMI	Body fat %	Waist circumfere nce	Hip circumfere nce	Waist-to- hip ratio
Number of SNPs with p < 5x10 ⁻⁸	1	0	0	0	0
Number of SNPs with p < 0.01	20	12	14	15	5
Number of SNPs with p < 0.05	29	20	28	22	12

External genome-wide association studies (GWASs) are not always available, especially for non-Caucasian ethnicity.

Briefings in Bioinformatics, 00(00), 2018, 1–17

doi: 10.1093/bib/bby086 Advance Access Publication Date: 13 September 2018 Review Article

Polygenic approaches to detect gene–environment interactions when external information is unavailable

Wan-Yu Lin©, Ching-Chieh Huang, Yu-Li Liu, Shih-Jen Tsai and Po-Hsiu Kuo

> Open-assessed article: <u>https://academic.oup.com/bib/advance-</u> article/doi/10.1093/bib/bby086/5091280

Genetic risk score (GRS) approach

Pruning
 Filtering
 Testing

Lin W-Y, Chan C-C, Liu Y-L, Yang AC, Tsai S-J, Kuo P-H (2019) Performing different kinds of physical exercise differentially attenuates the genetic effects on obesity measures: Evidence from 18,424 Taiwan Biobank participants. *PLoS Genet* 15(8): e1008277. https://doi.org/10.1371/ journal.pgen.1008277

Open-assessed article:

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008277

Genetic risk score (GRS) approach

Pruning
 Filtering
 Testing

Pruning

- SNPs in high linkage disequilibrium (LD) were first pruned to avoid multicollinearity
- We used PLINK 1.9 command "plink --bfile TWBGWAS --chr 1-22 --indep 50 5 2" to prune SNPs in high LD
- We removed SNPs with a variance inflation factor > 2 within a sliding window of size 50, where the sliding window was shifted at each step of 5 SNPs

Genetic risk score (GRS) approach

Pruning Filtering Testing

Filtering

$BMI = \beta_0 + \beta_{SNP,i}SNP_i + \beta_c Covariates + \varepsilon,$ $i = 1, \cdots, 142040, \quad (1)$

where SNP_i is the number of minor alleles at the *i*th SNP (0, 1, or 2) and ε is the error term. By testing H_0 : $\beta_{SNP,i} = 0 \ vs. H_1$: $\beta_{SNP,i} \neq 0$, we obtained a *P*-value regarding the marginal association of the *i*th SNP with BMI.

Covariates included sex, age (in years), drinking status (yes vs. no), smoking status (yes vs. no), educational attainment (a value ranging from 1 to 7), and the first 10 principal components.

$BMI = \beta_0 + \beta_{SNP,i} SNP_i + \beta_c Covariates + \varepsilon,$ $i = 1, \cdots, 142040, \quad (1)$

 $BMI = \gamma_0 + \gamma_{SNP,i}SNP_i + \gamma_E E$ + $\gamma_{Int,i}SNP_i \times E + \gamma_C Covariates + \varepsilon,$ $i = 1, \dots, 142040, (2)$

 $\hat{\beta}_{SNP,i}$ and $\hat{\gamma}_{Int,i}$ are asymptotically independent under the null hypothesis of no SNP-byenvironment interaction (Dai *et al. Biometrika*, 2012;99(4):929-44)

Dai et al. Biometrika, 2012;99(4):929-44

THEOREM 2. Let $(Y_i, V_{i1}, \ldots, V_{ip})$ $(i = 1, \ldots, n)$ denote independent and identically distributed random variables sampled from a joint probability function \mathcal{P} , where Y is an outcome variable in a generalized linear model with a canonical link function g, and (V_{i1}, \ldots, V_{ip}) are p covariates. Let (V_{i1}, \ldots, V_{iq}) , with q < p, be the first q covariates in the set (V_{i1}, \ldots, V_{ip}) . Consider two nested generalized linear models

$$g\{E(Y \mid V_1, \dots, V_q)\} = \beta_0 + \sum_{j=1}^q \beta_j V_j,$$
(2)
$$g\{E(Y \mid V_1, \dots, V_q)\} = \alpha_0 + \sum_{j=1}^p \alpha_j V_j,$$
(2)

$$g\{E(Y \mid V_1, \dots, V_p)\} = \gamma_0 + \sum_{j=1} \gamma_j V_j.$$
 (3)

Under regularity conditions for maximum likelihood estimation under misspecified models, the maximum likelihood estimators $(\hat{\beta}_0, \ldots, \hat{\beta}_q)$ and $(\hat{\gamma}_{q+1}, \ldots, \hat{\gamma}_p)$ are asymptotically independent.

$$g\{E(Y)\} = \beta_0 + \beta_{SNP,i}SNP_i + \beta_c Covariates$$
(1)

$$g\{E(Y)\} = \gamma_0 + \gamma_{SNP,i}SNP_i + \gamma_C Covariates + \gamma_E E + \gamma_{Int,i}SNP_i \times E$$
(2)

Genetic risk score (GRS)

Given a *P*-value threshold (a filter), the 142,040 SNPs were allocated into a **BMI-associated set** and a BMI-unassociated set according to their marginal-association *P*-values. Suppose there were *m* SNPs associated with BMI, the BMI genetic risk score (BMIGRS) was calculated as $\sum_{i=1}^{m} \hat{\beta}_{SNP,i} SNP_i$, where the weights ($\hat{\beta}_{SNP,i}$, i = 11, \cdots , m) had been estimated from model (1).

Genetic risk score (GRS) approach

Pruning
 Filtering

3. Testing

Testing

$$\begin{split} BMI &= \\ \beta_0 + \beta_{GRS} BMIGRS + \beta_E E + \beta_{Int} BMIGRS \times \\ E + \beta_C Covariates + \varepsilon, \end{split}$$

where *E* is the environmental factor such as regular exercise (1 or 0). By testing H_0 : $\beta_{Int} = 0 vs. H_1$: $\beta_{Int} \neq 0$, we obtained a *P*-value regarding the interactions between *BMIGRS* and *E*.

(3)

Previous G×E analyses have typically constructed a GRS using SNPs that reached the genome-wide significance level (i.e., $p < 5 \times 10^{-8}$).

RESEARCH ARTICLE

Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status

Mathias Rask-Andersen*, Torgny Karlsson, Weronica E. Ek, Åsa Johansson

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

* mathias.rask-andersen@igp.uu.se

Abstract

Previous genome-wide association studies (GWAS) have identified hundreds of genetic loci to be associated with body mass index (BMI) and risk of obesity. Genetic effects can differ between individuals depending on lifestyle or environmental factors due to gene-environment interactions. In this study, we examine gene-environment interactions in 362,496 unrelated participants with Caucasian ancestry from the UK Biobank resource. A total of 94 BMIassociated SNPs, selected from a previous GWAS on BMI, were used to construct weighted genetic scores for BMI (GS_{BMI}). Linear regression modeling was used to estimate the effect of gene-environment interactions on BMI for 131 lifestyle factors related to: dietary habits, smoking and alcohol consumption, physical activity, socioeconomic status, mental health,

Citation: Rask-Andersen M, Karlsson T, Ek WE, Johansson Å (2017) Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet 13(9): e1006977. https://doi.org/10.1371/journal. pgen.1006977

- However, some studies have suggested that a GRS comprising more SNPs can improve the prediction for a phenotype.
- SNPs that interact with an environmental factor may not necessarily present a strong marginal association with the phenotype.
- To explore G×E, it is worthwhile to consider a more liberal threshold than the genome-wide significance level (5×10⁻⁸).

<i>P</i> -value threshold	No. of SNPs used to calculate the BMIGRS	BMIGRS
0.0001	24	BMIGRS ₁
0.00025	66	BMIGRS ₂
0.0005	116	BMIGRS ₃
0.001	209	BMIGRS ₄
0.0025	481	BMIGRS ₅
0.005	870	BMIGRS ₆
0.01	1,690	BMIGRS ₇
0.025	4,047	BMIGRS ₈
0.05	7,753	BMIGRS ₉
0.1	15,206	BMIGRS ₁₀

- $BMI = \beta_0 + \beta_{GRS} BMIGRS_1 + \beta_E E + \beta_{Int_1} BMIGRS_1 \times E + \beta_C Covariates + \varepsilon,$
 - ➢ By testing H₀: β_{Int₁} = 0 vs. H₁: β_{Int₁} ≠ 0, we obtained P_{Int_1}
- $BMI = \beta_0 + \beta_{GRS} BMIGRS_2 + \beta_E E + \beta_{Int_2} BMIGRS_2 \times E + \beta_C Covariates + \varepsilon,$
 - ➢ By testing H₀: β_{Int₂} = 0 vs. H₁: β_{Int₂} ≠ 0, we obtained $P_{Int₂}$

- $BMI = \beta_0 + \beta_{GRS} BMIGRS_{10} + \beta_E E + \beta_{Int_{10}} BMIGRS_{10} \times E + \beta_C Covariates + \varepsilon,$
 - ➢ By testing H₀: β_{Int₁₀} = 0 vs. H₁: β_{Int₁₀} ≠ 0, we obtained P_{Int₁₀}

$$P_{Int} = 10 \times min\{P_{Int_1}, P_{Int_2}, \cdots, P_{Int_{10}}\}$$

Bonferroni-corrected P-value

Table 3. Interaction between GRS and exercise on each obesity measure (significant results with $p < 9.1 \times 10^{-5}$ are highlighted).

Regular exercise x 5 obesity measures = 5 tests 18 kinds of exercise x 5 obesity measures = 90 tests		BMI (kg/m ²)		Body fat %		Waist circumference (cm)		Hip circumference (cm)			
	No. of subjects	% of males	Age (years), mean (s.d.)	$\hat{\boldsymbol{\beta}}_{Int}$	GRS-M <i>P</i> -value ¹	$\hat{\boldsymbol{\beta}}_{Int}$	GRS-M <i>P</i> -value ¹	$\hat{\boldsymbol{\beta}}_{Int}$	GRS-M <i>P</i> - value ¹	$\hat{\boldsymbol{\beta}}_{Int}$	GRS-M <i>P</i> -value ¹
Regular exercise	7,652	50.9	53.5 (10.3)	- 0.43 ²	1.3E-32 (4,047) ³	-0.62	1.2E-15 (865)	-0.70	3.0E-13 (3,987)	-0.70	1.0E-18 (1,652)

Lin W-Y, et al. (2019) *PLoS Genet* 15(8): e1008277.

(A) P-value of BMIGRS x exercise = 1.3E-32

Lin W-Y, et al. (2019) *PLoS Genet* 15(8): e1008277.

Regression models stratified by exercise types

- Why stratified analysis? It is a simpler way to view interactions.
- Concept: If BMIGRS-by-exercise interaction exists, we will see different BMIGRS effects on BMI for subjects engaging in different exercise types.
- $BMI = \beta_0 + \beta_{GRS} BMIGRS_9 + \beta_c Covariates + \varepsilon$
- BMIGRS was calculated at the marginal-association P-value threshold of 0.05, because 0.05 is generally considered as the significance level in statistical analyses.
- Covariates included sex, age (in years), drinking status (yes vs. no), smoking status (yes vs. no), educational attainment (a value ranging from 1 to 7), and the first 10 principal components.

When will the GRS method be less powerful?

Recall our filtering step:

$BMI = \beta_0 + \beta_{SNP,i} SNP_i + \beta_c Covariates + \varepsilon,$ $i = 1, \cdots, 142040,$ (1)

Note: If SNPs interacting with *E* present no marginal associations with the phenotype, these SNPs cannot be found from the filtering step and the GRS method will be less successful.

Adaptive Combination of Bayes Factors (ADABF) Method

 $g[E(Y)] = \gamma_0 + \gamma_{SNP,i}SNP_i + \gamma_E E$ + $\gamma_{Int,i}SNP_i \times E + \gamma_C Covariates + \varepsilon,$ $i = 1, \dots, 142040, (2)$

 $H_0: \gamma_{Int,i} = 0 \ vs. H_1: \gamma_{Int,i} \neq 0$

P-value carries no information from the alternative hypothesis and power, which varies with minor allele frequencies (MAFs).

 \rightarrow BF quantifies the '**relative**' evidence in favor of H₁.

Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. *Am J Hum Genet* 2007;**81**:208–27.

$$\hat{\gamma} \sim N(\gamma, V)$$
$$\gamma \sim N(0, W)$$

Wakefield J. Bayes factors for genome-wide association studies: comparison with P-values. *Genet Epidemiol* 2009; **33**:79–86.

$$BF = \frac{\Pr\left(Data \mid H_{1}\right)}{\Pr\left(Data \mid H_{0}\right)} = \sqrt{\frac{\hat{V}}{\hat{V} + W}} \exp\left(\frac{\hat{\gamma}^{2}W}{2\hat{V}\left(\hat{V} + W\right)}\right)$$

 $W = 0.2^2 = 0.04$ (*from WTCCC*)

WTCCC. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. *Nature* 2007;**447**:661–78.

Prior distribution of ORs

Sort
$$BF_{(1)} \ge BF_{(2)} \ge \dots \ge BF_{(L)}$$

Significance score $S_k = \sum_{l=1}^k \log(BF_{(l)}), \ k = 1, \dots, L$

Summing the largest k log(BF) => log likelihood ratio

$$S_1 = \sum_{l=1}^{1} \log(BF_{(l)}) = \log(BF_{(1)})$$
 Will be powerful if only
one SNP interacts with E

$$S_{2} = \sum_{l=1}^{2} \log \left(BF_{(l)} \right) = \log \left(BF_{(1)} \right) + \log \left(BF_{(2)} \right)$$
 Will be powerful if two SNPs interact with E

$$S_L = \sum_{l=1}^{L} \log \left(BF_{(l)} \right)$$

•

Will be powerful if all *L* SNPs interact with E

ADABF

- The significance scores will be compared with their counterparts from resampling replicates (under H₀)
- The R source code can be downloaded from http://homepage.ntu.edu.tw/~linwy/ADABFG EPoly.html

Lin W-Y, et al. (2018). *Briefings in Bioinformatics*, in press. DOI: 10.1093/bib/bby086.

	ADABF ¹			
SNPxalcohol on DBP (based on 7,652 SNPs)				
P-value	< 0.00001			
SNP found to have interaction with alcohol consumption	rs10811568 (Resampling FDR = 1.2%)			
SNPxalcohol on SBP (based on 7,508 SNPs)				
P-value	< 0.00001			
SNP found to have interaction with alcohol consumption	rs62065089 (Resampling FDR = 0.4%)			
SNPxalcohol on HYP (based on 7,474 SNPs)				
P-value	0.00098			
SNP found to have interaction with alcohol consumption	—			
SNPxsmoking on DBP (based on 7,652 SNPs)				
P-value	0.00059			
SNP found to have interaction with smoking	rs79990035 (Resampling FDR = 1.1%)			
SNPxsmoking on SBP (based on 7,508 SNPs)				
P-value	0.1573			
SNP found to have interaction with smoking	—			
SNPxsmoking on HYP (based on 7,474 SNPs)				
P-value	0.0592			
SNP found to have interaction with smoking	—			

Table 2. TWB analysis results using the ADABF, BON, and BH approaches

Lin W-Y, et al. (2018). *Briefings in Bioinformatics*, in press. DOI: 10.1093/bib/bby086.

Lin W-Y, et al. (2018). *Briefings in Bioinformatics,* in press. DOI: 10.1093/bib/bby086.

GRS method with the Bonferroni correction

Summary

• In the absence of external GWAS results

➢ GRS method (powerful if SNPs interacting with *E* also present marginal associations with the phenotype)

>ADABF method

ADABF also serves as a powerful gene-based GxE method

ORIGINAL RESEARCH published: 14 January 2019 doi: 10.3389/fgene.2018.00715

Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests

Wan-Yu Lin^{1,2*}, Ching-Chieh Huang¹, Yu-Li Liu³, Shih-Jen Tsai^{4,5} and Po-Hsiu Kuo^{1,2}

¹ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, ² Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan, ³ Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, ⁴ Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ⁵ Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan

Open-assessed article: Lin W-Y, Huang C-C, Liu Y-L, Tsai S-J, Kuo P-H (2019). <u>Genome-wide gene-environment interaction analysis using set-</u> based association tests. *Frontiers in Genetics*, 9, Article 715.

The R source code can be downloaded from http://homepage.ntu.edu.tw/~linwy/ADABFGE.html

Thanks for your attention!

http://homepage.ntu.edu.tw/~linwy/