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Abstract

A challenging issue in genetic mapping of complex human diseases is localizing dis-

ease susceptibility genes when the genetic effects are small to moderate. There are greater

complexities when multiple loci are linked to a chromosomal region. Liang et al. [1] pro-

posed a robust multipoint method that can simultaneously estimate both the position of a

trait locus and its effect on disease status by using affected sib pairs (ASPs). Based on the

framework of generalized estimating equations (GEEs), the estimate and standard error of

the position of a trait locus are robust to different genetic models. To utilize other relative

pairs collected in pedigree data, Schaid et al. [2] extended Liang’s method to various types of

affected relative pairs (ARPs) by two approaches: unconstrained and constrained methods.

However, the above methods are limited to situations in which only one trait locus exists on

the chromosome of interest. The mean functions are no longer correctly specified when there

are multiple causative loci linked to a chromosomal region. To overcome this, Biernacka et

al. [3] considered the multipoint methods for ASPs to allow for two linked disease genes. We

further generalize the approach to cover other types of ARPs. To reflect realistic situations

for complex human diseases, we set modest sizes of genetic effects in our simulation. Our

results suggest that several hundred independent pedigrees are needed, and markers with

high information, to provide reliable estimates of trait locus positions and their confidence

intervals. Bootstrap resampling can correct the downward bias of the robust variance for

location estimates. These methods are applied to a prostate cancer linkage study on chro-

mosome 20 and compared with the results for the one-locus model [2]. We have implemented
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the multipoint IBD mapping for one and two linked loci in our software GEEARP, which

allows analyses for five general types of ARPs.
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1 Introduction

Most complex human diseases are likely induced by more than one disease suscep-

tibility gene, and the genetic effects for those genes are usually small to moderate. There

are two approaches to map genes, linkage and association analyses. The former is based on

familial data. The power comes from distinguishing recombinant/nonrecombinant chromo-

somal segments transmitted from parents to offspring, and usually requires a large number

of families to find evidence for linkage [4]. Association analyses are for fine mapping, which

can be population-based or family-based. Here we focus on linkage studies and develop a

robust multipoint mapping method for two linked causative loci. The model-free approach

that we use does not need a prespecified genetic model, and relies on the identity-by-descent

(IBD) sharing of affected relative pairs (ARPs). Liang et al. [1] proposed an IBD-based pro-

cedure, on the basis of affected sib pairs (ASPs), to estimate the location of an unobserved

susceptibility gene within a chromosomal region framed by multiple markers. They derived

the expected IBD scores on markers for ASPs, which are functions of the distance from

the disease gene and the genetic effect. Further, they introduced a generalized estimating

equation (GEE) approach to estimate the location and genetic effect simultaneously, as well

as confidence intervals based on a robust variance estimator. An advantage of GEE [5] is

that it does not require a presumption of the underlying genetic model, and it is robust to

a wide variety of genetic mechanisms. Schaid et al. [2] extended this method to different

types of ARPs by two approaches, unconstrained and constrained. If there is no epistasis

and no dominance, their constrained model provides a good solution to reduce the number
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of parameters, which is essential when there are not many ARPs other than ASPs. Without

prior knowledge of genetic mechanisms, a score test they provide can be used to examine

the appropriateness of fitting the constrained model. The main assumption of the above

two papers is that there is only one trait locus on the chromosome of interest. This might

not be the situation for some complex human diseases. To jointly localize two linked disease

loci, Biernacka et al. [3] derived an expression for expected allele sharing among ASPs on a

chromosomal segment containing two disease susceptibility genes. Their simulations covered

several important issues, including the influence of genetic models, sample size, distance

between two disease loci, marker properties (i.e., densities, numbers, and informativeness).

In another paper, they provided tests for the presence of two linked disease susceptibility

genes, including a quasi-likelihood ratio test and a modified score test [6]. A preliminary

analysis by Kong-Cox LOD scores (KC-LOD) [7] or by the approach of Biernacka et al. can

be used to judge whether two-locus model should be adopted. Their work is based on ASP

data, which may be a convenient sampling unit, but means that one discards information

from other ARPs when they are available. Here we generalize the two-locus localization

method to a variety of ARPs. In the Methods section, we develop the approach to account

for multipoint mapping for two loci simultaneously, using multiple types of ARPs. We de-

scribe it for both an unconstrained model and a constrained model [2], along with a score

test generalized from Schaid et al. [2] to examine the appropriateness of fitting a constrained

model. In the Simulation section, by setting two-locus additive models and two-locus multi-

plicative models with modest genetic effects (or modest recurrence risk ratios), we evaluate
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the methods by our own simulation programs. Finally, an application to prostate cancer

linkage on chromosome 20 is illustrated.
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2 Methods

2.1 Unconstrained-Model Approach

Consider that there are two linked disease susceptibility genes located at positions τ1

and τ2 in a chromosomal region, as shown in Figure 1. The expected number of alleles IBD

for the linked markers will be greater than that for the unlinked markers for an ARP. Let

fji(t) be the probability that the ith ARP has j alleles IBD at location t (j = 0, 1, 2). The

IBD score for the ith ARP is estimated by

Si(t) = 2f2i(t) + f1i(t).

Let θ1 and θ2 be the recombination fractions between a marker at location t and the disease

genes at positions τ1, τ2, respectively. Let θ3 be the recombination fraction between the two

disease genes. We use Haldane’s mapping function [8] to relate the recombination fraction

to the genetic distance,

θ1 = (1− e−0.02|τ1−t|)/2,

θ2 = (1− e−0.02|τ2−t|)/2,

θ3 = (1− e−0.02|τ2−τ1|)/2,

where t, τ1, τ2 are in centiMorgans (cM). Under the assumptions of random mating, linkage

equilibrium, generalized single ascertainment [1, 3, 9], no interference, and equal recombina-

tion fractions for males and females, the expected IBD scores at location t for five types of

ARPs are summarized in Table 1. The derivation depends on the joint distribution of IBD
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and follows Biernacka et al. [3] for ASPs. The IBD scores at disease genes for ARPs tend

to be greater than random sharing, so do those at the adjacent markers. The two disease

genes separate the chromosomal region into three intervals. When t < τ1 < τ2, under the

assumption of no interference, Pr(S(t) = j|S(τ1) = l, S(τ2) = m) = Pr(S(t) = j|S(τ1) = l),

the first-order Markov property simplifies the mean function of alleles shared IBD at location

t to be dependent on only the first disease gene. When τ1 < τ2 < t, under the same assump-

tion, Pr(S(t) = j|S(τ1) = l, S(τ2) = m) = Pr(S(t) = j|S(τ2) = m), the expected IBD scores

at location t depends only on the second disease gene. To sum up, the mean IBD sharing on

markers located in the two intervals is the same as that derived for a one-locus model [1, 2].

With the assumption of no interference, the mean function that differs from the framework

of the one-locus model is only when τ1 < t < τ2, in which case the expected alleles shared

IBD at t depends on both disease genes. The expected IBD score in the middle interval

is higher than that considering only one gene in that region. Omitting the second disease

susceptibility gene would bias the localization for the first gene. The unknown parameters

in the mean function are locations (τ1, τ2) and genetic effects (C1k and C2k, the effects of

genes at τ1 and τ2 for the kth type of ARP). Note that in the situation of two linked disease

susceptibility genes, C1k and C2k do not represent the marginal effects of gene 1 and gene

2. Rather, they incorporate the gene effect of each other, and thus they change with the

recombination fraction between them. As θ3 gets smaller, a C coefficient combines more of

the genetic effect of the other locus, and thus gets larger. We also condition on Φ, the event

of an ARP. We let k = 1, · · · , 5 denote full siblings (FS), half siblings (HS), first cousins
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(FC), grandparent-grandchild pairs (GP), and avuncular pairs (AP), respectively. Let γ be

the vector composed of the twelve parameters,

γ = (τ1, τ2, C11, C21, C12, C22, C13, C23, C14, C24, C15, C25).

Assume there are N ARPs and M markers genotyped in a selected chromosomal region, Si

is the IBD-score vector for the ith ARP on the M markers, with mean vector E(Si|Φ) and

variance-covariance matrix Cov(Si|Φ). Let Ui be the score vector provided by the ith ARP,

which is

Ui =

[
∂E(Si|Φ)

∂γ

]T

Cov−1(Si|Φ)[Si − E(Si|Φ)]. (1)

Summing over all the N ARPs and solving the system of estimating equations,

U =
N∑

i=1

[
∂E(Si|Φ)

∂γ

]T

Cov−1(Si|Φ)[Si − E(Si|Φ)] = 0, (2)

obtains the point estimate of γ. In the conventional GEE framework, Cov(Si|Φ) is formu-

lated as functions of the mean and the correlation between markers. However, to reduce the

computational burden, we use the empirical variances of alleles IBD on the diagonal and

let off-diagonal covariances be 0, giving our working covariance matrix, W . This indepen-

dence working covariance matrix avoids over-formulated covariances and the inversion of an

ill-conditioned matrix in every iteration of Fisher’s scoring method. This leads to a much

more convenient method to solve (2). Some critical numerical methods for our algorithm are

given in the Appendix.

The precision is assessed by the robust variance,

V ar(γ̂) = I−1
w IrI

−1
w , (3)
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where Iw is the working information matrix given by

Iw =
N∑

i=1

[
∂E(Si|Φ)

∂γ
]T W−1[

∂E(Si|Φ)

∂γ
], (4)

and Ir is the empirical variance,

Ir =
P∑

j=1

UjUj
T , (5)

in which Uj is the sum of score vectors for all pairs in the jth pedigree (j = 1, · · · , P ). The

sandwich estimator in (3) accounts for misspecification of the working covariance matrix

and any correlation among multiple ARPs from a same pedigree. However, in simulation

studies described in Section 3.2, we found that the robust sandwich estimator tends to give

smaller standard errors for τ̂1 and τ̂2, compared with the simulation-based standard errors.

A bootstrap resampling method yields standard errors much closer to the simulation-based

standard errors, although this increases the computational intensity.

2.2 Constrained-Model Approach

The unconstrained model estimates common locations τ1, τ2, and different genetic effects

for each type of ARPs, Cik, i = 1, 2, k = 1, · · · , 5. When there are several kinds of ARPs

included, the method involves a large number of parameters. This can cause considerable

variability in parameter estimates, especially when the numbers of each type of ARP are

small. To reduce the number of parameters, we consider the constrained-model approach

provided by Schaid et al. [2]. Based on Risch [10], the risk ratio λ is a function of genetic

effect C (see [2] or Table 1, here we drop subscripts for clarity). Let λik be the risk ratio
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transformed from Cik, with subscript i denoting disease locus and k denoting type of ARP.

Under no dominance and no epistasis, all λik’s reduce to a λi, i = 1 or 2 [10]. That is,

the diverse genetic effects Cik’s can be formulated as functions of only one parameter, λi,

i = 1 or 2. In this situation, it is not necessary to use the model mentioned in the previous

subsection, and we can reduce it to one that contains four parameters. This simpler model is

subjected to specific functions relating genetic effects across types of ARPs, and thus it has

common ratios λ1 and λ2. λi can be explained as the risk ratio for a pair of relatives sharing

one allele IBD at the ith trait locus, compared with a pair of relatives sharing no allele IBD

at that locus. Thus, when there is no epistasis and no dominance for both loci, we can

apply the constrained-model approach to reduce the number of unknown parameters, and

to increase the statistical efficiency. Let γc be the vector composed of the four parameters

in the constrained model,

γc = (τ1, τ2, λ1, λ2).

The score equations and robust variance are defined in the same way as in the unconstrained

model, (2) and (3), but now the parameter vector is γc.

2.3 Testing Homogeneity of λik

If the λ1k’s are all equal and the λ2k’s are all equal (with varying k standing for different

types of ARPs), the unconstrained model could be reduced to a constrained model with only

four parameters γc = (τ1, τ2, λ1, λ2). This holds when there is no dominace nor epistasis for

both loci. To evaluate the appropriateness of fitting a constrained model, we generalize the
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score test provided by Schaid et al. [2] to simultaneously test the homogeneity of λ1k’s and

λ2k’s. The null hypothesis is H0 : λ11 = · · · = λ1k = · · · = λ1K , λ21 = · · · = λ2k = · · · = λ2K ,

where K is the number of types of ARPs. For illustration, to test the homogeneity of λik

between FS, FC, and AP, the matrix H is

H =



0 0 ∂λ11

∂C11
0 − ∂λ13

∂C13
0 0 0

0 0 ∂λ11

∂C11
0 0 0 − ∂λ15

∂C15
0

0 0 0 ∂λ21

∂C21
0 − ∂λ23

∂C23
0 0

0 0 0 ∂λ21

∂C21
0 0 0 − ∂λ25

∂C25


. (6)

The score statistic to test H0 is

T = Ũ ′Ĩw
−1

H̃′(H̃Ĩw
−1

ĨrĨw
−1

H̃′)−1H̃Ĩw
−1

Ũ . (7)

The score vector (2), working information matrix (4), and empirical variance (5) are defined

as before, but now they are evaluated under the null hypothesis (indicated by tilde). We

need to fit the constrained model first, transforming the λi estimates into Cik coefficients

(see Table 1), putting them into the unconstrained model together with τi estimated in the

constrained model. The statistic T has an approximate chi-square distribution with degrees

of freedom 2(K − 1).
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3 Simulation Study

3.1 Simulation Scenario

Consider a hypothetical chromosomal region with 11 markers and two disease genes as

shown in Figure 1. The markers are spaced at 10 cM intervals and the two disease genes are

40 cM apart (τ1 = 35 cM and τ2 = 75 cM). We simulated data for 500 independent pedigrees

with structure shown in Figure 2. Fully informative marker IBD sharing for ARPs under a

variety of two-locus models were generated by our program. Families were included in the

study if they had at least two affected members in the third generation. We only considered

three common types of ARPs in the simulation: full siblings (FS), first cousins (FC), and

avuncular pairs (AP). Under the pedigree structure and the ascertainment scheme, we would

generate more affected pairs that are FC and AP than FS. To reflect common ascertainment

schemes that oversample affected siblings, we included FC only when subjects 9 and 11

were both affected, but ignored FC composed by other individuals. Similarly, to reduce

the number of AP, we included AP composed of subjects 3 and 10, or subjects 4 and 8,

but ignored other AP. However, all FS were kept. Thus, any included pedigree had at

most one FC, at most two AP, and the number of FS ranged up to five. By this, we had

more FS than FC and AP. Each simulation result was based on 1,000 repetitions, except

for bootstrap evaluations that were based on 100 repetitions with 500 bootstrap samples for

each repetition. Genotype data were generated along chromosomes for the founders of the

pedigrees. Assuming random mating, the genotypes on the two disease genes were simulated
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by the models presented in Table 2. We considered four models with varying penetrance

matrices and disease allele frequencies. Let there be two diallelic disease genes, with alleles

(A,a) and (B,b), respectively. Denote the genotypes at the first locus by Gi, i = 1, 2, 3, with

corresponding population frequencies pi and those at the second locus by Hj, j = 1, 2, 3, with

corresponding population frequencies qj. By the definition of Risch [11], the first two models

were two-locus additive models in the sense that the penetrance wij is the sum of penetrance

factors x and y, that is, wij = xi + yj. The last two models were two-locus multiplicative

models in the sense that the penetrance wij is the product of penetrance factors x and y,

that is, wij = xi × yj. The prevalence of disease was
∑3

i=1

∑3
j=1 piqjwij. The additive model

is characterized by no interlocus interaction, and was shown to closely approximate genetic

heterogeneity [11]. In contrast, the multiplicative model can represent epistasis between loci.

These models were chosen to represent a range of genetic models including additivity and

epistasis. Under the setting of a two-locus multiplicative model, the genetic effect size of the

first disease gene in Model B is very small, which leads Model B to be close to a one-locus

model. Note that the four models were all set for complex diseases, so the genetic effects

and risk ratios were small to moderate.

3.2 Simulation Results

Tables 3 and 4 illustrate the simulation results for true values of τ1 = 35 and τ2 = 75 (cM).

The true values for genetic effects Cik and the corresponding transformed λik parameters are

listed in Table 2. The initial values in the Fisher’s scoring method were set at τ1 = 50, τ2 =
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60, C ′s = 0.1 for unconstrained models and τ1 = 50, τ2 = 60, λ′s = 1.2 for constrained

models. Results with initial values of τ1 = 20, τ2 = 90 were very similar (not shown). The

first location estimate in Model B incorporates large variability and hence a large mean

squared error even with 500 pedigrees. This is because the genetic effect size is too small

to be detected. From the simulation results for unconstrained models, we find there is a

notable downward bias in the variance estimates provided by the robust variance estimator,

so the 95% CI coverage is much less than the nominal confidence interval coverage. This only

happened for the location estimates, not the genetic effects. The robust variance estimator

gives a good approximation to the simulation-based standard error for the estimated genetic

effect sizes. In the constrained models, the downward bias in the variance estimates for the

location parameters is not as severe, but there is a slight upward bias in the variance estimates

for the estimated risk ratios. To overcome the downward bias caused by the robust variance

estimator, a bootstrap standard error was obtained from 500 bootstrap samples drawn with

replacement from a sample 500 families. This was closer to the empirical standard error

obtained from 1,000 simulated samples. Tables 3 and 4 list bootstrap point estimates and

standard errors, but only for 100 replicates because of heavy computational burden. The

95% CI was calculated from (2.5-97.5) percentiles of bootstrap estimates. The coverage is

close to the nominal level. When the sample size was moderate (say, 100 pedigrees, results

not shown), there was a large variability in the parameter estimates. Since the genetic effects

are small, and there are multiple parameters to be estimated, this localization method is not

expected to perform well for relatively small sample sizes.
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From Table 3, except FC, there is a general upward bias in estimated genetic effects

for the unconstrained approach. Likewise, there is an upward bias in estimated risk ratios for

the constrained approach shown in Table 4. This bias was likely caused by violation of the

assumption of generalized single ascertainment. With correlation among the parameters, the

accuracy for location estimates was lowered by this bias in genetic effects. Thus, location

estimates can be biased even with large sample sizes, depending on the ascertainment of

pedigrees. For each model, we calculated the mean squared error, MSE(θ̂) = (θ̂ − θ)2 +

SE2(θ̂), a composite measure of accuracy and precision for estimation. Since the genetic

effects for our models are small to moderate, the corresponding transformed λik parameters

are similar across the types of ARPs. Given sufficient numbers of pairs for each type of ARP,

we do not expect much difference in MSE between the unconstrained and the constrained

model approaches. From Tables 3 and 4, by the MSE criterion, the unconstrained approach

seems a bit better than the constrained approach for the four models. There are two reasons

for this: First, when the recurrence risk ratios are close to 1 (small genetic effects), the

iterations became even more laborious than that required for the unconstrained model. Once

λ is estimated close to 1, genetic effects for all three kinds of ARPs reduce to 0, and there is

no genetic information to be extracted. To avoid numerical problems caused by this, we set a

lower bound 1.03 for λ estimates in each iteration. With similar risk ratios among ARPs (all

close to 1), there is no severe violation if one resorts to the constrained approach. However,

the lower bound for λ in the constrained approach might lead to slightly upward biased

estimates. Goring et al. [12] also found that: “In general, estimates of bounded parameters
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are often biased, whether obtained by maximum likelihood or any other method.” ”In

most cases, the closer to a boundary the true value of the parameter, the larger the bias

from this source.” This type of bias goes away asymptotically, yet, the accuracy for our

location estimates might be affected by this upward bias in risk ratios. Second, we have

sufficient numbers of pairs for each type of ARP, so the estimation of Cik is stable, even

if the unconstrained approach is used. To conclude, the unconstrained approach can be

applied when there are sufficient numbers of pairs for each type of ARP. On the other

hand, when data contains few pairs for some ARPs, the parsimonious constrained approach

is better when the λik’s are close to each other. The score test (7) used to evaluate the

heterogeneity between λik’s is valid in the sense that the type I error rate is as expected.

We considered model E under no dominance and no epistasis, and mimicked a microsatellite

scan for 100 families (details not shown). The empirical type I error rate is 4.98% for the

nominal significance level of 5% for 1926 repetitions, showing that the score statistic (7) has

a chi-square distribution in a moderate sample size.
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4 Application to Prostate Cancer Linkage

A genome linkage scan of 157 families with multiple cases of prostate cancer was conducted

by investigators at the Mayo Clinic by use of SNP and microsatellite markers in the Early

Access Affymetrix Mapping 10K array [13]. The strongest linkage signal was detected on

chromosome 20. Schaid et al. [2] analyzed the data on SNP markers by a one-locus localiza-

tion method, and found it unclear whether there were two susceptibility loci on chromosome

20. We reanalyzed the data on 116 markers (13 microsatellite and 103 SNP markers) by

one-locus and two-locus localization methods. The mean intermarker spacing was 0.97 cM,

and the median was 0.5 cM. Among the 157 families, there were 279 full-sib pairs from 151

families, 115 first-cousin pairs from 38 families, and 26 avuncular pairs from 11 families.

First we extracted each type of ARP and fit the two-locus model separately. The results

were shown in Table 5 and Figure 3. We calculated the 95% CI for location parameter

based on both the robust variance estimator and the bootstrap method, since the former

usually underestimates the variation, suggested by our simulations. For full siblings and first

cousins, we tried different sets of initial values and found consistent solutions for two loci and

the corresponding genetic effects. Schaid et al. [2] found two different solutions in the FC

subset, 24.1 and 92.3 cM, by the one-locus model. Our two-locus model found 23.6 and 98.9

cM simultaneously. This illustrates that omitting the second gene might bias the location

estimate of the first gene. For avuncular pairs, we could not find the solutions that fit the

two-locus model, so we resorted to the one-locus model. However, the location estimate

was quite a distance from that obtained in the subsets of FS and FC. Since there were only
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26 AP pairs, the result of the AP subset was inconclusive. Next we used all the data to

fit the unconstrained and constrained models. In the unconstrained model, the AP pairs

did not show a genetic effect at the common estimated τ2, while the FC seemed to imply

a second gene more distant from the first gene. However, the confidence intervals for the

locations were quite wide and were overlapping for different types of ARPs. To evaluate the

appropriateness of fitting a constrained model, we used the score test (7); the resultant test

statistic was T = 1.7, with 4 df and a P-value of 0.79. This result suggested that there was no

statistically significant difference among the λ1k’s or λ2k’s across the different types of ARPs,

and thus a constrained model may be appropriate. The position estimates were similar in

the unconstrained and constrained models. Compared with the single-locus results in Schaid

et al. [2], their location estimates (72.9 for unconstrained and 72.7 for constrained model)

might be shifted towards a second locus if there are actually two prostate-susceptibility genes

located on chromosome 20.
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5 Discussion

We have generalized the multipoint IBD mapping for two causative loci on a chro-

mosomal region to allow for general kinds of ARPs. This can utilize pedigree data when

they are available, and usually shortens the confidence intervals for gene locations by an

increasing number of pairs. We have implemented these localization methods in our soft-

ware GEEARP, for both one and two linked loci. To determine whether a two-locus model

should be fit, a preliminary plot of average IBD scores along a chromosome for each type of

ARP is useful. Note that when ARPs are analyzed separately or the unconstrained model

is used, our asymptotic results will not be appropriate if the number of each type of ARP is

not large. Although it is difficult to know the minimum number, we advise that at least 20

ARPs should be available for each type.

In summary, there are three sources of bias for this method. First, because this

method finds positions and effects of genes that best fit the average IBD scores, it suffers

from a downward bias for genetic effects when markers are not fully informative. GEEARP

reduces this bias to some extent by first deleting completely noninformative pairs. However,

because markers are not fully informative in most cases, this source of bias is unavoidable.

Note that a general downward bias for genetic effects or risk ratios does not appear in Tables

3 and 4, because we generated fully informative markers in our simulations. Second, an

upward bias of effect size can result from violation of the assumption of generalized single

ascertainment, which can bias the estimation for locations as well. Because generalized single

ascertainment is rarely used for linkage, particularly large pedigrees, our methods can suffer
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from this kind of bias, with the amount of bias depending on the true effect size and the

ascertainment criteria. Third, an upward bias can occur when the true λ parameters are

close to 1, i.e., small genetic effects, and a lower bound is placed on λ. To conclude, our

simulations suggest that a model analyzed by the unconstrained approach suffers from the

first two sources of bias, while the constrained approach suffers from all three sources of bias.

With these complexities, it is hard to give a general rule for the direction of bias for genetic

effects or risk ratios. Nonetheless, it appears that the downward bias from incomplete IBD

information is more severe than the latter two.

Gene locations can be estimated by our methods, but their precision can be low

because of the nature of coarse mapping in linkage analyses. Follow-up association studies in

the confidence intervals are necessary for identifying causative loci. However, the CI coverage

for gene location provided by the robust variance estimator usually does not attain the

nominal size. Bootstrap corrects the downward bias of standard errors for location estimates,

and its quantiles give more reliable confidence intervals. Because of large variability and

hidden bias in IBD estimation, as well as modest genetic effects combined with small sample

sizes, insufficient linkage information inflates the standard errors of parameter estimates

and our method cannot have good performance. Without a large sample size and sufficient

linkage evidence, it is hard to find convergent and consistent solutions, and it is inappropriate

to resort to this complicated model.

Another caution in real data analyses is the bias that might occur because of linkage

disequilibrium (LD), particularly when dense SNPs are analyzed. GEEARP accepts IBD
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output from Merlin that accounts for LD [14, 15]. A recent implementation of multipoint

IBD mapping for rheumatoid arthritis-susceptibility genes on chromosome 6, both for one-

and two-locus models, was analyzed by our accompanying software [16]. Comparing the

two-locus model with the one-locus model [1, 2], if there are multiple loci in a region, the

one-locus model performs well when the linkage peaks are far apart (close to the situation

of unlinked genes) and there is no dominating peak. However, if there is a gene with much

larger genetic effect than others, the one-locus model may fail to find other minor-linked

loci. In contrast, the two-locus model allows us to find a second gene in the presence of

a much stronger signal. However, the two-locus model can be over-parameterized and lose

statistical efficiency if there is only one gene in a region. With these considerations, we

suggest fitting both one- and two-locus models to evaluate linkage of multiple genes in a

chromosomal region.
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7 Appendix

To solve Eq (2), because of using Haldane’s mapping function, τ1 and τ2 are two change

points. The quasi-likelihood is not differentiable when the change points are very close to

marker positions. This leads to a tremendous step size in the iterations that causes the next

evaluation to be outside the boundary, or even tend to infinity. We follow Liang et al. [1] by

using a smooth curve when t and τ1 or τ2 are quite close. The following table summarizes

our minor modification for computations.

Interval E[S(t)|Φ] d1 d2 d3

t < τ1 − ε ak + bk(d1)C1k τ1 − t

τ1 − ε < t < τ1 + ε ak + bk(d1)C1k
(t−τ1)2

2ε
+ ε

2

τ1 + ε < t < τ2 − ε ak +
bk(d1)[1−b2k(d2)]

1−b2k(d3)
C1k +

bk(d2)[1−b2k(d1)]

1−b2k(d3)
C2k t− τ1 τ2 − t τ2 − τ1

τ2 − ε < t < τ2 + ε ak + bk(d2)C2k
(t−τ2)2

2ε
+ ε

2

t > τ2 + ε ak + bk(d2)C2k t− τ2
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However, this modification causes two gaps on the mean function. It seems implausible to

find a curve that simultaneously smoothes the middle interval and the two sides. Despite

the gaps on the mean function, the iteration process is improved by a small value of ε = 0.1.

A common situation is that the iterations run between two or several evaluations repeatedly.

Decreasing the step size usually solves the difficulty. The two-locus model does not ensure

convergence and consistent solutions, and one should try different sets of initial values to

determine reliable solutions. The above numerical techniques have been implemented in our

software, which is available by sending an email to WYL: d92842006@ntu.edu.tw
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9 Tables

Table 1 Expected alleles shared IBD at location t for five types of ARPs and functions

relating λ to C

Interval E[S(t)|Φ] d1 d2 d3

t < τ1 < τ2 ak + bk(d1)C1k τ1 − t

τ1 < τ2 < t ak + bk(d2)C2k t− τ2

τ1 < t < τ2 ak +
bk(d1)[1−b2k(d2)]

1−b2k(d3)
C1k +

bk(d2)[1−b2k(d1)]

1−b2k(d3)
C2k t− τ1 τ2 − t τ2 − τ1

ARP ak bk(d) C(λ) λ(C)

FS 1 exp(−.04d) λ−1
2λ

1
1−2C

HS 1
2

exp(−.04d) λ−1
2(λ+1)

1+2C
1−2C

FC 1
4

1
2
exp(−.04d) + 1

3
exp(−.06d) + 1

6
exp(−.08d) 3(λ−1)

4(λ+3)
12C+3
3−4C

GP 1
2

exp(−.02d) λ−1
2(λ+1)

1+2C
1−2C

AP 1
2

1
2
exp(−.04d) + 1

2
exp(−.06d) λ−1

2(λ+1)
1+2C
1−2C

This is the theoretical mean function for IBD scores, and we have a minor modification for

computation described in the Appendix.
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Table 2 The genetic models considered in simulation studies

Model A B C D

Penetrance factors
Locus 1 (0.02,0.25,0.40) (0.05,0.05,0.45) (0.20,0.70,1.00) (0.10,0.50,0.90)
Locus 2 (0.03,0.25,0.45) (0.05,0.25,0.45) (0.20,0.60,0.90) (0.10,0.50,0.90)

Penetrance matrix
aa aA AA aa aA AA aa aA AA aa aA AA

bb 0.05 0.28 0.43 0.10 0.10 0.50 0.04 0.14 0.20 0.01 0.05 0.09
bB 0.27 0.50 0.65 0.30 0.30 0.70 0.12 0.42 0.60 0.05 0.25 0.45
BB 0.47 0.70 0.85 0.50 0.50 0.90 0.18 0.63 0.90 0.09 0.45 0.81

Allele frequencies
Pr(A)=0.05 Pr(A)=0.15 Pr(A)=0.10 Pr(A)=0.15
Pr(B)=0.05 Pr(B)=0.15 Pr(B)=0.10 Pr(B)=0.15

Prevalence
9.48% 16.90% 8.31% 4.84%

Cik coefficients when τ2 − τ1 = 40 cM
FS 0.106,0.101 0.040,0.078 0.110,0.094 0.177,0.177
FC 0.051,0.048 0.007,0.032 0.046,0.038 0.083,0.083
AP 0.061,0.058 0.010,0.041 0.058,0.048 0.099,0.099

λik coefficients when τ2 − τ1 = 40 cM
FS 1.268,1.254 1.087,1.186 1.283,1.231 1.546,1.546
FC 1.289,1.275 1.039,1.180 1.262,1.212 1.497,1.497
AP 1.277,1.263 1.039,1.180 1.263,1.212 1.496,1.496

1. A and B were two-locus additive models, while C and D were two-locus multiplicative models.
2. The two disease susceptibility genes were assumed to be diallelic with alleles (A,a) and (B,b),
respectively.
3. The simulation contains three common types of ARPs: full siblings (FS), first cousins (FC), and
avuncular pairs (AP).
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Table 3. Parameter estimation for unconstrained-model approach

Location Genetic effects 95% CI
(cM) FS FC AP coverage (%)

Model τ1 τ2 C11 C21 C13 C23 C15 C25 τ1 τ2

A Average estimate 33.7 75.3 0.117 0.115 0.048 0.047 0.083 0.084 69 68
Average robust SE 4.5 4.4 0.041 0.040 0.049 0.048 0.057 0.056
Empirical SE 8.3 8.2 0.040 0.038 0.053 0.051 0.059 0.060
Mean Bias -1.3 0.3 0.011 0.014 -0.003 -0.001 0.022 0.026
MSE 70.6 67.3 0.002 0.002 0.003 0.003 0.004 0.004
Bootstrap estimate 35.7 75.9 0.119 0.125 0.056 0.048 0.074 0.069 96 100
Bootstrap SE 9.5 8.9 0.041 0.042 0.054 0.055 0.059 0.058

B Average estimate 36.2 76.3 0.055 0.091 0.011 0.031 0.019 0.058 59 72
Average robust SE 6.5 5.0 0.041 0.040 0.045 0.045 0.051 0.050
Empirical SE 14.2 8.2 0.045 0.038 0.054 0.048 0.061 0.051
Mean Bias 1.2 1.3 0.015 0.013 0.004 -0.001 0.009 0.017
MSE 203.1 68.9 0.002 0.002 0.003 0.002 0.004 0.003
Bootstrap estimate 33.8 74.7 0.051 0.083 0.007 0.028 0.009 0.043 98 98
Bootstrap SE 12.0 9.1 0.043 0.041 0.052 0.049 0.058 0.053

C Average estimate 33.6 74.3 0.125 0.111 0.046 0.042 0.088 0.075 69 69
Average robust SE 4.4 4.8 0.041 0.041 0.048 0.048 0.060 0.060
Empirical SE 7.7 8.6 0.039 0.041 0.050 0.052 0.061 0.063
Mean Bias -1.4 -0.7 0.015 0.017 0.000 0.004 0.030 0.027
MSE 61.3 74.5 0.002 0.002 0.003 0.003 0.005 0.005
Bootstrap estimate 35.1 74.7 0.114 0.094 0.037 0.041 0.067 0.058 93 95
Bootstrap SE 8.5 8.6 0.039 0.042 0.053 0.052 0.058 0.060

D Average estimate 34.0 75.4 0.184 0.180 0.083 0.078 0.135 0.128 73 73
Average robust SE 3.1 3.1 0.040 0.040 0.054 0.053 0.066 0.065
Empirical SE 5.7 5.4 0.038 0.037 0.055 0.055 0.064 0.066
Mean Bias -1.0 0.4 0.007 0.003 0.000 -0.005 0.036 0.029
MSE 33.5 29.3 0.001 0.001 0.003 0.003 0.005 0.005
Bootstrap estimate 33.7 74.1 0.187 0.179 0.078 0.081 0.098 0.105 97 93
Bootstrap SE 8.6 6.7 0.046 0.045 0.050 0.051 0.063 0.063
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Table 4. Parameter estimation for constrained-model approach

Location 95% CI
(cM) coverage (%)

Model τ1 τ2 λ1 λ2 τ1 τ2

A Average estimate 33.4 74.7 1.324 1.311 74 76
Average robust SE 5.4 5.5 0.128 0.125
Empirical SE 9.5 8.9 0.102 0.098
Mean Bias -1.6 -0.3 0.056 0.057
MSE 92.8 79.3 0.014 0.013
Bootstrap estimate 35.9 77.3 1.321 1.287 91 97
Bootstrap SE 10.3 9.9 0.105 0.107

B Average estimate 37.3 77.3 1.197 1.244 73 78
Average robust SE 9.1 6.1 0.105 0.110
Empirical SE 13.4 8.4 0.070 0.075
Mean Bias 2.3 2.3 0.110 0.058
MSE 184.9 75.9 0.017 0.009
Bootstrap estimate 33.7 73.3 1.248 1.266 90 100
Bootstrap SE 12.2 10.0 0.088 0.081

C Average estimate 33.2 74.0 1.330 1.304 72 72
Average robust SE 5.4 5.8 0.132 0.127
Empirical SE 9.6 10.0 0.102 0.100
Mean Bias -1.8 -1.0 0.047 0.073
MSE 95.4 101.0 0.013 0.015
Bootstrap estimate 33.4 73.2 1.314 1.356 93 91
Bootstrap SE 10.7 9.1 0.128 0.133

D Average estimate 35.3 71.7 1.633 1.641 60 58
Average robust SE 3.2 3.0 0.190 0.191
Empirical SE 7.3 6.3 0.176 0.180
Mean Bias 0.3 -3.3 0.087 0.095
MSE 53.4 50.6 0.039 0.041
Bootstrap estimate 34.2 74.5 1.504 1.519 96 96
Bootstrap SE 9.3 7.3 0.142 0.152

1. True values for τ1 = 35 and τ2 = 75 (cM). The initial values in the Fisher’s scoring method
were set at τ1 = 50, τ2 = 60, C ′s = 0.1 in the unconstrained model and λ′s = 1.2 in the constrained
model.
2. The average number of (ARPs = FS + FC + AP) is (669 = 424 + 130 + 115).
3. The 95% CIs based on robust variance estimator were calculated by estimate±1.96×(robust
SE).
4. MSE(τ̂1)=(τ̂1 − τ1)2+SE2(τ̂1). Mean bias and MSE were based on 1,000 non-bootstrap repeti-
tions.
5. Bootstrap estimates were based on 100 repetitions, in each repetition, we had 500 bootstrap
samples drawn with replacement from 500 families (n = B = 500). Bootstrap SE was the mean of
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100 empirical standard errors calculated from the 100 repetitions. The 95% CIs based on bootstrap
method were calculated by (2.5-97.5) percentiles of bootstrap estimates.
6. Strictly speaking, no ”bias” could be calculated for risk ratios in Table 4, because none of the
models in Table 2 was under no dominance and no epistasis. Here we use λ̂i − λi1 as a surrogate.
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Two linked disease genes and the marker map

Figure 1. Hypothetical locations of 11 observed markers (t1, t2, · · · , t11) and two unobserved
linked disease susceptibility genes (τ1, τ2) in a chromosomal region. Each marker was 10 cM apart
from the adjacent one. The two causative loci were located at 35 cM and 75 cM, respectively.
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Figure 2. Structure of pedigrees used for simulation study. Only three types of ARP: full siblings,
first cousins, and avuncular pairs, were included in simulation.
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