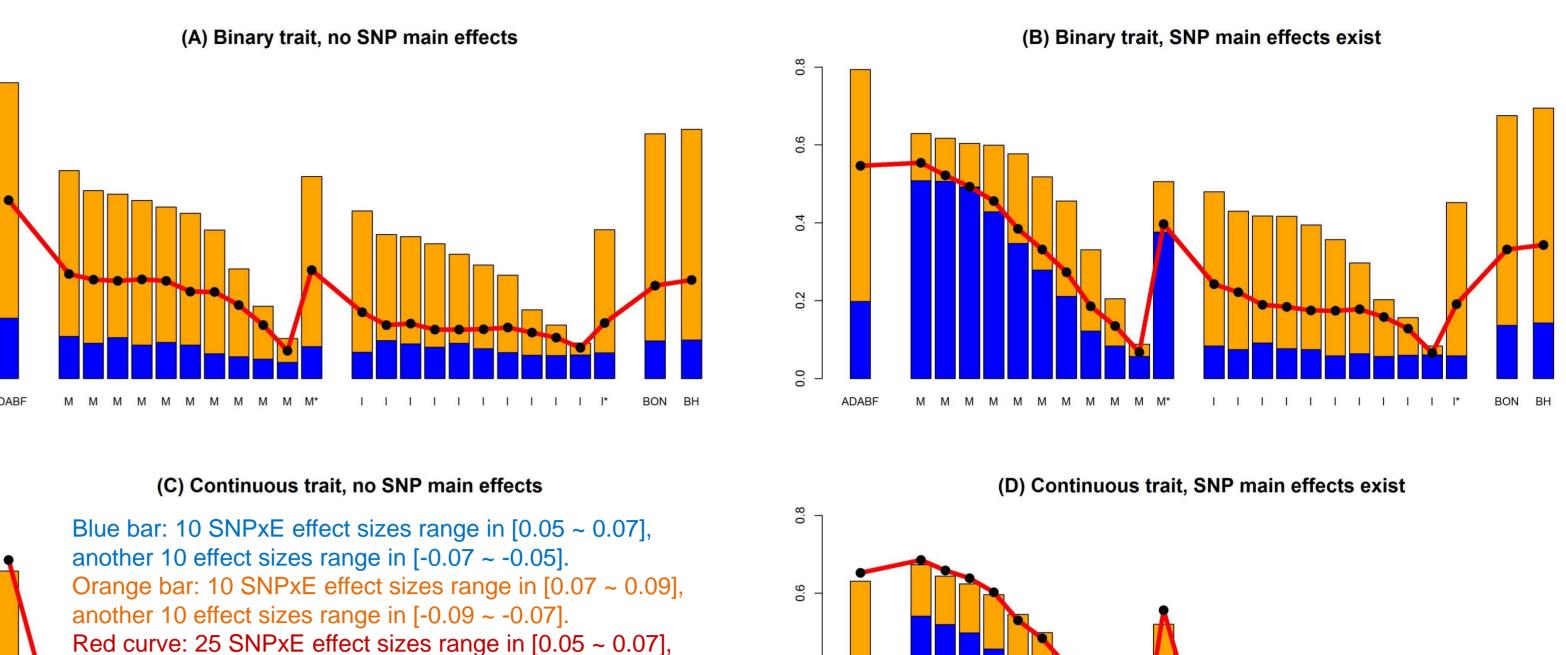
Adaptive combination of Bayes factors method as a powerful polygenic test for gene-environment interactions when external information is unavailable This work has been published by Briefings in Bioinformatics, with R code downloaded from http://homepage.ntu.edu.tw/~linwy Wan-Yu Lin, Ching-Chieh Huang, Yu-Li Liu, Shih-Jen Tsai, Po-Hsiu Kuo

Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan

Background: The exploration of "gene-environment interactions" (GxE) is important for disease prediction and prevention. The scientific community usually uses external information to construct a genetic risk score (GRS), and then tests the interaction between this GRS and an environmental factor (E). However, external genomewide association studies (GWAS) are not always available, especially for non-Caucasian ethnicity. Although GRS is an analysis tool to detect GxE in GWAS, its performance remains unclear when there is no external information.

Methods: Our "adaptive combination of Bayes factors method" (ADABF) can aggregate GxE signals and test the significance of GxE by a polygenic test. We here explore a powerful polygenic approach for GxE when external information is unavailable, by comparing our ADABF with the GRS based on marginal effects of SNPs (GRS-M) and GRS based on SNPxE interactions (GRS-I). **Conclusions:** ADABF is the most powerful method in the absence of SNP main effects, whereas GRS-M is generally the best test when SNP main effects exist. GRS-I is the least powerful test due to its data-splitting strategy. Furthermore, we apply these methods to Taiwan Biobank data. ADABF and GRS-M identified gene-alcohol and gene-smoking interactions on blood pressure (BP). BPincreasing alleles elevate more BP in drinkers (smokers) than in nondrinkers (nonsmokers). This work provides guidance to choose a polygenic approach to detect GxE when external information is unavailable.

Blue bar: 10 SNPxE odds ratios (ORs) range in $[1.2 \sim 1.4]$, another 10 ORs range in $[0.71 \sim 0.83]$. Orange bar: 10 SNPxE ORs range in [1.4 ~ 1.6], another 10 ORs range in [0.63 ~ 0.71]. Red curve: 25 SNPxE ORs range in $[1.2 \sim 1.4]$, another 25 ORs range in $[0.71 \sim 0.83]$.



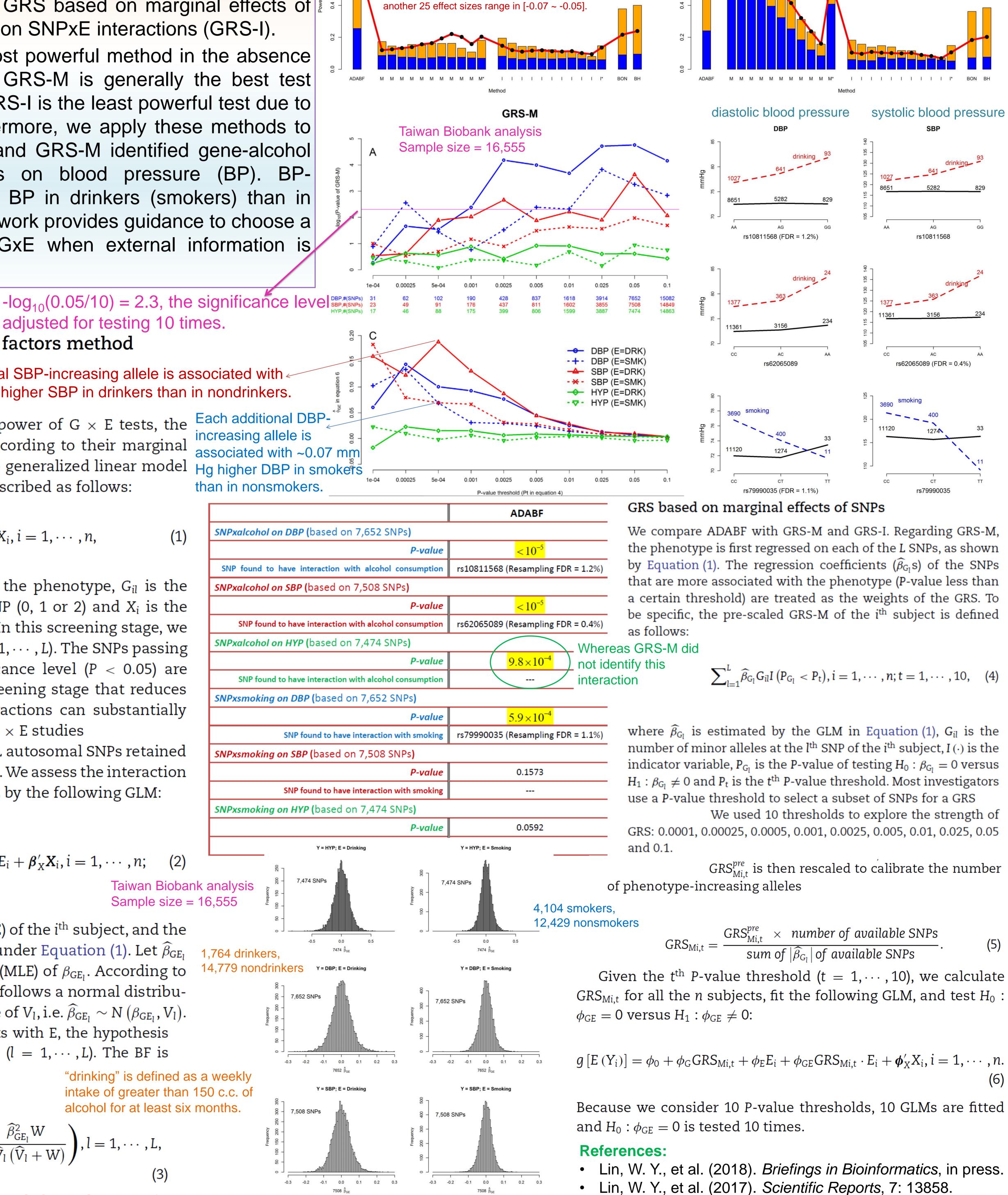
Methods

adjusted for testing 10 times. Adaptive combination of Bayes factors method

A pruning stage: A screening stage: Each additional SBP-increasing allele is associated with ~ ~0.20 mm Hg higher SBP in drinkers than in nondrinkers.

(1)

Each additional DBP-Moreover, to improve the statistical power of $G \times E$ tests, the increasing allele is remained SNPs are then screened according to their marginal associated with ~0.07 mm associations with the phenotype. The generalized linear model Hg higher DBP in smokers (GLM) for the l^{th} SNP ($l = 1, \dots, L$) is described as follows: than in nonsmokers.



$g[E(Y_i)] = \beta_0 + \beta_{G_i}G_{il} + \beta'_X X_i, i = 1, \dots, n,$

where $g[\cdot]$ is the link function; Y_i is the phenotype, G_{il} is the number of minor alleles at the l^{th} SNP (0, 1 or 2) and X_i is the vector of covariates of the *i*th subject. In this screening stage, we test H_0 : $\beta_{G_1} = 0$ versus H_1 : $\beta_{G_1} \neq 0$ ($l = 1, \dots, L$). The SNPs passing the screening at the desired significance level (P < 0.05) are then analyzed using ADABF. This screening stage that reduces the number of SNPs tested for interactions can substantially increase the power of genome-wide $G \times E$ studies

Suppose that in a GWAS there are L autosomal SNPs retained after the pruning and screening stages. We assess the interaction between the l^{th} SNP ($l = 1, \dots, L$) and E by the following GLM:

 $g[E(Y_i)] = \beta_0 + \beta_{G_1}G_{il} + \beta_E E_i + \beta_{GE_1}G_{il}E_i + \beta'_X X_i, i = 1, \dots, n;$ (2)

where E_i is the environmental factor (E) of the ith subject, and the other notations have been described under Equation (1). Let $\widehat{\beta}_{GE_1}$ be the maximum likelihood estimate (MLE) of β_{GE_1} . According to the asymptotic normality of MLE, $\hat{\beta}_{GE_1}$ follows a normal distribution with a mean of β_{GE_l} and a variance of V_l , i.e. $\hat{\beta}_{GE_l} \sim N(\beta_{GE_l}, V_l)$. To test whether the *l*th SNP interacts with E, the hypothesis is $H_{0,l}$: $\beta_{GE_1} = 0$ versus $H_{1,l}$: $\beta_{GE_1} \neq 0$ ($l = 1, \dots, L$). The BF is described as follows "drinking" is defined as a weekly intake of greater than 150 c.c. of

We compare ADABF with GRS-M and GRS-I. Regarding GRS-M, the phenotype is first regressed on each of the L SNPs, as shown by Equation (1). The regression coefficients ($\hat{\beta}_{G_1}s$) of the SNPs that are more associated with the phenotype (P-value less than a certain threshold) are treated as the weights of the GRS. To be specific, the pre-scaled GRS-M of the ith subject is defined

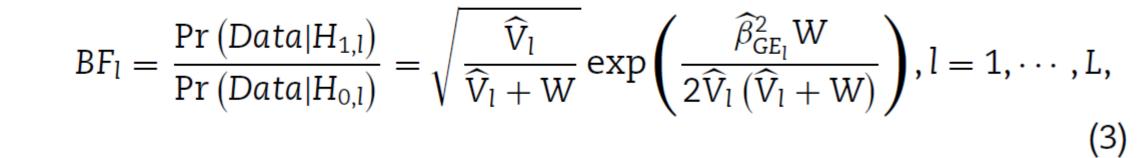
 $\sum_{l=1}^{L} \widehat{\beta}_{G_{l}} G_{il} I \left(P_{G_{l}} < P_{t} \right), i = 1, \cdots, n; t = 1, \cdots, 10, \quad (4)$

where $\widehat{\beta}_{G_l}$ is estimated by the GLM in Equation (1), G_{il} is the number of minor alleles at the l^{th} SNP of the i^{th} subject, $I(\cdot)$ is the indicator variable, P_{G_1} is the P-value of testing H_0 : $\beta_{G_1} = 0$ versus $H_1: \beta_{G_1} \neq 0$ and P_t is the tth P-value threshold. Most investigators We used 10 thresholds to explore the strength of GRS: 0.0001, 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05

 GRS_{Mit}^{pre} is then rescaled to calibrate the number

(5)

Given the tth P-value threshold (t = $1, \dots, 10$), we calculate $GRS_{Mi,t}$ for all the *n* subjects, fit the following GLM, and test H_0 :



where $\widehat{\beta}_{GE_1}$ and \widehat{V}_l have been estimated from the GLM in Equation (2).

gene-alcohol interaction > gene-smoking interaction for blood pressure levels

 $g[E(Y_i)] = \phi_0 + \phi_G GRS_{Mi,t} + \phi_E E_i + \phi_{GE} GRS_{Mi,t} \cdot E_i + \phi'_X X_i, i = 1, \cdots, n.$

Because we consider 10 P-value thresholds, 10 GLMs are fitted

- Lin, W. Y., et al. (2018). Briefings in Bioinformatics, in press.
- Hüls A, et al. BMC Genetics 2017;18: 115.

```
• Hüls A, et al. BMC Genetics 2017;18: 55.
```