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A Window of Cognition: Eyetracking the Reasoning Pocess in

Spatial Beauty Contest Games

|. Introduction

Most economic theories are tested by their premhistiabout people’s choices,
since economists usually take the revealed preterapproach when interpreting these
choices. Moreover, empirical data on choices alaively easier to obtain, either from
the field or from laboratory experiments. NonetBglein many cases, the economic
theory employed also predicts how people evaluatéows situations to arrive at their
final choices. For example, in extensive form gansdgame perfect equilibrium is
typically solved by backward induction, a procedtirat can be carried out step-by-step
by players of the game. Since these theories peocidar predictions on people’s
decision-making process, it is natural to ask whettne could test these predictions
using some form of empirical data.

One possible obstacle to this kind of test is thailability of data, since the
decision-making process is usually unobservablevd¥yer, some experimental studies
do attempt to investigate “information search” patt in games, in order to capture part
of the reasoning process. For example, Camerensdoh Rymon, and Sen (1993) and
Johnson, Camerer, Sen, and Rymon (2002) employuseroacking technology called
“mouselab” (as a proxy of eyetracking) to study Kveard induction in three-stage
bargaining games by requiring subjects to clickl@box to see the pie size in different

stages. Costa-Gomes, Crawford and Broseta (200d)Casta-Gomes and Crawford



(2006) employ a similar technology to study payofikups in normal form games and
information search in two-person guessipg€auty contest) games. Gabaix, Laibson,
Moloche and Weinberg (2006) also use mouselab ser@b information acquisition and
analyze aggregate information search patterns gb aeheuristic “directed cognition”
model. More recently, Wang, Spezio and CamererqRetploy advanced video-based
eyetracking technology to observe the decision-ngakirocess of a deceptive sender in
sender-receiver games.

All the studies mentioned above take advantagehefadditional information
acquisition data, gathered by some form of eyeingckechnology, to test competing
theories of behaviors. One crucial feature in thetadies is that some information must
be withheld, and “looked-up” by subjects during #eeriment. Hence, these studies
rely on information search to infer certain stagéghe reasoning process, instead of
directly observing the entire process itself. Thegs the question whether decision-
making processes can be observed when there isdderhinformation and if such
observation is possible, whether economic theonypeadict them.

This paper is the first attempt, to our knowledtfgt analyzes the reasoning
process when there is no explicit hidden infornratid/e design a new set of games,
called (two-person) spatial beauty contest gamesjas to the p-beauty contests (aka
“guessing games”) studied by Nagel (1995), Ho, Gamand Weigelt (1998), and Costa-
Gomes and Crawford (2006). This new set of gamed#s name suggests, is essentially
a graphical simplification of th@-beauty contest games for two playéss.is well

known that initial responses in the standpsioeauty contest games can be explained by

! Two-person guessing games in which players anamsyric are first proposed by Costa-Gomes and
Crawford (2006). Grosskoph and Nagel (2008) algdystwo-person beauty contest games.



models of heterogeneous levels of rationality sakhe levek model (Stahl and Wilson
(1995), Nagel (1995), and Costa-Gomes and Craw{@@D6)) and the cognitive
hierarchy model (Camerer, Ho and Chong (2004)). éy kn these models of
heterogeneous levels of rationality is that playefshigher levels of rationality best
respond to players of lower levels, who in turntbespond to players of even lower
levels and so on. This best response hierarchiyeigpérfect candidate for modeling the
reasoning process of a subject prior to makingfitmea choice, since in a two-person
game, the final choice should be a best responsgeteubject’s belief regarding the other
player's choice, which in turn is a best resporséhe subject’s belief about the other
player's belief about her choice, and so’om other words, to figure out which choice to
make, a subject has to go through an entire begtonse hierarchy. The graphical
representation of the spatial beauty contest ganthsces subjects to go through this
hierarchy of best responses by counting on the atenscreen (instead of reasoning in
their minds), leaving footprints that the experit@grcan trace.

We eyetrack each subject’s reasoning process loydieg the entire sequence of
locations she looks at or fixates at. In other wgpmle record not only her final choice,
but also every location the subject has ever fokaein an experimental trial real-time.
Following the convention, we call this real-timadtion data the “lookups” even though
there is really nothing to be looked up in our ekpent. By wedding a leved-(Lk)
constrained Markov-switching model (to describengfes between a subject’s thinking
states of the best response hierarchy) and a éogit model (to describe eye fixations
conditional on each thinking state), we constructmadel for the lookup data to

characterize how subjects think through various beEsponse hierarchies as predicted by

2 To avoid confusion, the subject is denoted bywtgte her opponent is denoted by him.



the levelk model, and classify them into various leketypes based on maximum
likelihood estimation using individual lookup datsloreover, we adopt an empirical
likelihood ratio test proposed by Vuong (1989) tsw@e the estimated type with the
largest likelihood is distinctively separated frother competing types. Results show that
among the seventeen subjects we tracked, oneeat0e0), six are level-11(1), four
are level-2 I(2), four are level-31(3), and the remaining two are the equilibrium type
(EQ) which coincides with level-4.4) or above in most games of our experiment.

To check whether the estimation on the lookup databust, we further classify
subjects by using their final choice data only.|éwing the literature, we adopt a
procedure similar to Costa-Gomes and Crawford (R@O6classify subjects using the
choice data, and compare the results with our Ipddased classification results. We find
that choice-based and lookup-based estimationpratey consistent, classifying ten of
the seventeen subjects as the same type. Furtheramong the seven subjects where
the two classifications differ, for four subjectgesults from applying Vuong’s test to
lookup data indicate that the lookup-based classifbn types are better than the choice-
based ones, while the remaining three subjects inav&tinguishable likelihoods (but the
lookup-based types all have fewer parameters angl thas be argued to be better
classifications should we wish to act conservagivelavoid overfitting). To the contrary,
using choice data, for all but one subject, theiggibased classification types are not
robust according to a resampling test, having alassification rate of at least 18% if
one re-samples the choice data and performs the satimation.

Consistency between choice-based and lookup-basieaa¢ions suggests that for

a high percentage of subjects, if their final clesi@are classified as a particular lekel-



type, their lookups follow the best response h@rarof that levek type as well. This is

a strong support to the levielmodel. It means that the levieimodel is not just a model
on final choices. The best response hierarchy adpby the levek model can also
predict the reasoning process of subjects very. Welbther words, the levdéd-model is
quite complete in that it is a model of choice aedsoning process altogether. On the
other hand, when estimation of types based on lpoalata differs from that based on
choice data, results suggest that lookup data mayide additional separation between
competing levek types even when choice data is not enough tondigsh between
types. In other words, looking into players’ redasgnprocess gives us valuable
information if we are to classify them properly.

The remaining of the paper is structured as follo®ection II.A describes the
spatial beauty contest game and its theoreticaligtiens; Section II.B describes details
of the experiment; Section Ill.A reports levelelassification results based on final
choices; Section Ill.B reports aggregate statisbes lookups; Section 1l.C reports
classification results from the Markov-switching deb based on lookups; Section III.D
compares classification results based on choic#s tvose based on lookups. Finally,

Section IV concludes.

[l. The Experiment

[I.LA The Spatial Beauty Contest Game

We introduce a two-person guessing game similathéo “p-beauty contest,” in

which players choose locations (instead of numb&myltaneously on a 2-dimensional



plane. Each player has a target location. The tdayation is defined as a relative
location to the other player’s choice of locatigust like p in p-beauty contest games) by
a pair of coordinates (x, y). We use the standawndlitean coordinate system. For
instance, (0, -2), means the target location dbggp is “two steps below the opponent,”
and (-4, 0) means the target location of a playéfaur steps to the left of the opponent.”
Payoffs are determined by how many steps (the dunorzontal distance and vertical
distance) a player is away from the target. Thgdathis number is, the lower her payoff
is. Players can only choose locations on a givéh rgap, though one’s target may fall

outside. For example, consider the 7x7 grid mapFigure 1. For the purpose of

illustration, suppose a player's opponent has aintise center location label&2l ((0, 0))

and the player’s target is (-4, 0). Then to hit taeget, she has to choose location (-4, 0).
But since location (-4, 0) is not on the map, clmg$ocation (-3, 0) is optimal among all
49 feasible choices because location (-3, 0) ig onk step from location (-4, 0). To go
from any of all other possible 48 locations onttinegp to location (-4, 0) takes at least two
steps. For instance, to go from location (-3,1(-400), one has to travel one step left and
one step down and hence the sum of the numbeejs & 2.

The equilibrium prediction of this spatial beautntest game is determined by the
targets of both players (as is the case ofptheauty contest games). For example, if the
targets of the two players are (0, 2) and (4, 8peetively, the equilibrium consists of
both players choosing the Top-Right corner of ttegnThis conceptually coincides with
both choosing zero (hitting the lower bound) in pHeeauty contest game wheres less
than 1. Note that in general the equilibrium neads be at the corner since targets

themselves could be 2-dimensional. For examplenwhe targets are (4, -2) and (-2, 4)



played on a 7x7 grid map, the equilibrium locatiforsthe two players are both two steps

away from the corner (labeled Bsin bold and £ in italic and underlinedfor the two

players respectively in Figure 1).
We derive the equilibrium predictions for the geterase as follows. Formally,

consider a spatial beauty contest game with tar@ety) and(a,,b ). With some abuse

T
of notation, suppose playechooses locatiofx ,y,) on a map satisfying O{-m..., n},
y,{-n..., i} where (0, 0) is the center of the map. For ingafg, y,) = (m,n) means
playeri chooses the Top-Right corner of the map. The ofiteyerj also chooses a
location (X;, y;) on the same map, L{-m..., n}, y, 0{-n..., i} . The payoff to player
i in this game is (the payoff to playjes defined similarly)

P(%, Y%, Y & ib)=_s—(‘ X (x| E)Mi ¥ (; ¥ ») where™ sis a constal

Notice that payoffs are decreasing in the numbesteyfs a player is away from the
target, which in turn depends on the choice ofdtier player. There is no interaction

between the choices of andy,. Hence the maximization can be obtained by chgosin
x. and y, separately to minimize the two absolute value $eide thus consider the case
for x, only. The case foy, is analogous.

To ensure uniqueness, in all our experimentalstria +a # 0. (Otherwise, if
a, =-a; =a>0, any feasible, x; satisfyingx; —x; =a constitutes an equilibriurd).

Without loss of generality, we assume that+ a, <0 so that the overall trend is to move

% Note that this corresponds to the case wiggbe=1 in the two-person guessing-geauty contest) game
in which one subject would like to choose of her opponent’s choice and the opponent wolkd to
choosef3 of her choice.



leftward? Supposes <0. If ga <0, implying playeri would like to move leftward

but playerj would like to move rightward, since the overadind is to move leftward, it
is straightforward to see that the force of equillitm would make player hit the lower

bound while playej will best respond to that. The equilibrium choicédoth, denoted
by (x°,x"), is characterized by’ =-m and xf =-m+ g 2 if aa; >0, since both
players would like to move leftward, they will batit the lower bound. The equilibrium

is characterized by® =x; =-m . To summarize, wherg +a <0, only the player

whose target is greater than zero will not hitldveer bound. Therefore,

Proposition 1. In a spatial beauty contest game with targg&ish)and (a.,b ) where

j!
both players choose a locatifx y) satisfyingxO{-m..., n}, y{-n.., h a,a <2m

and b, b < 2n, the equilibrium choice¢x’, y°) are characterized by:

Lﬁe=—m+ al{a>0 if a+a<0 and{y‘ez_mbm{bm} TH+H <0 here

x=m-al{a<0 if a+a>0 yy=n-hO{b<0} if b+b>0
[{}] is the indicator function.

In addition to the equilibrium prediction, one maiso specify various levéd-
predictions. A natural assumption is thatldhplayer will either choose the center (0,0)
or choose any location on the map according taithorm distribution. AnL1 playeri

with the target(a,,b) would best respond to & opponent who either exactly chooses

the center or chooses the center on average. l0grayer chooses the center, to best

* Due to symmetry, all other cases are isomorphthitocase.
®In all our games, sincaj < 2m, we do not need to worry about the possibilityt tb(% lies outside the

upper boundn (i.e., X; =—m+ g > Im). In general, ifa; >2m, we have insteak; = m.



respond, a1 player would choose the locatiga ,b) whenm, nis big enough so that
we do not need to worry about falling outside thepfhSimilarly, for anL2 opponent

with the target(a,, b ) to best respond to dril playeri who choosega, b, ,)he would
choose(a, +a;,b +b; )(whenm, nis big enough). Repeating this procedure, one can

determine the best responses of all higher Ievek) types. Figure 1 shows the various
levelk predictions of a 7x7 spatial beauty contest gamnéwo players with targets (4, -2)

and (-2, 4) labeled ibhold anditalic and underlinedespectively.

To account for the possibility that choices may éaitside the map, we define the
adjusted choice Rlm n(a ). Formally, the adjusted choice is given by
R(m n(a B)=(min( mmaxt m 3),min( nmaxt n b) In words, if the ideal best
response (which hits the target) is locataib), the adjusted choicB(m n( a b) gives
us the closest feasible location on the map sochfwéce (x,y) is constrained to lie
within the rangex0{—-m..., i}, Y — n.., h. This adjusted choice is the best feasible

choice on the map since payoffs are decreasingdndistance between the ideal best
response (target) and the final choice. Moreoversl@wn in Appendix A2, since the
grid map is of a finite size, eventually when teedl of reasoning for a levéltype is
large enough, thek prediction will coincide with the equilibrium. This similar to the

convergence to zero in tipebeauty contest. To summarize, we have

® Appendix Al proves that if a0 player chooses any location on the grid map adegro the uniform
distribution, to best respond to sudh, anL1 player would still choose the same Iocat(diq ,b,) . Thisis
true because our payoff structure is point symmtyi(0,0) over the grid map.



Proposition 2. Consider a spatial beauty contest game with targatdy)and (a;,b )
where both players choose a locatipny) satisfying xO{-m...,m}, y{—-n.., p

3,8 <2mandh,b < 2n. Denote the choice of a level-k player i@y, y), then

(1) (X', %)= Rm np( g+ &', br §)) for k=1,2,...and (', ¥) = (', yf) = (0,0);
(2) there exists a smallest positive integesuch that for allk > k , (X%, y) = (¢, Y°) .

PROOF: See Appendix A2.

In Table 1 we list all the 24 spatial beauty contgemes used in the experiment,

their various levek predictions, equilibrium predictions and the minimk ’s. Notice
that in the first 12 games, targets of each playerl dimensional while in the last 12
games, targets are 2 dimensional. Also, Games)and (2n) (where n=1, 2, ..., 12) are
the same but with reversed roles of the two playsydor instance, Games 1 and 2 are
the same, Games 3 and 4 are the same, etc.

The k ’s for our 24 games are almost always 4, but som8 &&ames 1, 10, 17) or
5 (Games 5, 6, 11, 12). This indicates that as &sge include levet-types withk up to
3 and the equilibrium type, we will not miss theler levelk types much since higher
types coincide with the equilibrium most of the ¢éinMoreover, as evident in Table 1,
different levels make different predictions. In ethwords, various levels are strongly
separated on the map.

Since our games are spatial, players can litecalnt (using their eyes) how many

steps on the map they have to move to hit thegretar This indicates that a natural way

" The only exceptions ate8 andEQin Games 1, 10, 17,2 andL3in Games 2, 6, 9, and L2 and EQ in
Game 18. See the underlined in Table 1.
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to use lookups is to take the lexeteasoning processes literally in the followingsen
For instance, for ah?2 player, the levek model implies that she best responds td.An
opponent, who in turn best responds td_@nTherefore, for th&2 player to make a final
choice, she has to figure out whatl&hwould choose since her opponent thinks of her as
anLO0. She then needs to figure out what her opponeritlawould choose. Finally, she
has to make a choice as lah It is possible that this process is carried @l¢lyg in the
mind of a player. Yet since the games are spatiad, can simply figure all these out by
looking at and counting on the map. This has theathge of reducing much memory
load and being much more straightforward. If thypdthesis is true, ah2 player would
look at the center (where &® player would choose), her opponent’s choice and her
own final choice as ah2. In other words, the hotspots of b& player in her lookups
would consist of these three locations on the nidyps is probably the most natural
prediction on the lookup data one can make whenutigerlying model is the levél-
model. Hence we formulate Proposition 3 and basecenometric analysis on tHis.

Proposition 3. For a spatial beauty contest game with targ&tsh)and (a.,b ) where

j!
both players choose a locatipn y) satisfyingx0{-m..., n}, y{-n.., h, a,a <2m

andh,b <2n. Denote the choice of a level-k player Gy, ¥). Assuming one carries

out the reasoning process on the map, a level-kepla will look at the following

8 Note that this prediction is a bold one, and reggimany assumptions. One should be surprisetlifris
out to be a valid prediction.
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locations in the level-k best response hierar¢kY; y°), ..., (X7, ¥%), (X7, y™),

(X, ¥ .2

[I.B Experimental Procedure

We conduct 24 spatial beauty contest games (witlows targets and map sizes)
without feedback at the Social Science Experimehtdboratory (SSEL), California
Institute of Technology. Each game is played twmegce on the two-dimensional grid
map as shown in Figure 2A (which we denote as tRARH presentation), the other
time as two one-dimensional choices chosen sepai@ee Figure 2B, denoted as the
SEPARATE presentatiorif. Half of the subjects are shown the two-dimensicgrd
maps first, while the rest are shown the maps.|dtee results of the two presentations
are quite similar, so we focus on the results efttho-dimensional presentatioh.

In addition to recording subjects’ final choicesg valso employ Eyelink I
eyetrackers (SR-research Inc.) to track the edision process before the final choice
is made. The experiment is programmed using thetephysics Toolbox of Matlab
(Brainard, 1997), which includes the Video Toolb(Relli, 1997) and the Eyelink
Toolbox (Cornelissen, Peters and Palmer, 2002keSihere is no hidden information in
this game, the main goal of eyetrackingqi@t to record information search. Instead, the
goal is to record how subjects think before makimgr decision (and in fact test whether

they think through the best response hierarchyigddy the levek model).

° The player subscript c(fXO, yo) is dropped since bottD players would choose the center.

19 Note that these two presentations are mathemlati#ntical. However, the GRAPH presentation
allows us to trace the decision-making procesaijimbserving the lookups.

L A comparison between final choices under theserepoesentations is shown in the Appendix (Table
S2).
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In each round, when subjects use their eyes ttefiaba location, it will light up as
red (as Figures 2A and 2B show). If they decidehtnose that location, they could hit the
space bar. Subjects are then asked to confirm theices (“Do you confirm?”). They

then have a chance to confirm their choice (“YES")estart the process (“NO”).

I1l. Results

This section analyzes subjects’ lookups and fitedices. We first report levéd-
classification using final choices. This gives i, each subject, her choice-based type.
Then, we summarize subjects’ lookups and demoustinat plausibility of Proposition 3,
namely, subjects do look at and count on the maimgltheir reasoning process. Thirdly,
we analyze subjects’ lookups with a Markov-switchimodel to classify them into
various levelk types. As a part of the estimation, we employ \giertest to ensure
separation between competing types. This givedausgach subject, her lookup-based
type. Finally, we compare choice-based types watklip-based ones. We show that for
more than a half of the subjects these two clasgifins coincide. When they differ,
Vuong’s test largely favors the lookup-based tyjpege look at the lookup data, while a
resampling test casts doubts on the robustneshafezbased types if we look at the
choice data. This demonstrates how lookup datehegmus perform a sharper empirical

classification of levek types.

13



[1l.LA Level- k Classification Based on Final Choices

We classify subjects into various (leugl-behavioral types based on their final
choices, using the econometric analysis develogeddsta-Gomes and Crawford (2006).

To evaluate the robustness of the classificatiorsampling procedure is employed.

1. Econometric Analysis

We follow a procedure similar to Costa-Gomes anaw@ord (2006) and perform a
maximum likelihood estimation to classify each indual subject into a particular
behavioral levek type using the following logit error structurelet all possible levek

types bek =1,...,K and each subject goes through rourll,...,N. For a given round,
according to Proposition 2, a levebubject’s theoretic final choice is denotedcagl G,
where G, is a finite countable choice set specified formun. The choice seG,

depends on the map size of the game in that pkaticound, andG,|=M, is the

n

number of elements i, 13 Because of the logit error, a levesubject may not choose

k

c, in round n with certainty. Instead, the logit error predi@sprobabilistic choice

r.(c)0G, which we will describe soon. Let. g0, be typical elements d&,.

™

Define the distanc#gnm =0,

as the “steps” on the map (the sum of vertical and

horizontal distance) betwee), andg, . Then, if a subject chooses a locatignher

payoff (hadc® been her target) in this round SE(H g- qﬁ”) =5-|| g £ wheres is a

12 Since we do not have a large choice set as ira@®dsmes and Crawford (2006), we employ a “logit”
specification instead of a “spike-logit” specifizat to describe the error structure of subjectsicés.

13 For instance, suppose in roumahe grid map is as shown in Figure 1, then thﬁaehseth consists
of all 49 locations on the map.
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fixed initial payoff (endowment). We consider a itogrror model and construct the

choice density functioml with precision/, as

exp(AxS(In € ) ¢ 1l) _ exb-Ax IL & 3¢ )
Yexp(AxS(lg-¢ 1) Y exp-Ax lo- & )i

g0G, g0G,

d*(r,(c) =

In words, this means that the probability a lekaubject chooses a particular location

r.(cX) depends on how far this location is away frofn which is what a levek-player
would choose according to the ledemodel. Locations farther away frog) are less
likely. When A, - 0, the subject randomly chooses from the choice&SgetAs A, — o,

the choice of the subject approaches to the lewdieicec. The log likelihood over all

rounds can then be expressed as
N
In []d* (r,(ck)). (1)
n=1

For eaclk, we estimate the precision parameterby fitting the data with the logit error

model to maximize empirical likelihood. Then we oke thek which maximizes
empirical likelihood and classify the subject ititis type.

We consider all the levdd-types separable in our gameé§, L1, L2, L3, andEQ.
Results shown in column (A) of Table 2 indicatepagnthe 17 subjects, there are @)
four L1, four L2, four L3, and threeEQ. The average number of thinking steps is 2.12,
similar to results of the standapdbeauty contest games using Caltech subjects (but
higher than normal subjectdf. Moreover, to incorporate all empirically possible

behavioral types, we follow Costa-Gomes and Crawvf¢2006) and include 17

14 We treat th&EQ type as having a thinking step of 4 in calculgtine average number of thinking steps.
As a comparison, Camerer (1997) reports that Gakaadents play an average of 21.88 plaeauty
contest game witp=0.7. This is betweel.2’'s choice of 24.5 ant3's choice of 17.15.

15



pseudotypes, each constructed from one of our stibjehoices in 24 trials. This is to
see whether there are clusters of subjects whaseashresemble each other’s and thus
their choices are better explained by each ottibér by the pre-specified levkltypes.
Denoting pseudo-the pseudotype constructed form subjethe results are reported in
Appendix (Table S1). We find that two subjects {sab 3 and subject 17) have
likelihoods for each other’s pseudotype higher thkother types. So, based on the same
criteria of Costa-Gomes and Crawford (2006), thewld be classified as a cluster
(pseudo-17). In other words, there may be a dudtpseudo-17 type subjects (subjects
3 and 17) whose behaviors are not explained wethbyredefined levek-types. Despite

of this, there are still 15 subjects out of 17 wdao be classified into levé&ltypes. Table

2 lists the classification with and without psewgas in columns (B) and (A)
respectively. The distribution of levkltypes does not change much even if we include
pseudotypes, having twd, threelL1, four L2, threelL.3, and thred=Q (see column (B) of
Table 2). The average of thinking steps is 2.13arlgeidentical to that without
pseudotype¥® This suggests that in our games, the lévelassification is quite robust to

empirically omitted types.

2. Resampling Test for Robustness of Types

The above econometric model based on maximum higetl estimation may not
have enough power to distinguish between variopgedy For example, reading from
Table S1, subject 14’s log likelihood is -98.89 i@ -84.17 forl 1, -96.99 forl2, -76.67

for L3, and -74.45 foEQ. Maximum likelihood estimation classifies herEg, although

15 In calculating the average number of thinking stepe ignore the two pseudo-17 subjects. For tivese
pseudo-17 subjects, one is re-classifiellasand the othelc3 when pseudotypes are not included.

16



the likelihood ofL3 is also close. In this case, classifying this sabpsEQ based on
maximum likelihood alone may be questionable. T@lRst of our knowledge, there has
not been any proposed test in experimental ecorsofoicevaluating the robustness of
maximum likelihood-based type classifications. Henwe propose a resampling
procedure to attempt to deal with the issue of stimess.

Imagine that from the maximum likelihood estimati@nsubject is classified as a
particular levelk type. We evaluate the robustness of this classificawith the
following resampling test. Since our econometrittnegtion assumes each subject’s 24
rounds of observations are independent, it is aatior maintain this assumption when
resampling. Hence, we resample the data by randdmalying one round out of the 24
rounds observed for each subject. By drawing (wefhlacement) 24 times, we obtain a
new (resampled) dataset for this particular subjéleen, we estimate the subject’s type
with this resampled data. Since the resampledidaapected to resemble the empirical
distribution, we should expect the maximum likebdoprocedure gives us the same
levelk type for sufficiently many resampled datasets.hié type estimated from a
resampled dataset is not the same l&vgpe, we view this as a “misclassification,” and
count it against this particular classificatiknBy resampling 1000 times and calculating
the total misclassification rate, we can measure tbbustness of the original
classification (against resampling error). Thisarapling test is in the spirit of the test
reported in Salmon (2001), which evaluates the sbimss of the parameters estimated in
a EWA learning model using simulated data.

The results of resampling test are listed in Tabl€or each subject, we report the

number of times that a subject is classified ihf) L1, L2, L3 or EQ in the 1000
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resampled datasets. The misclassification ratecépgsge of times one classifies the
subject as a type different from her original ty@ing the largest likelihood using final
choices) is listed in the last column. For exampldgject 14 is originally classified &),
but is only re-classified aBQ 587 times during the resampling test. Subject B w
instead classified as3 228 times and ak1 185 times. Hence, the distribution on the
number of times that subject 14 is classified ib@® L1, L2, L3 or EQ in the 1000
resampled datasets is (0, 185, 0, 228, 587) andaimesponding misclassification rate is
0.413.

The classification is not as good as one wouldehsmce only 8 subjects passed
this resampling test with misclassification ratevén than 5% and could thus be
unambiguously classified into a certain type. Tduggests that choice data might not be
enough to perform sharp classification. We turrcd@asider how the lookup data could

help us further.

[ll. B Lookup Summary Statistics

Aggregate data regarding empirical lookups foRdliSpatial Beauty Contest games
are presented in Figures 3A and 3B: games withniedsional target are presented in
Figure 3A, and those with 2-dimensional targetsFigure 3B. For each game, we
calculate the percentage of time a subject spemiach location. The radius of the circle

is proportional to the average percentage of tipgmsin each location, so bigger circles

indicate longer time spent. The lexethoice predictions are labeled@s(L0), L1 (L1),

L2 (L2), L3 (L3), E (EQ) for each game.
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If Proposition 3 were true, the empirical lookupsuld concentrate on locations
predicted by the levek-best response hierarchy. In fact, many big cirgieBigures 3A
and 3B do coincide with locations of the lekebest response hierarchy. We attempt to
qguantify this concentration of attention. Firsty fvery levelk type, we define thélit
area which is the minimal convex set envelopingltioations predicted by this levil-

type’'s best response hierarchy. For instance, fidc2asubjecti (with opponent), the

best response hierarchy consists (of , y°), (X, ¥), (X*, ¥’). Thus we can construct a

minimal convex set enveloping these three locatidvie then take the union of tht
areas of all levek types and see if subjects’ lookups are indeedinvitie union. Figure

4 shows an example éfit areas for various levédtypes in a 7x7 spatial beauty contest
game with target (4, -2) and the opponent’s tafgetd) (Game 16).

Figure 5 shows the empirical percentage of timentspa the union oHit areas
(aka “hit time”). Across the 24 games, averagetihie is 0.62, ranging from 0.81 (in
Game 9), to 0.36 (in Game 21). Since on average iti@n 60% of the lookup time is
spent on the union dflit areas, empirical lookups are indeed concentratekbaations
predicted by the best response hierarchies of watevelk types.

However, hit time depends on the size of the dfesabjects only look at locations
on the levek best response hierarchy, the empirical hit timeldde 1. However, even
if subjects scan over the map uniformly, the ensplirhit time would not be zero. Instead,
it would be proportional to the size percentagehef union ofHit areas (aka “hit area
size”). To correct for this hit area size bias, waculate Selten’s (1991) (linear)
“difference measure of predicted success,” i.e.difference between empirical hit time

and hit area size, and report it in Figure 6. Thesasures are all positive (except for
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Game 21), reflecting large hit area sizes alonen@taccount for the high empirical hit
time. This suggests that subjects indeed spenggaagiortionally long time in the union
of Hit areas?® With this aggregate result in mind, we now coesidhether individual

lookup data can be used to classify subjects iattous levelk types and helps reduce

the possible misclassifications based on final @®alone.

[11.C A Markov-Switching Model for Level- k Reasoning

According to Proposition 3, a levkltype subject goes through the best response

hierarchy during the reasoning process, and fixatéscations(x’, y°), ..., (X%, ¥?),

(X7 YY), (X ¥ - As subjects reason through the hierarchy ffafy y°) to (¢, ),
we may consider lookups as a serially correlateteeries. We define some state
variables to help us characterize the stage dbéiseresponse hierarchy the subjastat.
Define Lk as the state which indicates that she is (reagoa#) anLk and hence her
fixation is concentrated on the locati¢x(, y*). In general, we use the apostrophe to
denote it is about the opponent. Herld&;1)’' is defined as the state which indicates that
she is reasoning that her oppongeistanL(k-1) and hence her fixation is concentrated on
the Iocation(xjk‘l, yj"‘l). Lower stated (k-2), L(k-3)’,..., etc. are defined similarly. Then,
states corresponding to subjéstlevelk best response hierarchy of Proposition 3 can be

expressed ad 0, ..., L(k-2), L(k-1)’, Lk.” For instance, the reasoning process of.2n

subjecti consists of three stages: First, she would beate 50 and fixate at(x’, y°)

18 In fact, sometimes subjects have hit time nearlydr example, Figure 7 shows the lookups of sulfec
in round 17, acting as a Member B. The diameteeawfh fixation circle is proportional to the length
each lookup. Note that these circles fall almostfesively on the best response hierarchy.®fwhich is
exactly her levek type (based on lookups) according to the lastroolof Table 4.
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since she believes her opponentiswho believes she I0. Then, she would be in state

L1’ and fixate at(x}, yjl), thinking through her opponent’s choice asLanFinally, she

would be in staté2 and best respond to the belief that her opporseanlLl by making

her choice fixating a(x’, y’) . These three states &€ (fixating at the location of
(%, ¥)), L1’ (fixating at the location ofx;, y;)), L2 (fixating at the location ofx’, y*))

are expected to be passed through during the negspnocess of a2 subject. To
account for the transitions of states, we empldyaakov switching model first used in
macroeconomics by Hamilton (1989) to describe mssincycles and characterize the
transition of states by a Markov transition matrix.

We do not require a levélsubject to “strictly” obey a monotonic order oféd-k
thinking. In other words, they are not requirechexessarily go from a lower state to a
higher state. i.e., always moving upwards throdghgequenceO, ..., L(k-2), L(k-1),

Lk. Instead, we allow subjects to move back from éigdtates to lower states. This is to
account for the possibilities that subjects mayogok to double check as may be typical
in experiments. However, since a lekelype best responds to a levkid) opponent, it

is difficult to imagine a subject jumping from theasoning state of sayk-2) to that of
Lk without first going through the reasoning state Lgk-1)’. Thus, the transition
probability should be restricted to zero for airtsitions that involve a jump in states.

To perform the classification using lookups on djsct-by—subject basis, we
assume that each subject is the same lewgbe in all rounds and the error structure
under each state follows the same logit distributd/e perform a maximum likelihood
estimation to obtain the transition probabilitiesdathe logit error parametet, and

classify subjects into various leviekypes based on lookups.
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1. Econometric Analysis

Let all possible levek types bek =1,...,K and there are N rounds of games in

which each round is indexed ly=1,...,N. In roundn, Let G, be the (finite) choice set

which depends on the size of the map in that romldl,|Gn|= M. is the number of

n

elements inG, . Elements ofG, are denoted by, ,g,,....g, . Since every element in

G, is a location on the map, each can be represégtedpair of coordinates. Recall that

payoff is decreasing in the distance (or steps)ppBse gnm:(xgrm,ygrm) and

9y, = (ng’ ygw), as before, we define the distance as the surertital and horizontal

distance,” O, ~ On,

=[x, =%+ 3, %]

For a levelk subject, we consider tletatespaceQ, consisting of all stages in the
best response hierarchy witkt+() states {0, ...L(k-1)’, Lk}. We then define a state-to-
lookup mappind,:Q, - G, for roundn which assigns each state to a corresponding
lookup location inG, . For instance, if a level-2 player in rounds in stateL0 at a point
of time, thel, mapping would give us the location which a levgit@yer would choose

since at this particular point of time, whenlahis thinking about what ahl thinks an
LO would choose, she would fixate at the location #m_0 would choose. Similarly, if a
level-2 player in round is in stateL1’ (L2), then thel, mapping would give us the
location which a level-1 opponent (a level-2 sut)jaould choose.

In each game, we observe a sequence of lookupsvéikl like to infer, for each

lookup in the sequence, which state a subject w8hen her lookup is on that particular
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lookup location. However, the current state of hjett crucially depends on previous
states since we assume a leketubject goes through stages of the best response
hierarchy (but allowing her to go back to doubledk). Therefore, we assume this
transition is Markov, depending on the immediatevmus state only, and estimate a
constrained Markov transition matrix. We constrdia Markov model since the leviel-
model requires one to move up the hierarchy one atea time (but has no restriction
moving down). In other words, if we list the prewsostate in the row and the current
state in the column and states are ordered fromrdevhigher, elements of the transition
matrix have to be zero if they are more than oeeneht above the diagonal (i.e. their
column index is greater than the row index plus)one

In addition, we estimate a logit error model to aiidge the relationship between
states and lookups. Suppose a level-2 player erad to be in statel’, then by the
mappingl,, her lookup should fall exactly on the locatilif L1’). If her lookup is not
on that location, we interpret this as an error. 8§sume a logit error structure for such
errors so that looking at locations farther awayrfi (L1’) is less likely, and to estimate
a precision parameter for this error structure.

To summarize, we estimate a state transition matrtka precision parameter. Thus
for any initial distribution of the states, we knake probability distribution of states at
any point of time using the state transition matMoreover, at any point of time, the
mappingl, from the state to the lookup gives us the lookagation corresponding to
any state when there is no error. Coupled withpileeision parameter, we can calculate
the probability distribution of various errors atiterefore the distribution of predicted

lookup locations when errors are permitted. Using $tate transition matrix and the
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precision parameter, we can calculate how well wee able to explain any observed
sequence of lookups. The final step is to selezktim various levek models that best
explains the observed sequence of lookups for salsjfect.

Formally, the lookup sequence in roumds a time series ovdr=1,....T.. Because
of the logit error, a levet-subject may not look at a location with certairitperefore,

for time t (i.e. thet-th lookup), let the random variable!, be the probabilistic lookup

location in G, and its realization be'. Denote the lookup history up to timeby

R={r, ..t}
Suppose the subject is a particular ldelket Z' be the random variable

representing the state, drawn from the state sppce{LO, ...L(k-1)’, Lk}, and its

realization bez' at timet. Denote the state history up to titey 2! ={Z,..., 2%, 2} ./

Since lookups may be serially correlated, we motte¢ by estimating a
constrained Markov stationary transition matrix sfates. Denote the transition
probability from statez' ™" =z to Z' = Z' by

Prz' =212 =2")=m, ,

(1)

Thus, the state transition matrék is

T, M., O 0
7o Ty
6 = C = 0
Th o 7T Thy .«
T o e o TT,

" In the experiment, subjects could look at therertomputer screen. Here, we only consider lookigis
fall on the grid map and drop the rest.
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where 7z . =0 for allj>i+1 since we do not allow for jumps.

]
Conditional onZ'=Z, the probability distribution of a levek subject’s

probabilistic lookupR! is assumed to follow a logit error quantal resgonsodel

(centered at_(z')), independent of lookup historg, . In other words,

exp(-A,r. -1, €' })

> exp(-AJo-1, @ ))

guG,

PrR, =r!|Z'=2" &)=

)
wherel, J[0,) is the precision. If4, =0, subjects randomly look at locations @; .
As A, - o, subjects’ lookups concentrate on the lookup locak (z') predicted by the
levelk model. Combining the state transition matrix amel lbgit error lookup model, we

can calculate the probability of observing lookijpconditional on past lookup history

@t—l:
Pr(R) =ry |& )= > PrZ'=Z" &, OPR, =r,|Z'=Z ;"
200,
3)
where
Pr(z' =7 |&™)
- Z Pr(zt—l = Zt—l |7ent—l)|j3rzt = 2 Zt—l= 2—1 7‘%1—1:
270,
- z Pr( Zl—l = Zl—l |7%t—l )DTZt—lﬁi .
2700,
(4)

The last equality follows since according to therkéa property,Z'™ = z'*is sufficient

to predictZ' = Z'. Note that (4) depends on the Markov transitionrixand the second
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term on the right hand side of (3) depends onalyé error. Hence, for a given roumg
coupled with the initial distribution of states,ethoint density of a levet- subject’s

empirical lookups, denoted by

feet, 2ty )= Pt M )

n nyeet b 1 n

=Pre)Pr¢? )P, 2 ) R b2 o

)
can be derived. Assuming a lewekubject’s lookups independently follow the same

Markov process across all rounds, the log likelthowerN rounds is
N
L(A.6,) = In[ﬂ (A (SO i g )} :
n=1

(6)

To estimatel, and the Markov transition matrig, , by (6), we need to start with an

initial distribution of states. Since levielreasoning starts from the lowest state (€

we assume this initial distribution degeneratesatonass point at the lowest state

corresponding t@.0.*® With this assumption, we estimade and the constrained Markov

18 Formally, we start with the assumption tHr( Z° = z°)= 1 when the initial state® is LO and zero

otherwise. Then we derive the following step bypstEirst, F’r(zl)=Z:ZODQ [Pr(zO)Pr(i |2 ﬂ
k
where Pr(z°) is given by the initial distribution of states amf(z' | Z) is given by the Markov
o . 1y — 1 151 L '
transition matrix. SecondPr(r, )—ZZlDQk[PrQ )Pr¢, k2 j where Pr(z') is given by the first
step andPr(r. |z') is given by the logit error. Third, we update ts@ate by the current lookup or

Pr(z |rn1):[ Pr )Pr¢' |2 j/ Pr¢' ) where terms in the numerator and the denominaeobath
derived in the second step. Fourth, we derive thext nstate from the current lookup or
Pr(Z’ )= Zlmk[ Pr i )Pre’ |y 2 )= ka[ Pr¢ | )P ) where the
second equality follows because by Markov, theditaom to the next step only depends on the custate.

Moreover, Pr(Z' | 1) is derived in the third step anl@r(z* | Z') is given by the Markov transition
matrix. Fifth, we  derive the next lookup from  the urent lookup or
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transition matrixg, using maximum likelihood estimation for eaéh and classify

subjects into the particular levkltype which has the largest likelihood.

2. Model Selection using the Vuong’s Test

The above econometric model may be plagued by anfiting problem since
higher levelk types have more states and hence more paramitisrsiot surprising if
one discovers that models with more parameterbditer. In particular, the Markov-

switching model for levek has k+1) states with gk +1)x (k+1) transition matrix. This
. k(k+3) : » .
gives the modelT parameters in the transition matrix aldfieFor example, a

level-2 subject has 3 statdD(L1’, andL2) and five (Markov) parameters, but a level-1

subject has only 2 statelsQ){ andL1) and two (Markov) parameters. Hence, we need to

Prc? |rl)= ZzzDQ [Prtz F)Pn(Z 'z 2} where Pr(z* |r*) is given by the fourth step and
k
Pr(r? |rtz?)= Pr¢? k2 )is given by the logit error. Sixth, as in the thatep, we update the state by

the lookups up to now oPr(z” |1 ,r? )=[ Pre® [t )Pn(? ' z? }/ Pr(’ r|,' ‘where terms in the

numerator and the denominator are both derivetarfifth step. Seventh, as in the fourth step desve
the next state from the lookups up to now or

PIE 10 r2)= D i | PPE% I 12)PRS (iR 222 )=, [ PE? |1, % )PIC 4°])
where Pr(z° |r*,r?)is derived in the sixth step arfar(z’ |Z) is given by the Markov transition
matrix. Eighth, as in the fifth step, we derive thext lookup from the lookups up to now or

Prc® |rly )= ZZ3DQk[ Pt 1le 2)Pr(Cr| r, 2z, 3} where Pr(Z* |r*,r?) is given by the

seventh step andPr(r> r*y > z°%)= Pr(> £ is given by the logit error. Continuing in thissféon
and multiplying altogether the second step, thih fitep, the eighth step, and so on, we will be abl
derive Pr(r>)Pre¢2 r )P v, 2 )...Rrr |F 2 X0 or (5). Regarding the assumption on
the initial state, alternatively, we could follolwet tradition in the Markov literature and assumégaum
priors, or Pr(Z° =2z°)=1 (k+ 1) for all Z°0Q, . But this raises the question how subjects could
figure out locations of higher states without eaetually going through the best response hierarthig is

the reason why we employ the current assumption Ft’rféZO = ZO)= 1 when the initial statez’ is LO

and zero otherwise.
19 Since each row sums up to one and elements véthdlumn index greater than the row index plus one

are zero, we have in totgk +1)x (k+1)— (k+ 1)— [k(k— 1)) 2= [ K( k+ 3)]/ 2 parameters.
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make sure our estimation does not select higheidawerely because it contains more
states and more parameters (and predicts morepdokations)°

However, usual tests for model restrictions may aygply, since the parameters
involved in different levek types could be non-nested. For instance, the spatee of a
level-1 type, 0", L1), is nested in the state space of a level-3 tgp®, L1, L2’, L3),
but is not nested in the state space of a levgp@, {0, L1, L2).

In order to evaluate the classification, we follduong’s test for overlapping

models (1989). Let.k" be the type which has the largest likelihood veitiiresponding

parameters(4 .,6,.). Let Lk* be an alternative type with corresponding pararsete

(Ae.6.)- We want to test if these two competing typek, and Lk?, are equally good

@
at explaining the true data, or it is the case tim&t of them is a better model. In order to
do so, we choose a critical value from the standeadd normal distribution. If the
absolute value of the test statistic is no lar¢gntthe critical value, then we conclude
that Lk" and Lk® are equally good at explaining the true dati.the test statistic is
higher than the critical value, then we concludat ttk"” is a better model thahk®.
Lastly, if the test statistic is less than the tiegaof the critical value, then we conclude
that Lk* is a better model thabk".

Equation (6) can be rearranged as

L1080 = 2, (A6,

n=1

20 Overfitting is an issue pertaining to lookup dsitice higher levektypes have more parameters. This is
not an issue in choice data since every type higsooe logit error parameter and makes only onalfin
choice anyway.

L Since overfitting may be a problem, when both nimdee equally good, we consider the number of
parameters in each model, and conservatively s#leanodel with the lower number of parameters to
avoid the possibility that we may select a higlypetsimply because it has more parameters.
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where Ir (A,,8)=InfX¢:,...r "¢ ). This indicates that subject's lookups are

independent across rounds and follow the same Mawitching process, although each
round’s lookups sequence may be serially-correlated
To perform the Vuong’s test, we construct the liggHhood ratio round by round

and define

m, =1Ir,(4.,6,)-Ir,(A.,6,.) for roundn=1,...,N.
N

Let rT1=%Zmq . Vuong (1989) proposes a sequential procedure2lp.3or
overlapping models. Its general results desctibedehavior of

1 N
JN [Z n@

N n=1

13 .,

\/ N ;(mn m

V =

N
when the sample varianeg = %Z(mn - m?is significantly different from zero (the
n=1

variance test). If the variance test is passedcfwis the case for all of our subjects),

has the property that (under standard assumptions):
(V1) If Lk"and Lk*are equivalently good at fitting the data,
Vv O %L N(O,1);
(V2) if Lk" is better tharLk? at fitting the data,
V O3 oo
(V3) if Lk® is better tharLk" at fitting the data,

VvV O~
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Hence, the Vuong's test is performed by calculadgand applying the above three

cases depending on whethék —c, [V|<c, orV >c. (c=1.96for p-value = 0.05.)

Recall that in our caskk” is the type with the largest likelihood based @okups.
Let the alternative typék® be the type having the next largest likelihood agall
lower types? If according to Vuong's test, (V2) applies so that' is a better model
than Lk?®, we can be assured that the maximum likelihoorooin does not pick up the
reported type (instead of the second largest tigyenere chance. Thus, we conclude
that the lookup-based type ik". If instead we find that according to Vuong's test])
applies so that k" and Lk* are equally good, then we conservatively clagsiéysubject
as the second largest lower typ€. (V3) does not apply sincé >0 by construct.

Table 4 shows the results of the maximum likelihestimation and Vuong’s test
for each subject. For each subject, we list hiertype, herLk?® type and her lookup-
based type according to the Vuong’ test in thedatimn. Six of the seventeen subjects
(subjects 1, 5, 6, 8, 11, 13) pass the Vuong’s dast have their lookup-based type as
Lk™. The remaining eleven subjects are conservativiysified asLk®. The overall
results are summarized in column (C) of Table 2ZeAémploying the Vuong'’s test, the
type distribution for I(0, L1, L2, L3, EQ) is (1, 6, 4, 4, 2F° The distribution is slightly

higher than typical type distributions reportecpmevious studies. In particular, there are

% Recall that the reason why we look at the Vuongs is to avoid overfitting. Hence, if the altetiva
type has a larger transition matrix (more paransgteat a lower likelihood, there is no point tofpem a

test, sinceLk" will not suffer from the problem of overfitting bause it has fewer parameters but has a
higher likelihood. This leads us to consider omhywér level types as the alternative type.

2 1f we ignore the two pseudo-17 subjects (subjgasd 17, both classified &8 based on lookups) since
their choices suggest that they may not behaverdicgpto the levek theory, then the type distribution for
(LO, L1, L2,L3,EQ)is (1, 4, 4, 4, 2).

30



two EQ’s and four L3’s, accounting for more tharedhird of the data. The average
number of thinking steps is 2.69.

There are several possible explanations to why beeme higher than typical type
distributions reported in previous studies. Firkalb, as stated before, Caltech subjects
are reported to have more steps of thinking tharalusubjects. Moreover, the spatial
beauty contest game is intuitive and does not reqguiathematical multiplication (as
compared with say, the standgrdeauty contest game). Hence, this may explain why
subjects could perform more steps of reasoningigmeasier tasi

However, one might wonder whether the results tedom Table 4 is due to a
misspecification of possible types. After all, mamgsumptions are required for
Proposition 3 to hold. Unfortunately, we cannotfpen a pseudotype test as in Costa-
Gomes and Crawford (2006) since the length of tiwkup sequence differs across
subjects. However, we can compare the classificdiased on lookups with those using
final choices alone, and see if types are aligred/éen the two classifications. We turn

to this now.

% Two points are worth noting here. First, one mighirry about non-identification issues caused by

nuisance parameters when the two competing tymestdctly nested and if the subject were trlll(®.
Hence, we also perform the Hansen'’s test (Hanse9?)1 Results are reported in columns of Table S3,
and are nearly identical to those based on the ¥adest. The only potential difference is subg@¢taving

a marginally significanp-value of 0.053 (while in Vuong’s test the testistat is V=2.40>1.96, significant

at the 5% level). In other words, even when we @wib use Hansen test whérk” and Lk? are strictly
nested, the result is almost the same. Seconadlg,that we only perform the Vuong’s test once, inek

find LK™ and Lk® explain the data equally well, we classify subjextd k®, the lower type that has the
next largest likelihood. It is possible that thevé type with the next largest likelihood is stitht different
from the even lower type with the even next lardéstlihood (and so on). Hence, one might wonder
whether we should stop here. Nonetheless, eveneifemploy an iterative Vuong’s test and classify
subjects as the type that is, for the first timignigicantly different from a lower type of whicthé
likelihood is immediate lower, we can re-classifyhotwo L2 subjects ak1, one L2 subject as0 and two

L1 subjects a&0, making the average number of thinking steps ¢loop.65. This provides a lower bound
to the possible type distribution. The iterativeovig’s test result is reported in the sixth colunfifable
S3.

% For example, Chou et al. (2009) show that a gbipiresentation of the standgrtbeauty contest game
yields results closer to equilibrium.
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[11.D Final Choices vs. Lookups

In Table 2, the choice-based and lookup-based ifitat®on results look similar,
though the choice results indicate slightly moepstof reasoning (2.12 for choice-based
types without pseudotypes instead of 2.00 for lopkbased types with Vuong's test).
This suggests that the lookup-based estimation {l@@dinderlying Proposition 3) is not
completely out of the ballpark.

In fact, if we consider the classification resutts a subject-by-subject basis, the
similarity between the two estimations are evenarevident. For each subject, using the
lookup data, we consider her lookup-based typedi@enby Lk', as reported in the last
column of Table 4) and her choice-based type (&ehby Lk, as reported in the second
column of Table 3). We perform the Vuong's testwesn these two types (using the
lookup data) and report thé statistics for Vuong’s test in the second to Edumn of
Table 5. For the ease of comparison, in Table @lse reproduce the misclassification
rate of choice-based types in the last column &mhesubject (reported originally in the
last column of Table 3). Overall, using the loolkdgia, for ten of the seventeen subjects,
their lookup-based types and the choice-based tgpeghe same. Such alignment in
classification results would be surprising if ot@ught Proposition 3 was too strong a
claim. Nevertheless, given that for more than bathe subjects, both classifications are
the same, it is hard not to accept the concludian Proposition 3 (and its underlying

assumptions) does have some prediction power. Meretor these ten subjects, all but
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three of them have (choice-based) misclassificatbes lower than 0.05, suggesting that
their classifications are truly shaf.

On the other hand, among the seven subjects wbhokap-based classification and
choice-based classification differ, using lookupagaesults of Vuong’s tests suggest that
the lookup-based classifications are significaritgtter models than the choice-based
models for four subjects (see the column labele¥wasng’s statisticV in the bottom
panel of Table 5). This suggests that based orujpdlata, the lookup-based types indeed
can separate well from the choice-based typeshiset four subjects. For the remaining
three subjects (whose two classifications fit elyualell), the lookup-based
classifications all have fewer parameters thanagbased models. Hence if we worry
about overfitting using the lookup data, since agdit@ to Vuong’s test, the lookup-based
models and the choice-based models are equally gobthe lookup-based ones have
fewer parameters, this, in a conservative sens&esnthe lookup-based models better
models to explain the lookup data. Moreover, amiiege seven subjects (except subject
8), for six subjects, if we use the choice dateirttchoice-based type all have
misclassification rates higher than 18.4%, sugggstinat misclassifying these subjects
into the wrong types using choice data alone (duedignificantly larger likelihoods) is
possible. A closer look at Table 3 would in facteal that for these six subjects, they are
actually classified into lookup-based type not sfyeiquently when we resample their

choices. Their lookup-based types are almost alitaysecond most frequent type they

% One of the three subjects (subject 17) is a psgpdo The remaining two subjects (subjects 2 gnd 4
have a misclassification rate of 0.076 and 0.1H@&s€ are marginally higher than 0.05. In conteaatept
for subject 8, all other six subjects whose lookaged types are different from their choice-bagpeds
have misclassification rates at least 0.184. Tinjgyssts that when the lookup-based types and thieezh
based types are the same, the classification ie gbarp. On the other hand, when they differ, the
classification based on choice is not that sharp.
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are classified into in the resampling t&stThis provides another piece of evidence that
the lookup-based types can explain part of theoicgs, suggesting that their lookup-
based types might not be a bad candidate if wéoarkassify them properl§?

Altogether, when lookup-based types differ fromichebased types, using lookup
data, lookup-based types are either better modtials ¢thoice-based types or they have
fewer parameters than choice-based types. On he band, using choice data, choice-
based type typically have misclassification raté swlow. Moreover, the lookup-based
types are typically the second most frequent typey are classified into if we resample
their choices. From these we probably can conclodkeup data do have some truth in
classifying subjects properly and may help us sgpaypes.

To summarize, these results show that lookup data kelp us confirm
classification results based on choices alone &ad provide better classification results.
In particular, without the lookup data, we couldéalassified subjects into certain types
based on insignificantly larger likelihoods.

Moreover, lookup data provide a chance to putéiwelik model to an ultimate test,
asking if the model can not only predict final ates, but also describe the decision-
making process employed by subjects by going throtlg best response hierarchy

specified in Proposition 3. Results in Table 5 shbet the levek model does indeed

2" For instance, for subject 6, her lookup-based tgi#Q while her choice-based typelig. In 1000 times

of resampling of choices, she is classifiedBQ 228 times. The only exception is subject 14, wehos
choice-based type EQ, but is reclassified ds3 228 times and dsl (her lookup-based type) 185 times.

2 |f we ignore the two pseudo-17 subjects (subjdaisd 17) since their choices suggest that theymoay
behave according to the levetheory, the results are even stronger. Amongehw®ining fifteen subjects,
for nine subjects, their lookup-based types andcth@ice-based types are the same. Among these nine
subjects, except for subjects 2 and 4, the midéileastion rates of their choice-based types ardailer
than 0.05 For subjects 2 and 4, the misclassifinatates are 0.076 and 0.110, both at the marginthe

six subjects whose lookup-based types differ froweirtchoice-based types, for four of them, using th
lookup data, their lookup-based types are bettatatsathan their choice-based types according tongiso
test. For two of them, using the lookup data, thedkup-based types and their choice-based types ar
equally good according to Vuong's test. But theolup-based types have fewer parameters.
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hold up under this test. One ought to keep in ntivad explaining the reasoning process
is a hard one, if not harder than explaining chaicehe result that in our dataset, for
more than a half of subjects, their lookup-bas@@syare aligned with their choice-based
types could be read as a strong support to thd-kewsodel. This may be due to the
graphical nature of the spatial beauty contest gaidew general this result is should be
tested in future experiments in which the reasopimgess can somehow be analyzed.
Finally, one might wonder if it is the case thabjsets in fact do perform lookups
that resemble higher levels of strategic thinkimgt, somehow “downgrade” their choices
to a lower level, possibly realizing that even hiey could perform higher levels of
thinking, their opponents may not. However, amtmg seven subjects whose lookup-
based classification disagrees with the choicedas®, three of them have higher
lookup-based types (subjects 6, 9, 11), while #rmeaining four (subjects 3, 8, 14, 15)
have higher choice-based types. So, this explamabald at most account for only half

of the disagreements in our data.

IV. Conclusion

We introduce a new spatial beauty contest gamepeouide theoretical predictions
based on the equilibrium and the lekdhkeory. The theoretical predictions of the lekel-
theory yield a plausible conjecture on the decisiaking process when people actually
play the game. We then conduct laboratory experisnasing video-based eyetracking
technology to test this conjecture, and fit the teyeking data on lookups using a
constrained Markov-switching model of ledekeasoning. Results show that based on

lookups, experimental subjects could be classiiied various levek types, which for
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more than a half of them coincide with types theyt were classified into using final
choices alone. Moreover, when the two classificatidiffer, a resampling test shows that
we might misclassify subjects into their choicedshsypes due to insignificantly larger
likelihoods. On the other hand, Vuong’s test orklqus shows that lookup-based types
are either better models than choice-based typémwe fewer parameters than choice-
based types. This suggests that lookups may gigestr®nger separation of types.
Comparing the distribution of levéliypes based on final choices with that based
on lookups, we find that some subjects have higgeal-k types using lookup data. This
could be due to imprecise choice-based classificatAnother possibility is that subjects
may perform lookups that resemble high levels ohtsgic thinking, but decide to
“downgrade” their choices to a lower level, posgitdalizing that their opponents may
not perform equally high levels of thinking. Ouretnacking data show that the latter
explanation can at most account for a half of ifference between the two distributions.
However, this explanation is of special interest fature research because it is
inconsistent with the cognitive hierarchy model,im€Camerer and Ho (2004), which
assumes subjects’ beliefs about others are tietd wieir own levels of cognition.
However, this could be explained by other lekehiodels, such as Stahl and Wilson
(1995), Costa-Gomes, Crawford and Broseta (200#) @osta-Gomes and Crawford
(2006), which assume that subjects are fully raigoapable of any high level thinking),
but their beliefs about others may not be consistéth the choices of others. Therefore,
this explanation points to a subtle difference leetthe two classes of ledemodels in

the literature, and should be explored with moneeeixnental evidence in the future.
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Figures and Tables
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Figure 1: Equilibrium and Leved-Predictions of a 7x7 Spatial Beauty Contest Game
with Targets (4, -2) and (-2, 4) (Game 16). Prealis for the player with Target (4,-2)
are inbold, and predictions for the player with Target (-2348 initalic and underlined
O stands for the prediction b for both players. Note thak andLk are the best
responses th(k-1) andL(k-1), respectively. For example, L2’s choice (2,1this best
response to L1 since (-2,3) + (4, -2) = (2, 1).
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Figure 2A: Screen Shot of the GRAPH Presentation
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Figure 2B: Screen Shot of the SEPARATE Presentation
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Figure 3A: Aggregate Empirical Percentage of TBpent on Each Location for Games with 1-dimensional
Targets 6AME 1- GAME 12). The radius of the circle is proportional to theerage percentage of time spent on

each location, so bigger circles indicate longaetspent. O, L1, ..., E are play&r predicted choices of
various levelk types.
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Figure 3B —Aggregate Empirical Percentage of Tipers on Each Location for Games with 2-dimensional
Targets 6AME 13- GAME 24). The radius of the circle is proportional to thesrage percentage of time spent on
each location, so bigger circles indicate longaetspent. O, L1, ..., E are play&r predicted choices of
various levelk types.
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Figure 4:Hit Areas for Various Levek-Types in Game 16 (7x7 with Target (4, -2) and
the Opponent Target (-2, 4)it area is the minimal convex set enveloping thetiona

predicted by each levéliype’s best response hierarchy.
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Note: In general, if we use the apostrophe to deiitois about the opponent and follow the notations
defined in 111.C, the minimal convex set envelgpihe locationsL(, ..., L(k-2), L(k-1)’, Lk) predicted by
various levelk types are illustrated.

Figure 5: Aggregate Empirical Percentage of Timerspn the Union ofit Areas (“Hit
Time”) in Each Game
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Figure 6: Aggregate Linear Difference Measure @diited Success in Each Game. It
measures the difference between hit time and #eepgrcentage of the union of tHg
area.
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Figure 7: Subject 2’'s Eye Lookups in Round 17 (a&srMer B). The radius of the circle
is proportional to the length of that lookup, sgd®r circles indicate longer time spent.
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Table 1: Levek, Equilibrium Predictions and Minimurk ’s in All Games

Map Player1 Player 2 —
Game size target target LO L1 L2 L3 EQ k
1 9%x9 -2,0 0,-4 0,0 2,0 -2,-4 -4,-4 -4,-4 3
2 9%x9 0, -4 -2,0 0,0 0,-4 -2,-4 -2,-4 -4,-4 4
3 <7 2,0 0,-2 0,0 2,0 2, -2 3,-2 3,-3 4
4 <7 0, -2 2,0 0,0 0,-2 2,-2 2,-3 3,-3 4
5 11x5 2,0 0,2 0,0 2,0 2,2 4,2 5,2 5
6 11x5 0,2 2,0 0,0 0,2 2,2 2,2 5,2 5
7 ox7 -2,0 0,-2 0,0 2,0 -2,-2 -4,-2 -4,-3 4
8 Ox7 0, -2 -2,0 0,0 0,-2 -2,-2 -2,-3 -4,-3 4
9 7x9 -4,0 0,2 0,0 -3,0 -3,2 -3.2 -3,4 4
10  7x9 0,2 -4,0 0,0 0,2 -3,2 3,4 -3,4 3
11 7x9 2,0 0,2 0,0 2,0 2,2 3,2 3,4 5
12 7x9 0,2 2,0 0,0 0,2 2,2 2,4 3,4 5
13 9x9 -2, -6 4,4 0,0 -2,-4 2,-2 0,-4 2,-4 4
14  9x9 4,4 -2,-6 0,0 4,4 2,0 4,2 4,0 4
15  7x7 2,4 4,-2 0,0 -2,3 1,2 0,3 1,3 4
16 7x7 4, -2 2,4 0,0 3-2 2,1 3,0 3,1 4
17 11x5 6, 2 -2,-4 0,0 5,2 4,0 50 50 3
18 11x5 -2, -4 6,2 0,0 -2,-2  3,-2 2,-2 3,-2 4
19  9x7 -6, -2 4,4 0,0 -4,-2 -2, 1 -4,0 4,1 4
20  9x7 4,4 -6,-2 0,0 4,3 0,2 2,3 0,3 4
21 7x9 -2, -4 4,2 0,0 -2,-41,-2 0,-4 1,-4 4
22 7x9 4,2 -2,-4 0,0 3,2 2,-2 3,0 3,-2 4
23 7x9 -2,6 4,-4 0,0 -2,4 1,2 0,4 1,4 4
24 7x9 4, -4 -2,6 0,0 34 2,0 3,-2 3,0 4

Note: Each row corresponds to a game and contagotlowing information in order: (1) the game
number, (2) the size of the grid map for that gafBethe target of player 1, (4) the target of plag,
(5) the theoretic prediction &f0, (6) the theoretic prediction afl, (7) the theoretic prediction af,

(8) the theoretic prediction &f3, (9) the theoretic prediction &Q, and (10) the minimunk such
that as long as the level is weakly higher, thei@hof that type is the same as the choic&Qf
Non-separating types are underlined
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Table 2: Distribution of Types under Various Speeifions
(A) Choice-based (B) Choice-based (C) Lookup-based

without Pseudotypes  with Pseudotypes w/ Vuongts tes

LO 2 2 1
L1 4 3 6
L2 4 4 4
L3 4 3 4
Equilibrium 3 3 2
Pseudo-17 - 2 -
Aver. step 2.12 2.13 2.00

Note: In each row we list the number of subjectstludt particular type based on various
classifications. In the bottom row we list the ag® of thinking steps. We consider three
ways to classify subjects. The first classificatiogported in column (A), uses the choice
data in which pseudotypes are not included. Thergkclassification, reported in column
(B), also uses the choice data but in addition,ugstypes are included. The third
classification, reported in column (C), is basedtla lookup data and we classify subjects
to the type with the largest likelihood if accorglito Vuong's test, this type is a better model
than the type with the next largest likelihood amaii lower types (and to the type with the
next largest likelihood among all lower types othise).
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Table 3. Distribution of Types in 1000 Times of Repling of Choice Data
subject Lk° LO L1 L2 L3 EQ misclassification

rate
1 L3 0 0 0 1000+ 0 0.000*
2 L2 1 0 924+ 75 0 0.076
3 L3 0 233+ 1 756 10 0.244
4 L1 63 890+ 11 36 0 0.110
5 EQ 0 0 1 11 988+ 0.012*
6 L2 0 3 764 5 228+ 0.236
7 LO 966+ 0 12 17 5 0.034*
8 EQ 0 0 0 0+ 1000 0.000*
9 LO 528 3 440+ 4 25 0.472
10 L1 0 1000+ 0 0 0 0.000*
11 L2 0 0 635 363+ 2 0.365
12 L1 0 990+ 6 4 0 0.010*
13 L3 0 1 3 996+ 0 0.004*
14 EQ 0 185+ 0 228 587 0.413
15 L3 0 9 165+ 816 10 0.184
16 L2 0 0 1000+ 0 0 0.000*
17 L1 0 768+ 1 231 0 0.232

Note: * indicates misclassification rdess than 0.05.
+ indicates each subject’s lookup-based classificadf type in Table 4. Notice
that the lookup-based types are typically the séauost frequent types subjects
are classified into (if not the most frequent typiésve resample their choices. The
only exceptions are subject 7 and 14.
Each row corresponds to a subject and containfotiesving information in order:

(1) the subject number, (2) her choice-based lkvgpe denoted by k¢, (3) the
number of times that she is classified ad.@nin 1000 times of resampling of her
choice data, (4) the number of times that sheassified as ahl in 1000 times of
resampling of her choice data, (5) the numberroés that she is classified as an
L2 in 1000 times of resampling of her choice datafl{é number of times that she
is classified as am3 in 1000 times of resampling of her choice dat3, tfie
number of times that she is classified a€gnin 1000 times of resampling of her
choice data, and (8) the misclassification rate, the number of times that she is

not classified as her choice-based ldvglpe or LK® in 1000 times of resampling
of her choice data divided by 1000.
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Table 4: Distribution of Types Based on Lookup Data

: * Vuong's |
subject Lk Lk? statisticy Lk
1 L3 L2 4,425+ L3
2 L3 L2 0.68¢ L2
3 L3 L1 1.577 L1
4 L3 L1 1.597 L1
5 EQ L2 2.977+ EQ
6 EQ L2 2.406 EQ
7 L2 LO 1.582 LO
8 L3 L1 2.812 L3
9 EQ L2 1.001 L2
10 L3 L1 1.226 L1
11 L3 L2 2.087+ L3
12 L3 L1 0.853 L1
13 L3 L1 3.93% L3
14 L3 L1 1.692 L1
15 L3 L2 1.47C L2
16 L3 L2 1.34z L2
17 L3 L1 1.778 L1

Note: + indicates the Vuong statistfds significant or\|>1.96.
LKk denotes the type with the largest likelihood.
LK? denotes the alternative lower type which has éweisd-largest likelihood.

LK' denotes the classified type based on Vuong's¢ssit.

Each row corresponds to a subject and containfotieaving information in order: (1)
the subject number, (2) based on her lookups yibe with the largest likelihood, (3)
based on her lookups, the alternative lower typ&hvhas the next largest likelihood,

(4) Vuong's statistic in testing whethék and LK are equally good models, (5)
subject’s Iookup type based on Vuong’s test resNdmce that in (5) we classify a

subject as hetk type if according to Vuong's tedtK is a better model thahk®.
On the other hand, Lk and LK? are equally good models, sintd® has fewer

parameters, to avoid overfitting, we classify ajeabas heLkatype. The resultin (5)
is summarized in column (C) of Table 2.
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Table 5: Comparison between Choice-based and Lebkspd Classifications

: | c Vuong's  Misclassification
subject Lk Lk statisticV Rate of Lk®
1 L3 L3 0.000*
2 L2 L2 0.076
4 L1 L1 0.110
5 EQ EQ 0.012*
7 LO LO 0.034*
10 L1 L1 0.000*
12 L1 L1 0.010*
13 L3 L3 0.004*
16 L2 L2 0.000*
17 L1 L1 . 0.232
3 L1 L3 -1.577 0.244
6 EQ L2 2.400+ 0.236
8 L3 EQ 2.636+ 0.000*
9 L2 LO 2.981+ 0.472
11 L3 L2 2.087+ 0.365
14 L1 EQ 1.395 0.413
15 L2 L3 -1.470 0.184

Note: + indicates the Vuong statistids significant or\|>1.96.

* indicatesp-value less than 0.05.

Lk' denotes a subject’s lookup-based type.

Lk® denotes a subject’s choice-based type.
Each row corresponds to a subject and containdall@ving information in order: (1) the

subject number, (2) her lookup-based type (as tegan the last column of Table 4), (3) her
choice-based type (as reported in the second colofrifable 3), (4) Vuong's statistic on

whether her lookup-based type and her choice-bggedare equally good models (based on
lookup data), (5) the misclassification rate of h#oice-based type in 1000 times of
resampling (as reported in the last column of Tak)le Subjects whose lookup-based and
choice-based classifications coincide are listethantop panel; those who differ are listed in

the bottom.
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Appendix [For Online Reference Only]

Al (Alternative LO Specification)

Let player i's payoff bep (X, y;%,y:;a b)="s(x(xt a1+, ¥ (¥, B
wheres is a constant(x, y)is player i's choice(a,R)is the target of player i and
(X, ;) is player j's choice, all of which are integerSuppose player i is level-1 with a
continuous von Neumann-Morgenstern utility functigfjithat values only monetary

payoffs. Then, choosin@ ,b) is the best response to a level-0 player ] whooshs

randomly over the entire ma{J(xj, y,),x O{-m..., m, yO{-n., }} .

PROOF:
To best respond to the choice of playeplayeri should find(x, y)that solves the

maximization

(x,y)=arg T?Xyinﬁim(2m+1§(2n+ 1)u(_3—[ P X+ )t [y (y+ ib)]l) To

show that(x, y) =(a, b) is the arg max, it suffices to show that, y') = (0,0)solves

the maximization

argrxr‘??xznl Zm: U(?‘:—[ X=X t |y- ¥]|)

yp=Tnx=-m

(1)

For any giveny,, Yy, letY, = y - y. Then the summation over giveny,, y', can be

expressed as

(2)

which is symmetric by’ = 0.
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Without loss of generality, consider two choicesxof m= X = t>0 andx =0. Player

i's payoff when choosing’ =t differs from that when choosing =0 by

Xj==m X=-m
:Zm—tu(g_Yj_lm_ kl)_Zm lé—s_ ]\Ll " k
k=—t k=0

-1 2m
= u(s-y-1m K- > s ¥ mf
k=-t k=2m-t1
= 2 [us-y-1e k- (> 1 <o
k=mt+1-t

3)
where the equalities follow because of simple algeind the last inequality holds since
[t+Kk |k |for all m+1-t< k< m(notice thatm> timplies thatm+1-t>1), andu(l) is
increasing. Hence, choosing=1 is worse than choosing = 0.Since (2) is symmetric
by xX =0, the same argument applies to show that choosimg-t is worse than

choosingx =0. Thusx' =0 maximizes the summation of (2) for any given,y'.

Similarly, ~y'=0  maximizes » > u(5-(0-x|y-y ) Therefore,

yj=—nx=-m

(x,¥)=(a,b) is optimal if the opponent is level-0 and choaseisormly on the map.

A2 Proof of Proposition 2.

(1) (¢, %)= Rim n( g+ K, b §7)) for kO{L,2,..}and (X', ) = (X', ) = (0,0).
PROOF:

Following the notations defined above in A1, to dfifx,y*) that solves
maxu(§— (Ix= "+ a)p |y (Y + ib)|), we may solve and y* separately since
X,y

there is no interaction between the choicexbfind y*. Hence, by symmetry we only

need to show  that x= min(m, max(— m, a +>J%‘1)) Notice that
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-m, X'+a<-m
min(m, malx(—m,){‘1 +a))= X'+a, X'+al £ m..nh In other words, when the
m, X +a>m
unadjusted best respons§1+a is lower than the lowest possible choicexdfon the
grid map, the adjusted best response is the los@nd—m. When it is higher than the
highest possible choice of on the grid map, the adjusted best response isigher
boundm. When the unadjusted best resp0|5{$‘é+ar is within the possible range of
on the grid map, the adjusted best response cesauith the unadjusted best response.

Notice that: ifx{™+a O{-m..., n}, erjr\ri_pym‘x—(ﬁ‘u a)‘ =0 occurs atx=x"+g; if

e >m ()= ) ocors e e <

xD{r_qninm‘x—(xjk‘H ar)‘:—m—( X+ a) occurs atx = —m.

Thus, X =min(m max-m, ¥* +a)) indeed maximizes playet's utility (which is

decreasing in the distance between the taxp‘é{ra and the choice).

(2) there exists a smallest integkr such that for allk > k , (X<, y*) = (3¢, Y°).

PROOF:

It suffices to show that there exists a smallessitpe integer k such that
(X, ¥ )=(¢, y) for all k=k when g +a <0. All other possibilities can be argued
analogously.

There are 3 cases to considgr:<0<a, a, <0<4g,and g,a <0.

Caseligq <0<aq .

“*? is strictly less tha®, and when =-m, X% =-m.

We show that wheg >-m, x
Then all subsequences taking the form{gf x“?, x“* ..} will eventually converge
tox® = —m, implying the sequenced’, X, x,...} also converges ta® =-m.

For any nonnegative integkr,

X% = % = min(m max¢ m, )]Fl + A X
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where

“t=min(m,maxtm, X + a))
=
2-m >0

[ —
2-m

= minfn X + g ).

X

If x>-m,

k+2 k

-t
= min(m, max¢m, X" + a)) X
= min(m, max¢m, min(m, £+ a } a)- X

=min(m, maxtm, min(m+ a, X+ a+ @) X

<m

<m

=maxtm,min(m+ a, X+ a+ a)- X
=max(-m- X ,mh(m+g, X + g + @)- X)<0.

<0 <X1k

<)(1k

<0

If X“=-m,

k+2 k

X —X
= min(m, max¢m, X" + a))- X
= min(m, max¢m, min(m, £+ a } a)»- X
=min(m, max¢Em, min(ms-m- aj a)F- € m
= min(m, max¢m,min(m+ ar- nm+ a+ )y € n

=min(m,—m)— (- m
=-m-(-m =0.

Case 2:a, <0< 3.
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From Case 1, we know that there exists a posilit&g'erﬁj where the opponent chooses

X =x*=-m for all k=k;. Since X" = min(m, max(—m,)? + a)) this implies that

k+1

X = =-mt+aforall kxk.

Case 3:a,a <0.

2

As in Case 1, again we show that wh&m -m, x“? is strictly less thax’, and

when x‘=-m , x“*=-m . Then all subsequences taking the form of
{x, X% x“%..} will eventually converge tox’=-m, implying the sequence

{x° % %2...} also converges & = -m.

k+1

Since x™ = min(m, max¢ m,i+:’il)): maxt m, %+ a)this implies

m <0
\_.\/__J
<m

X% =% =min(m maxt m, X"+ a)r X
=min(m, max¢m,maxt m, X+ a y a)r X
=min(m,maxt-m, maxt m+ a X+ a+ a)) X
=min(m,maxtm,X + a+ a)- X.

If x>-m,

X2 =¥ =min(m- X, maxt m- %, a+ @))< 0

(NS—
<0 <0

If x=-m,

)ﬁm - Xk =min(m maxt m- mk a+ - € nm

=min(m,—m)— (-
=0.

55



Table S1: Subject’s Maximized Likelihood for Varguevelk Types and Pseudotypes Based on Final Choices

Subject | Lk type Pseudotype
Lo L1 L2 L3 EQ pseud+ pseudr- pseud+ pseud+ pseud+- pseud+- pseud+ pseud+- pseud+- pseud+ pseud- pseud- pseud+ pseud- pseudr- pseudr- pseud-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 -98.89 -88.92 -79.24 -52.32 -67.21 -98.27 -98.89 -97.34 -81.26 -85.83 -98.89 -84.57 -98.57 -92.07 -77.82 -91.05 -97.86 -97.81 -85.92 -86.76 -98.89 L3
2 -97.16 -93.70 -81.14 -85.76 -90.68|-96.12 . -97.47 -94.69 -97.09 -91.68 -98.47 -95.52 -96.63 -98.55 -92.85 -97.14 -86.30 -93.32 -97.06 -89.75 -97.60 L2
3 -98.89 -93.70 -97.84 -93.13 -95.03|-98.89 -98.76 . -98.89 -98.89 -98.89 -96.50 -98.89 -98.74 -98.89 -98.89 -98.89 -95.56 -95.28 -98.89 -98.87 -61.67| psudo-17
4 -96.92 -90.37 -96.82 -95.96 -97.36]/-95.15 -95.24 -98.89 . -95.27 -96.40 -98.55 -96.69 -97.76 -91.42 -93.75 -93.73 -98.82 -98.89 -95.38 -96.31 -98.85 L1
5 -98.89 -97.28 -86.53 -82.12 -70.69(-83.19 -98.89 -98.89 -98.21 . -87.17 -98.89 -90.70 -98.89 -98.04 -91.52 -97.98 -97.25 -95.28 -94.69 -93.74 -98.89 EQ
6 -98.89 -90.71 -69.22 -78.98 -73.24|-84.16 -93.91 -98.89 -97.49 -83.63 . -98.89 -82.34 -98.32 -91.09 -79.83 -90.67 -94.70 -97.29 -89.75 -80.90 -98.89 L2
7 -94.15 -98.89 -98.69 -98.88 -98.87(-98.40 -98.17 -93.04 -98.00 -98.89 -98.89 . -98.89 -96.99 -98.89 -98.64 -98.67 -97.75 -98.59 -98.69 -98.64 -91.95 LO
8 -98.89 -93.43 -89.58 -81.62 -70.02|-87.23 -98.71 -98.89 -98.86 -91.38 -86.73 -98.89 . -98.89 -96.49 -91.17 -98.09 -98.25 -96.93 -94.93 -90.87 -98.89 EQ
9 -92.52 -97.28 -93.37 -95.39 -95.76(-96.80 -96.74 -97.47 -97.49 -97.35 -97.21 -97.55 -98.34 . -98.66 -95.98 -98.38 -95.95 -97.51 -95.60 -94.78 -98.25 LO
10 -98.89 -39.73 -93.07 -86.98 -94.00(-90.22 -98.89 -98.89 -92.67 -96.01 -90.68 -98.89 -93.16 -98.89 . -87.94 -75.40 -98.89 -98.89 -89.36 -93.45 -98.89 L1
11 -97.77 -85.59 -68.30 -70.72 -77.28(-74.45 -93.62 -98.89 -93.88 -86.59 -78.18 -98.88 -85.40 -96.43 -86.75 . -82.33 -95.75 -98.54 -80.56 -74.79 -98.89 L2
12 -98.24 -72.01 -86.53 -84.90 -92.83(-86.82 -97.09 -98.89 -92.99 -94.22 -88.02 -98.82 -93.87 -98.32 -73.09 -81.09 . -08.89 -98.89 -84.44 -89.75 -98.89 L1
13 -98.89 -85.59 -81.74 -72.14 -79.36(-97.74 -90.12 -95.65 -98.89 -96.01 -95.63 -98.89 -96.97 -98.01 -98.89 -97.55 -98.89 . -75.94 -98.51 -92.86 -94.94 L3
14 -98.89 -84.17 -96.99 -76.67 -74.45(-98.89 -98.83 -98.60 -98.89 -97.81 -98.89 -98.89 -98.47 -98.89 -98.89 -98.89 -98.89 -83.53 . -98.89 -98.89 -98.56 EQ
15 | -98.89 -90.71 -84.53 -82.12 -86.72|-83.19 -97.94 -98.89 -96.09 -91.08 -88.82 -98.89 -90.70 -96.63 -88.87 -81.09 -86.22 -97.75 -98.81 .  -88.95 -98.89| L3
16 -98.89 -92.88 -57.64 -80.59 -80.35(-83.68 -90.91 -98.39 -96.67 -89.50 -79.42 -98.89 -85.40 -95.56 -92.69 -74.91 -91.05 -90.50 -95.78 -88.56 . -98.85 L2
17 -98.89 -92.88 -98.17 -95.19 -97.36(-98.89 -98.59 -60.42 -98.89 -98.89 -98.89 -94.87 -98.89 -98.85 -98.89 -98.89 -98.89 -93.99 -94.35 -98.89 -98.89 pseudo-3
Note: Each row corresponds to a subject and canthie following information in order: subject numpthe likelihood of various leved-types, the likelihood of various

pseudotypes (excluding the pseudotype corresportditite subject herself), and the type with thgdat likelihood of all these types (listed in thstlcolumn). Note that
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Table S2: Comparisons on Final Choices of GRAPHZIBRARATE Presentations
Fitting GRAPH data

Subject Average Difference . .
(with logit)

in X axis (s.e.) inY axis (s.e.) lambda (s.e.)
1 0.032 (0.209) 0.127 (0.315) 0.542* (0.108)
2 0.032 (0.406) 0.196 (0.363) 0.085 (0.074)
3 -0.048 (0.112) -0.024 (0.140) 1.287* (0.195)
4 -0.066 (0.243) -0.012 (0.271) 0.426* (0.103)
5 0.141 (0.268) 0.152 (0.329) 0.272* (0.091)
6 -0.033 (0.255) -0.075 (0.154) 0.583* (0.110)
7 -0.017 (0.293) 0.073 (0.260) 0.256* (0.095)
8 0.029 (0.233) 0.056 (0.311) 0.374* (0.096)
9 -0.109 (0.213) -0.103 (0.420) 0.177* (0.081)
10 0.044 (0.210) 0.023 (0.131) 0.857* (0.149)
11 -0.071 (0.142) 0.000 (0.235) 0.680* (0.126)
12 0.029 (0.186) 0.066 (0.140) 0.696* (0.129)
13 0.122 (0.218) 0.077 (0.183) 0.449* (0.109)
14 -0.006 (0.029) -0.004 (0.113) 2.061* (0.354)
15 0.014 (0.176) -0.039 (0.242) 0.579* (0.119)
16 0.064 (0.193) 0.351 (0.286) 0.150 (0.087)
17 -0.003 (0.175) 0.035 (0.145) 0.765* (0.138)

Note: * denotes significance at the 0.05 level.

Each row corresponds to a subject and containfotlesving information in order: (1) subject number,
(2) the average difference of choices in the X aristhe two presentations (standard errors in
parentheses), (3) the average difference of chaict Y axis in the two presentations (standardre

in parentheses), (4) the precision parameter ofdbi¢ error if we treat each subject’'s choice lire t
SEPARATE presentation as a pseudotype to fit heicehin the GRAPH presentation. Notice that if a
subject’s choices in the two presentations arelaimive should expect that her average differerfce o
choices in either the X axis or the Y axis shoubd Ime significantly different from zero. Moreovere
should expect that her choices in the SEPARATEqntadion as a pseudotype can predict her choices
in the GRAPH presentation well and hence the pi@tiparameter in the error structure should be
significantly different from zero. This is indedtktcase. For none of the subjects, the averagaeliffe

in either axis is significantly different from zerBor fifteen of the seventeen subjects, the pi@tis
parameters are significantly different from zero.
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Table S3: Distribution of Types Based on Hansemst ind Iterative Vuong's Test

subject LK

Li@ Vuong's LK lterative Hansen’s | Hansen

(V) Vuong  p-value
1 L3 L2 4.425+ L3 - - -
2 L3 L2 0.68¢ L2 L1 - -
3 L3 L1 1.577 L1 LO 0.08¢ L1
4 L3 L1 1.597 L1 - 0.09¢ L1
5 EQ L2 2.977+ EQ - 0.02%* EQ
6 EQ L2 2.406 EQ - 0.05: L2
7 L2 LO 1.582 LO - 0.76¢ LO
8 L3 L1 2.812 L3 - 0.02%* L3
9 EQ L2 1.001 L2 - 0.49¢ L2
10 L3 L1 1.226 L1 - 0.49;7 L1
11 L3 L2 2.087+ L3 - - -
12 L3 L1 0.853 L1 - 0.50( L1
13 L3 L1 3.93% L3 - 0.01%* L3
14 L3 L1 1.692 L1 LO 0.09¢ L1
15 L3 L2 1.47C L2 LO - -
16 L3 L2 1.34z L2 L1 - -
17 L3 L1 1.778 L1 - 0.08: L1
Note: + indicates the Vuong statistids significant or\{f|>1.96.

* indicatesp-value less than 0.05.
Each row corresponds to a subject and containgalf@ving information in order: (1)
subject number, (2) based on her lookups, the wigethe largest likelihood (denoted by

Lk*, also reported under thek column of Table 4), (3) based on her lookups, the
alternative lower type which has the next largi&tihood (denoted biLka, also reported

under theLk® column of Table 4), (4) Vuong's statistic in iegtwhetherLk* andLk?
are equally good models, (5) subject’s type basefuong’ test result, (6) types of those
subjects who, based on the iterative Vuong'’s teste different types from those based on

Vuong's test, (7) p-value in Hansen’s teslLk andLk® are strictly nested, (8) types
based on Hansen’s test result whda andLk® are strictly nested. Note that among the
twelve subjects whoskk and LK are strictly nested, Vuong’s test results are atmo

identical to Hansen'’s test results. The only exoepts that for subject 6 (hEh:kHansen
type underlinell her Vuong’s test statisti¥/ is 2.400>1.96 while the p-value of the
Hansen’s test is 0.053, at the margin of signifagan
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