

NINTH EDITION

The Costs of Production

Interactive PowerPoint Slides by: Modified by Joseph Tao-yi Wang

EXAMPLE 1A: Jelani's Gelato Shop

Jelani owns a small gelato shop on campus. She can make 15,000 pints of gelato a year, and sell them at $\mathrm{NT} \$ 50$ each.
If Jelani's total costs are NT\$650,000 a year, how much profit the shop brings in one year?

- Total Revenue: $\boldsymbol{T R}=\boldsymbol{P} \times \boldsymbol{Q}$
= NT\$50 × 15,000 = NT\$750,000
- Profit $=T R-T C$
= NT\$750,000 - NT\$650,000
= NT\$100,000

IN THIS CHAPTER

- What is a production function? What is marginal product? How are they related?
- What are the various costs? How are they related to each other and to output?
- How are costs different in the short run vs. the long run?
- What are "economies of scale"?

Total Revenue, Total Cost, and Profit

- Assumption:
- The goal of a firm is to maximize profit
- Total Revenue, $\boldsymbol{T R}=\boldsymbol{P} \times \mathbf{Q}$
-The amount a firm receives for the sale of its output
- Total Cost, TC
-The market value of the inputs a firm uses in production
- Profit = TR - TC

Explicit and Implicit Costs

- "The cost of something is what you give up to get it."
- Explicit Costs
- Input costs that require an outlay of money by the firm (paying wages to workers)
- Implicit Costs
- Input costs that do not require an outlay of money by the firm (opportunity cost of the owner's time)
- Total Cost = Explicit + Implicit Costs

EXAMPLE 1B: Costs for Jelani's Gelato Shop

Jelani owns a small gelato shop on campus. Jelani pays NT\$200,000 for raw materials and NT\$120,000 in rent per year. Jelani can work at a local coffee shop for NT\$250,000 a year. Identify/calculate explicit and implicit costs.

- Explicit Costs: Raw Materials and Rent
= NT\$200,000 + NT\$120,000 = NT\$320,000
- Implicit Costs: Opportunity Cost of Owner's Time = NT\$250,000
- Total Costs $=$ NT\$320,000 + NT\$250,000 = NT\$570,000
 Economic Profit vs. Accounting Profit
- Accounting profit
-Total revenue minus total explicit costs
- Economic profit
-Total revenue minus total costs (explicit and implicit costs)
- Accounting profit ignores implicit costs, so it's higher than economic profit.

EXAMPLE 1C: The Cost of Capital for Jelani
Jelani invested NT\$800,000 in factory and equipment to start the business last year:
NT\$300,000 from savings and borrowed NT\$500,000 (interest 10% for saving and borrowing).
Identify and calculate the explicit and implicit costs.

- Explicit Cost: Interest Jelani has to pay every year: the 10% interest on the borrowed money
$=0.10 \times 500,000=\mathrm{NT} \$ 50,000$
- Implicit Cost: Interest Jelani could have earned if savings were not spent: 10% on NT\$300,000 $=0.10 \times 300,000=\mathrm{NT} \$ 30,000$
Opportunity Cost of Capital $=$ NT\$80,000 per year

EXAMPLE 1D: Profit for Jelani's Gelato Shop

Jelani owns a small gelato shop on campus.
She makes 15,000 pints of gelato a year, and sell
them at NT\$50 each. Jelani pays NT\$200,000 a year for raw materials, and NT $\$ 120,000$ in rent. Jelani can work at a local coffee shop for NT $\$ 250,000$ a year. Jelani invested NT $\$ 800,000$ in factory and equipment to start the business last year: NT $\$ 300,000$ from savings and borrowed NT $\$ 500,000$ (interest rate is 10% for saving and borrowing).
Calculate accounting and economic profit.

Active Learning 2: Economic vs. Accounting Profit
The equilibrium rent on office space has just increased by NT\$5,000/month.
Determine the effects on accounting profit and economic profit if:
A. You rent your office space (you pay NT\$5,000/month more)
B. You own your office space

Active Learning 2: Answers

The rent on office space increases by NT\$5,000/mo.
A. You rent your office space.

- Explicit costs increase NT $\$ 5,000 /$ month.
- Accounting and economic profit each fall NT\$5,000/month.
B. You own your office space.
- Explicit costs do not change, so accounting profit does not change.
- Implicit costs increase NT\$5,000/month, so economic profit falls by NT $\$ 5,000 /$ month.

Production and Costs

- Assumption:
-Production in the short run
-Factory size is fixed
-To increase production: hire more workers
- Production function
-Relationship between
- Quantity of inputs used to make a good
- And the quantity of output of that good
-Gets flatter as production rises

EXAMPLE 2B: Xavier's Total and Marginal Product

L	buckets	MPL buckets
0	0 - $Q=30$	
	$30\left\{\begin{array}{l}\text { d }\end{array}\right.$	30
=	$55\} \Delta Q=25$	25
= 1	55 相 $\Delta=20$	20
$L=1$ 3	$75\} \Delta Q=15$	15
$\Delta L=1$	100 100 $\Delta \boldsymbol{Q}=10$	10

Diminishing MPL

- Diminishing Marginal Product
- Marginal product of an input declines as the quantity of the input increases
- Production function gets flatter as more inputs are being used
- The slope of the production function decreases
"Rational people think at the margin"
- Hiring one extra worker
- Increases output by MPL
- Increases costs by the wage paid

EXAMPLE 2C: Solutions				
L workers	\mathbf{Q} buckets	Cost of the truck	Cost of labor	Total Cost
0	0	\$2,000	\$0	\$2,000
1	30	\$2,000	\$500	\$2,500
2	55	\$2,000	\$1,000	\$3,000
3	75	\$2,000	\$1,500	\$3,500
4	90	\$2,000	\$2,000	\$4,000
5	100	\$2,000	\$2,500	\$4,500

Active Learning 2: Diminishing MPL			
Number of workers	Output	MPL	A. What is the marginal product of the second worker? 40
0	0		B. What is the marginal
1	45	45	product of the fourth
2	85	40	20
3	115	30	C. Does this production
4	135	20	function exhibits
5	145	10	diminishing marginal returns?
			Yes

EXAMPLE 2C: Xavier's Popcorn Truck Costs

- Xavier must pay NT\$2,000 per hour for the truck, regardless of how much popcorn he produces
- The market wage for popcorn makers is NT\$500 per hour
- So, Xavier's costs are related to how much popcorn the truck produces

The Various Measures of Cost

- Total cost, TC = FC + VC
- Total cost of producing a given amount of output
- Fixed costs, FC
-Do not vary with the quantity of output produced
- Incur even if production is zero
- Variable costs, VC
- Vary with the quantity of output produced

EXAMPLE 3: Angel's Knitted Scarves Business

Q	FC	VC	TC	Angel loves to knit scarves: - Angel paid $\$ 18$ for two pairs of knitting needles - To produce more scarves, Angel needs more yarn and more workers
0	18	0	18	
1	18	15	33	
2	18	25	43	
3	18	30	48	
4	18	32	50	
5	18	36	54	
6	18	44	62	
7	18	58	76	
8	18	78	96	
9	18	104	122	
10	18	136	154	

EXAMPLE 3A: Angel's FC, VC, and TC Curves

The $\boldsymbol{T C}$ and $\boldsymbol{V C}$ curves are parallel The FC curve is a horizontal line

EXAMPLE 3B: Angel's Average and Marginal Cost							
Q	FC	VC	TC	AFC	AVC	ATC	MC
0	\$18	\$0	\$18	-	-	-	\$150
1	18	15	33	\$18.0	\$15.0	\$33.0	10.0
2	18	25	43	9.0	12.5	21.5	5.0
3	18	30	48	6.0	10.0	16.0	
4	18	32	50	4.5	8.0	12.5	2.0
5	18	36	54	3.6	7.2	10.8	4.0
6	18	44	62	3.0	7.3	10.3	8.0
7	18	58	76	2.6	8.3	10.9	14.0
8	18	78	96	2.3	9.8	12.0	20.
9	18	104	122	2.0	11.6	13.6	26.0
10	18	136	154	1.8	13.6	15.4	32.0

Active Learning 3: Calculating Costs						
Fill in the blank spaces of this table.						
Q	VC	TC	AFC	AVC	ATC	MC
0		\$50	n/a	n/a	n/a	/7/7
1	10			\$10	\$60.00	
2	30	80				
3			16.67	20	36.67	30
4	100	150	12.50		37.50	
5	150			30		
6	210	260	8.33	35	43.33	$\square \square$

Costs in the Short Run and Long Run

- Short run, SR:
- Some inputs are fixed (e.g., factories, land)
- The costs of these inputs are FC
- Long run, LR:
- All inputs are variable (e.g., firms can build more factories or sell existing ones)
- In the long run
- $\boldsymbol{A T C}$ at any \boldsymbol{Q} is the cost per unit using the most efficient mix of inputs for that \boldsymbol{Q} (e.g., the factory size with the lowest ATC)

Costs in Short and Long Run - 1

- Economies of scale
-Long-run average total cost falls as the quantity of output increases
- Increasing specialization among workers - More common when Q is low
- Constant returns to scale
-Long-run average total cost stays the same as the quantity of output changes

Economies and Diseconomies of Scale
Economies of scale:
$\boldsymbol{A T C}$ falls as \boldsymbol{Q}
increases.
- Constant returns to
scale: $\boldsymbol{A T C}$ stays
the same as \boldsymbol{Q}
increases.
Diseconomies of
scale: $\boldsymbol{A T C}$ rises as
\boldsymbol{Q} increases.

THINK-PAR-SHARE

Your neighbor has a back-yard garden and grows fresh fruit and vegetables to be sold at a local "farmer's market."
He comments, "I hired a college student who was on summer vacation to help me this summer and my production more than doubled.
Next summer, I think l'll hire three helpers and my output should go up more than three- or fourfold."
A. What can explain why the production more than doubled when your neighbor hired a helper?
B. Will production increase three- or fourfold if your neighbor hires 3 helpers next summer?

CHAPTER IN A NUTSHELL

- A firm's costs reflect its production process.
- Diminishing marginal product: production function gets flatter as Q of an input increases
- Total-cost curve gets steeper as the quantity produced rises.
- Firm's total costs = fixed costs + variable costs.
- Fixed costs: do not change when the firm alters the quantity of output produced.
- Variable costs: change when the firm alters the quantity of output produced.

CHAPTER IN A NUTSHELL

- The goal of firms is to maximize profit, which equals total revenue minus total cost.
- When analyzing a firm's behavior, it is important to include all the opportunity costs of production.
- Explicit: wages a firm pays its workers
- Implicit: wages the firm owner gives up by working at the firm rather than taking another job
- Economic profit takes both explicit and implicit costs into account, whereas accounting profit considers only explicit costs.

CHAPTER IN A NUTSHELL

- Average total cost is total cost divided by the quantity of output.
- Marginal cost is the amount by which total cost rises if output increases by 1 unit.
- Graph average total cost and marginal cost.
- Marginal cost rises with the quantity of output.
- Average total cost first falls as output increases and then rises as output increases further.
- The MC curve always crosses the ATC curve at the minimum of ATC

CHAPTER IN A NUTSHELL

- A firm's costs often depend on the time horizon considered.
- In particular, many costs are fixed in the short run but variable in the long run.
- As a result, when the firm changes its level of production, average total cost may rise more in the short run than in the long run.

The Big Picture	
- Chapter 13: The Cost of Production	
- Then, we will look at firm's revenue	
- But revenue depends on market structure	
1. Competitive market (chapter 14)	
2. Monopoly (chapter 15)	
3. Monopolistic Competition (chapter 16)	
4. Oligopoly (chapter 17)	
- Are there other types of markets? Yes, see more	
advance courses in IO and firm competition	
The Cost of Production	

