

## Look for the answers to these questions：

－What is a production function？What is marginal product？How are they related？
－What are the various costs？How are they related to each other and to output？
－How are costs different in the short run vs． the long run？
－What are＂economies of scale＂？

## Active Learning 1 Brainstorming costs

You run Foxconn Electronics Inc．（鴻海富士康）．
－List three different costs you have．
－List three different business decisions that are affected by your costs
－How would your answers change if you run 台北農產運銷公司 instead？

－We assume that the firm＇s goal is to maximize profit．

Profit $=$ Total revenue - Total cost
the amount a firm receives from the sale of its output
the market value of the inputs a firm uses in production
$T R=P \times Q$
－$\frac{\text { 2018 Cengage Learringe．May not be scanned，copied or duplicated，or posted to a publicy accessible website，in whole or in part，except tor use }}{}$


| 2 |
| :--- |
| －The cost of something is what you give |
| up to get it．＇ |
| －Explicit costs |
| －Require an outlay of money |
| •E．g．，paying wages to workers． |
| －Implicit costs |
| －Do not require a cash outlay |
| •E．g．，the opportunity cost of the owner＇s time． |
| －Total cost＝Explicit＋Implicit costs |

## Explicit vs．Implicit Costs：An Example

You need $\$ 1,000,000$ to start your business．The interest rate is $5 \%$ ．
－Case 1：borrow \＄1，000，000
－explicit cost $=\$ 50,000$ interest on loan
－Case 2：use $\$ 400,000$ of your savings， borrow the other $\$ 600,000$
－explicit cost $=\$ 30,000(5 \%)$ interest on the loan
－implicit cost＝$\$ 20,000(5 \%)$ foregone interest you could have earned on your $\$ 400,000$ ．
In both cases，total（exp＋imp）costs are $\$ 50,000$

Q 2018 Cengage Leaming ．May not be scanned，copied or duplicated．or posted to a publicty accessible website in whole or in part，except tor use
as permited in a license distributed with a certain product or senvice or othewise on a passwort－protected wessite or school－approved leaming as permitted in a license distributed witits a certain product or sericice or otherwise on a password protected website or school－approved leaming
management systen for classroom us．


## Active Learning 2

Answers
The rent on office space increases $\$ 5,000 /$ month.
a. You rent your office space.

- Explicit costs increase \$5,000/month.
- Accounting profit \& economic profit each fall \$5,000/month.
b. You own your office space.
- Explicit costs do not change, so accounting profit does not change.
- Implicit costs increase $\$ 5,000 /$ month (opp. cost of using your space instead of renting it) so economic profit falls by $\$ 5,000 /$ month.

pemited in a license distributed us

Active Learning 2
Economic profit vs. accounting profit
The equilibrium rent on office space has just increased by $\$ 5,000 /$ month.
Determine the effects on accounting profit and economic profit if:
a. you rent your office space
b. you own your office space

## 2x Pe Production Function

## - Production function

-Relationship between

- Quantity of inputs used to make a good
- And the quantity of output of that good
-Gets flatter as production rises


## EXAMPLE 1: Farmer Jack

Example 1:

- Farmer Jack grows rice.
- He has 5 acres of land (fixed resource).
- He can hire as many workers as he wants.
- The quantity of output produced varies with the number of workers hired
- Unit: picul (石) $=$ a shoulder-load $\approx 60 \mathrm{~kg}$

Marginal Product
- Increase in output that arises from an
additional unit of input
- Other inputs constant
-Slope of the production function
Marginal product of labor, MPL
- MPL $=\Delta \mathrm{Q} / \Delta \mathrm{L}$
- If Jack hires one more worker, his output
rises by the marginal product of labor.
rest

Diminishing MPL
- Marginal product of an input declines as
the quantity of the input increases
- Production function gets flatter as more
inputs are being used:
- The slope of the production function
decreases

Why MPL Is Important

- 'Rational people think at the margin'
- When Farmer Jack hires an extra worker
-His costs rise by the wage he pays the worker
-His output rises by MPL
-Comparing them helps Jack decide whether he should hire the worker.
Why MPL Is Important
- When Farmer Jack hires an extra worker
- His costs rise by the wage he pays the
worker
- His output rises by MPL
- Comparing them helps Jack decide
whether he should hire the worker.

EXAMPLE 1: Total \& Marginal Product


Why MPL Diminishes
and smaller amount for each additional
worker. Why?

- As Jack adds workers, the average worker
has less land to work with and will be less
productive.
- In general, MPL diminishes as L rises
whether the fixed input is land or capital
(equipment, machines, etc.).


## EXAMPLE 1: Farmer Jack's Costs

Farmer Jack must pay \$10,000 per month for the land, regardless of how much rice he grows.
The market wage for a farm worker is $\$ 20,000$ per month.

- So Farmer Jack's costs are related to how much rice he produces....
$\qquad$
© 2018 Cengage Leaninge. May not be scanned, copied or duplicated. or posted to a publicly accessible website, in whole or in patt, except for uss
as permited in a license distributed with a certain product or sevice or othemise on a password-protected website or schoolapproved leaming地 ${ }_{19}$


## EXAMPLE 1: Farmer Jack's Costs

| $\boldsymbol{L}$ <br> (no. of <br> workers) | $\boldsymbol{Q}$ <br> (piculs <br> of rice) | Cost of <br> land | Cost of <br> labor | Total <br> cost |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | $\$ 10,000$ | $\$ 0$ | $\$ 10,000$ |  |
| 1 | 1000 | $\$ 10,000$ | $\$ 20,000$ | $\$ 30,000$ |  |
| 2 | 1800 | $\$ 10,000$ | $\$ 40,000$ | $\$ 50,000$ |  |
| 3 | 2400 | $\$ 10,000$ | $\$ 60,000$ | $\$ 70,000$ |  |
| 4 | 2800 | $\$ 10,000$ | $\$ 80,000$ | $\$ 90,000$ |  |
| 5 | 3000 | $\$ 10,000$ | $\$ 100,000$ | $\$ 110,000$ |  |

Marginal Cost

- Marginal cost, MC
- Increase in total cost arising from an extra
unit of production
- Marginal cost = Change in total cost /
Change in quantity
$M C=\Delta T C / \Delta Q$
- Increase in total cost
•From producing an additional unit of output


## Marginal Cost

EXAMPLE 1: Farmer Jack's Total Cost Curve



EXAMPLE 1: Total and Marginal Cost

|EXAMPLE 1: The Marginal Cost Curve

2mex

## Why MC Is Important

- Farmer Jack is rational and wants to maximize his profit
-To increase profit, should he produce more or less rice?
- Farmer Jack needs to "think at the margin"
- If the cost of additional rice (MC) is less than the revenue he would get from selling it, then Jack's profits rise if he produces more.



## EXAMPLE 2: Production Costs

- Our second example is more general, applies to any type of firm producing any good with any types of inputs.
- Calculate and graph TC knowing FC and VC
- Calculate and graph marginal and average costs
- Understand the relationship between marginal cost and average cost
© 2018 Cengage Learning@. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except tor use
as permitted ina license distributed with a centain procuct or senvice or othemise on a password-protected westite or school-approved leaming
nagement system for classroom use.


## Fixed and Variable Costs

- Fixed costs, FC, do not vary with the quantity of output produced
-For Farmer Jack, FC = \$10,000 for his land
-Other examples: cost of equipment, loan payments, rent
- Variable costs, VC, vary with the quantity of output produced
- For Farmer Jack, VC = wages he pays workers
- Other example: cost of materials
- Total cost $=$ Fixed cost + Variable cost



EXAMPLE 2: Average Fixed Cost, AFC

| $\boldsymbol{Q}$ | FC | AFC |
| ---: | ---: | ---: |
| 0 | $\$ 100$ | n/a |
| 1 | 100 | $\$ 100$ |
| 2 | 100 | 50 |
| 3 | 100 | 33.33 |
| 4 | 100 | 25 |
| 5 | 100 | 20 |
| 6 | 100 | 16.67 |
| 7 | 100 | 14.29 |



## EXAMPLE 2: Average Variable Cost, AVC

| $\boldsymbol{Q}$ | VC | AVC |
| ---: | ---: | ---: |
| 0 | $\$ 0$ | n/a |
| 1 | 70 | $\$ 70$ |
| 2 | 120 | 60 |
| 3 | 160 | 53.33 |
| 4 | 210 | 52.50 |
| 5 | 280 | 56.00 |
| 6 | 380 | 63.33 |
| 7 | 520 | 74.29 |



EXAMPLE 2: Average Total Cost

| $\boldsymbol{Q}$ | TC | ATC | AFC | AVC |
| ---: | ---: | ---: | ---: | ---: |
| 0 | $\$ 100$ | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ |
| 1 | 170 | $\$ 170$ | $\$ 100$ | $\$ 70$ |
| 2 | 220 | 110 | 50 | 60 |
| 3 | 260 | 86.67 | 33.33 | 53.33 |
| 4 | 310 | 77.50 | 25 | 52.50 |
| 5 | 380 | 76 | 20 | 56.00 |
| 6 | 480 | 80 | 16.67 | 63.33 |
| 7 | 620 | 88.57 | 14.29 | 74.29 |

Average total cost
(ATC) equals total cost divided by the quantity of output:

ATC = TC/Q

Also,
$A T C=A F C+A V C$

EXAMPLE 2: Average Total Cost, usually U-shaped

| $\boldsymbol{Q}$ | $T C$ | $A T C$ |
| ---: | ---: | ---: |
| 0 | $\$ 100$ | $\mathrm{n} / \mathrm{a}$ |
| 1 | 170 | $\$ 170$ |
| 2 | 220 | 110 |
| 3 | 260 | 86.67 |
| 4 | 310 | 77.50 |
| 5 | 380 | 76 |
| 6 | 480 | 80 |
| 7 | 620 | 88.57 |




EXAMPLE 2: The Various Cost Curves Together


Calculating costs
Fill in the blank spaces of this table.

| $\boldsymbol{Q}$ | VC | TC | AFC | AVC | ATC | MC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | $\$ 50$ | $n / a$ | $n / a$ | $n / a$ | $\$ 10$ |
| 1 | 10 |  |  | $\$ 10$ | $\$ 60.00$ | $\$ 10$ |
| 2 | 30 | 80 |  |  |  | 30 |
| 3 |  |  | 16.67 | 20 | 36.67 |  |
| 4 | 100 | 150 | 12.50 |  | 37.50 |  |
| 5 | 150 |  |  | 30 |  | 60 |
| 6 | 210 | 260 | 8.33 | 35 | 43.33 | $\boxed{ }$ |

- 2018 Cengage Leaminge. May not be scanned, copied or dupicated, or posted to a publidy accessible website, in whole or in part, except tor use


| Active Learning 3 |  |  |  | Answers |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| First, deduce $F C=\$ 50$ and use $F C+V C=T C$. |  |  |  |  |  |  |
| Q | VC | TC | AFC | AVC | ATC | MC |
| 0 | \$0 | \$50 | n/a | n/a | n/a | \$10 |
| 1 | 10 | 60 | \$50.00 | \$10 | \$60.00 |  |
| 2 | 30 | 80 | 25.00 | 15 | 40.00 |  |
| 3 | 60 | 110 | 16.67 | 20 | 36.67 | 30 |
|  |  |  |  |  |  | 40 |
| 4 | 100 | 150 | 12.50 | 25 | 37.50 | 50 |
| 5 | 150 | 200 | 10.00 | 30 | 40.00 |  |
| 6 | 210 | 260 | 8.33 | 35 | 43.33 | $7 / 7$ |
| (c) 2018 Cengage Learning (2. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed withmanagement system for classroom use. |  |  |  |  |  |  |

## 2) Hen <br> $2 \quad$ ractar <br> Costs in the Short Run \& Long Run

- Short run:
- Some inputs are fixed (e.g., factories, land)
- The costs of these inputs are FC
- Long run:
- All inputs are variable (e.g., firms can build more factories or sell existing ones)
- In the long run
- ATC at any $Q$ is cost per unit using the most efficient mix of inputs for that Q (e.g., the factory size with the lowest ATC)



## EXAMPLE 3: LRATC with 3 factory sizes

To produce less than
$Q_{A}$, firm will choose Avg size S in the long run.

To produce between $Q_{A}$ and $Q_{B}$, firm will choose size M in the long run.

To produce more
than $Q_{B}$, firm will choose size $L$ in the
 long run.

- 2018 Cengage Learming®. May not be scanned, copied or duplicated, or posted to a publicy accessible wessite, in whole or in part, except tor use


A Typical LRATC Curve


How ATC Changes as the Scale of Production Changes
Economies of scale:
ATC falls as Q increases.

Constant returns to scale: ATC stays the same as Q increases.

Diseconomies of

scale: ATC rises as
Q increases.


## Costs in Short and Long Run

- Economies of scale
-Long-run average total cost falls as the quantity of output increases
- Increasing specialization among workers
- More common when Q is low
- Constant returns to scale
-Long-run average total cost stays the same as the quantity of output changes



## - Diseconomies of scale

-Long-run average total cost rises as the quantity of output increases

- Increasing coordination problems in large organizations.
- E.g., management becomes stretched, can't control costs.
- More common when $Q$ is high.
- 2018 Cengage Leanting $\Theta$. May not be scanned, copied or dupicicted, or posted to a publicly accessible website, in whole or in part, except tor use
as permitted in a license distributed with a centain procucct or senvice or othenvise on a password-protected website or schoolapproved learning


## Summary

- A firm's costs reflect its production process.
- Diminishing marginal product: production function gets flatter as $Q$ of an input increases
- Total-cost curve gets steeper as the quantity produced rises.
- Firm's total costs = fixed costs + variable costs.
- Fixed costs: do not change when the firm alters the quantity of output produced.
- Variable costs: change when the firm alters the quantity of output produced. considers only explicit costs.


## Summary

- Average total cost is total cost divided by the quantity of output.
- Marginal cost is the amount by which total cost rises if output increases by 1 unit.
- Graph average total cost and marginal cost.
- Marginal cost rises with the quantity of output.
- Average total cost first falls as output increases and then rises as output increases further.
- The marginal-cost curve always crosses the average total-cost curve at the minimum of average total cost


## Summary

- A firm's costs often depend on the time horizon considered.
- In particular, many costs are fixed in the short run but variable in the long run.
- As a result, when the firm changes its level of production, average total cost may rise more in the short run than in the long run.

Chapter 13: The Cost of Production

- Opportunity Cost (Explicit / Implicit)
- Accounting Profit vs. Economic Profit
- Marginal Product
- MC, TC = FC + VC, ATC = AFC+AVC
- Economies of Scale (for LR)
- Homework: Mankiw, Ch.13,

Problem 2, 4, 5, 7-9

Chapter 13: The Cost of Production

- Challenge Questions (Past Finals)
- 2007 - Part 1
- 2008 - Essay C
- 2012 - Part I
- 2013 - Essay B
- 2014 - Essay A1-4
- 2015 - Essay B1-6
- 2017 - Essay D5-D6

