Principles of Economics

N. Gregory Mankiw

CHAPTER

14

Firms in Competitive Markets

Modified by Joseph Tao-yi Wang

The Big Picture

- Chapter 13: The cost of production
- Now, we will look at firm's revenue
 - But revenue depends on market structure
- Competitive market (this chapter)
- 2. Monopoly (chapter 15)
- 3. Monopolistic Competition (chapter 16)
- 4. Oligopoly (chapter 17)
 - Are there other types of markets? Yes, not now

In this chapter, look for the answers to these questions

- What is a perfectly competitive market?
- What is marginal revenue? How is it related to total and average revenue?
- How does a competitive firm determine the quantity that maximizes profits?
- When might a competitive firm shut down in the short run? Exit the market in the long run?
- What does the market supply curve look like in the short run? In the long run?

Introduction: A Scenario

- Three years after graduating, you run your own business.
- You must decide how much to produce, what price to charge, how many workers to hire, etc.
- What factors should affect these decisions?
 - Your costs (studied in preceding chapter)
 - How much competition you face
- We begin by studying the behavior of firms in perfectly competitive markets.

Characteristics of Perfect Competition

Perfect Competition: There are Perfect Substitutes (if don't buy from you, can buy from her instead)

This is typically resulted from:

- 1. Many buyers and many sellers.
- 2. The goods offered for sale are largely the same.
- 3. Firms can freely enter or exit the market.
 - Because of 1 & 2, each buyer and seller is a "price taker" – takes the price as given.

The Revenue of a Competitive Firm

Total revenue (TR)

 $TR = P \times Q$

Average revenue (AR)

 $AR = \frac{TR}{Q} = P$

Marginal revenue (MR):
 The change in TR from selling one more unit.

$$MR = \frac{\Delta TR}{\Delta Q}$$

ACTIVE LEARNING 1 Calculating TR, AR, MR

Fill in the empty spaces of the table.

Q	P	TR	AR	MR
0	\$10		n/a	
1	\$10		\$10	
2	\$10			
3	\$10			
4	\$10	\$40		\$10
5	\$10	\$50		ΨΙΟ

ACTIVE LEARNING 1 Answers

Fill in the empty spaces of the table.

Q	P	$TR = P \times Q$	$AR = \frac{TR}{Q}$	$MR = \frac{\Delta TR}{\Delta \mathbf{Q}}$	
0	\$10	\$0	n/a	\$10	
1	\$10	\$10	\$10	\$10	
2	\$10		Notice that $MR = \mathbf{P}$		
3	\$10	\$30	\$10	\$10 \$10	
4	\$10	\$40	\$10		
5	\$10 -	\$50	\$10	\$10	

MR = P for a Competitive Firm

- A competitive firm can keep increasing its output without affecting the market price.
- So, each one-unit increase in Q causes revenue to rise by P, i.e., MR = P.

MR = P is only true for firms in competitive markets.

Profit Maximization

- What **Q** maximizes the firm's profit?
- To find the answer, "think at the margin."
 If Q increases by one unit, revenue rises by MR, cost rises by MC.
- If MR > MC, then increase Q to raise profit.
- If MR < MC, then reduce Q to raise profit.</p>

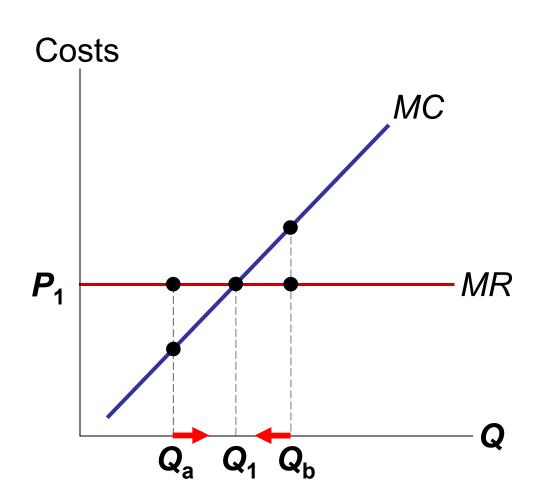
Profit Maximization

(continued from earlier exercise)

At any **Q** with MR > MC, increasing **Q** raises profit.

At any **Q** with MR < MC, reducing **Q** raises profit.

Q	TR	TC	Profit	MR	МС	Δ Profit = $MR-MC$
0	\$0	\$ 5	-\$5			
	4.0		1	\$10	\$4	\$ 6
1	10	9		10	6	4
2	20	15	5	10	0	7
				10	8	2
3	30	23	7	10	10	0
4	40	33	7	10	10	0
–	- -0			10	12	-2
5	50	45	5			

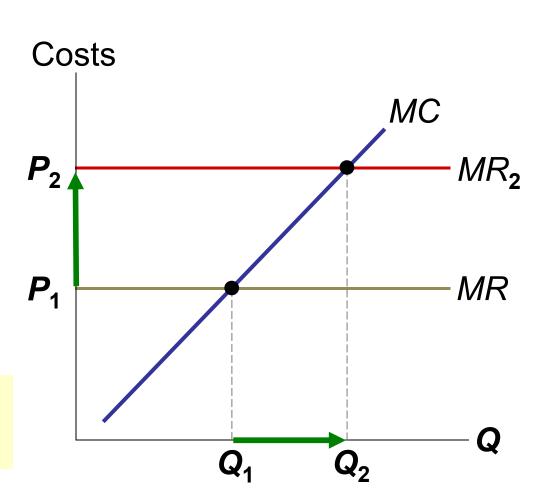

MC and the Firm's Supply Decision

Rule: MR = MC at the profit-maximizing Q.

At Q_a , MC < MR. So, increase Q to raise profit.

At Q_b , MC > MR. So, reduce Qto raise profit.

At Q_1 , MC = MR. Changing Qwould lower profit.


MC and the Firm's Supply Decision

If price rises to P_2 , then the profitmaximizing quantity rises to Q_2 .

The *MC* curve determines the firm's **Q** at any price.

Hence,

the *MC* curve <u>is</u> the firm's supply curve.

Shutdown vs. Exit

Shutdown:

A short-run decision not to produce anything because of market conditions.

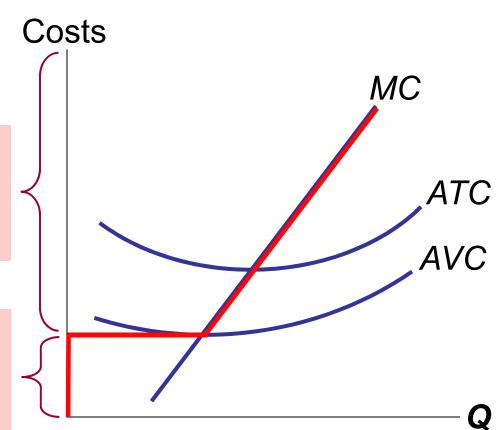
Exit:

A long-run decision to leave the market.

- A key difference:
 - If shut down in SR, must still pay FC.
 - If exit in LR, zero costs.

A Firm's Short-run Decision to Shut Down

- Cost of shutting down: revenue loss = TR
- Benefit of shutting down: cost savings = VC (firm must still pay FC)
- So, shut down if TR < VC</p>
- Divide both sides by Q: TR/Q < VC/Q</p>
- So, firm's decision rule is:


Shut down if P < AVC

A Competitive Firm's SR Supply Curve

The firm's SR supply curve is the portion of its Λ^{AC} aboundable P > AVC, then firm produces Q

If P < AVC, then firm shuts down (produces Q = 0).

where P = MC.

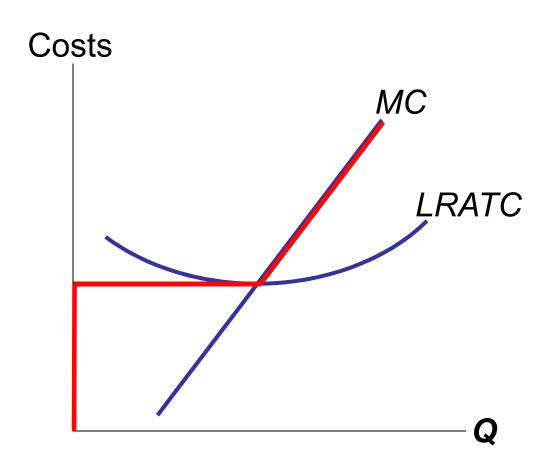
The Irrelevance of Sunk Costs

- Sunk cost: a cost that has already been committed and cannot be recovered
- Sunk costs should be irrelevant to decisions;
 you must pay them regardless of your choice.
- FC is a sunk cost: The firm must pay its fixed costs whether it produces or shuts down.
- So, FC should not matter in the decision to shut down.

A Firm's Long-Run Decision to Exit

- Cost of exiting the market: revenue loss = TR
- Benefit of exiting the market: cost savings = TC (zero FC in the long run)
- So, firm exits if TR < TC
- Divide both sides by Q to write the firm's decision rule as:

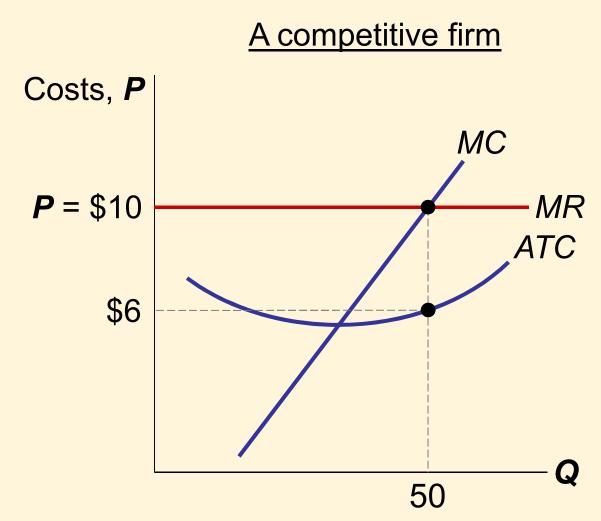
Exit if P < ATC


A New Firm's Decision to Enter Market

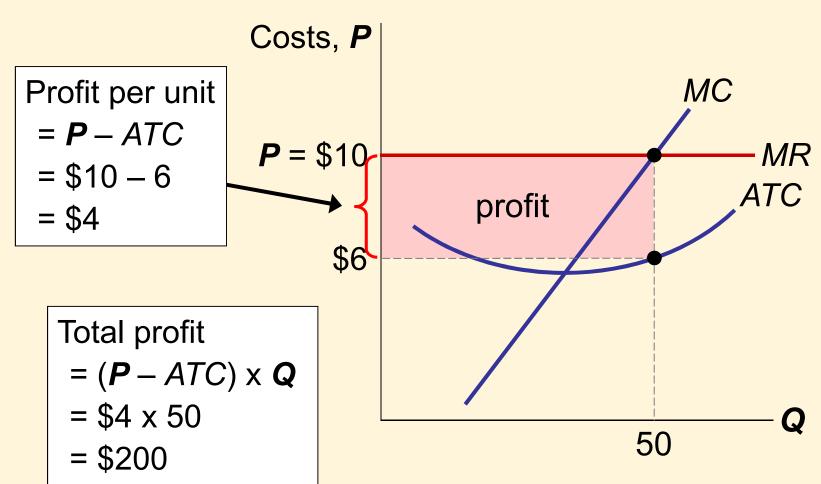
- In the long run, a new firm will enter the market if it is profitable to do so: if TR > TC.
- Divide both sides by Q to express the firm's entry decision as:

Enter if P > ATC

The Competitive Firm's Supply Curve

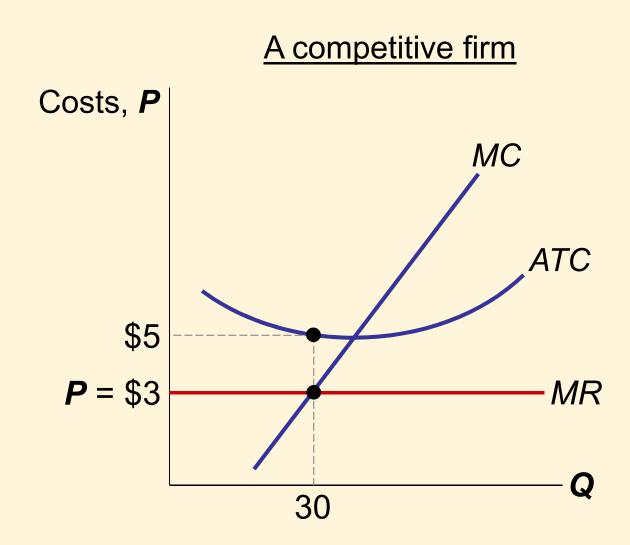

The firm's LR supply curve is the portion of its *MC* curve above *LRATC*.

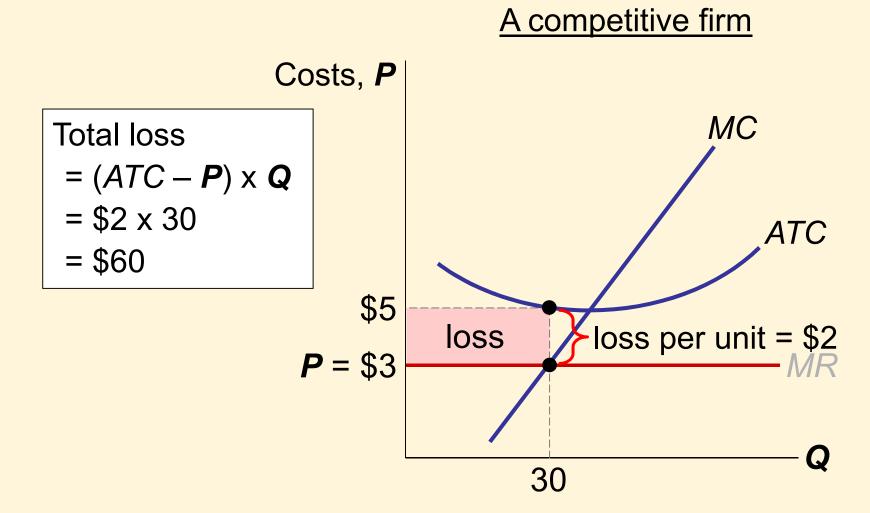
Identifying a firm's profit


Determine this firm's total profit.

Identify the area on the graph that represents the firm's profit.

ACTIVE LEARNING 2 Answers


A competitive firm


ACTIVE LEARNING 3 Identifying a firm's loss

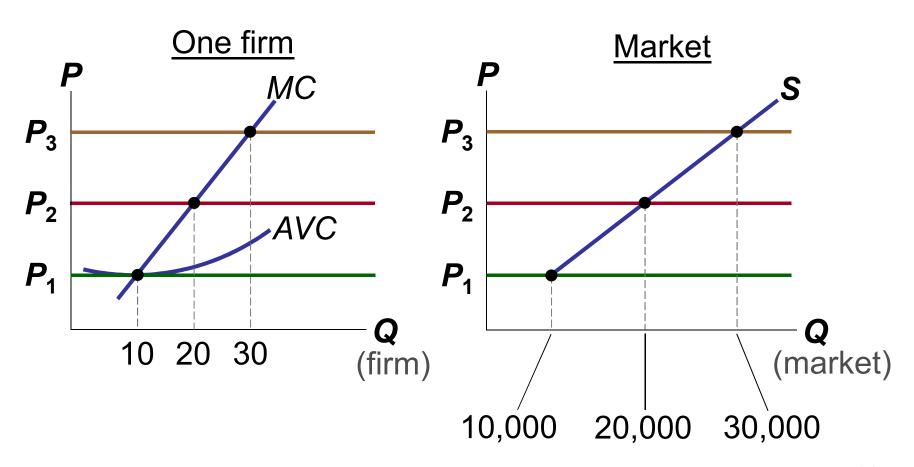
Determine this firm's total loss, assuming *AVC* < \$3.

Identify the area on the graph that represents the firm's loss.

Active learning 3 Answers

Market Supply: Assumptions

- 1) All existing firms and potential entrants have identical costs.
- 2) Each firm's costs do not change as other firms enter or exit the market.
- 3) The number of firms in the market is
 - fixed in the short run (due to fixed costs)
 - variable in the long run (due to free entry and exit)


The SR Market Supply Curve

- As long as P ≥ AVC, each firm will produce its profit-maximizing quantity, where MR = MC.
- Recall from Chapter 4:
 At each price, the market quantity supplied is the sum of quantities supplied by all firms.

The SR Market Supply Curve

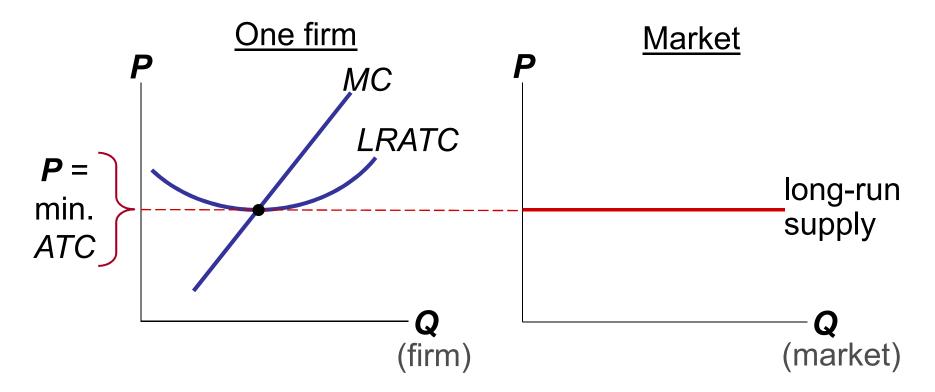
Example: 1000 identical firms

At each P, market $Q^s = 1000 \text{ x}$ (one firm's Q^s)

Entry & Exit in the Long Run

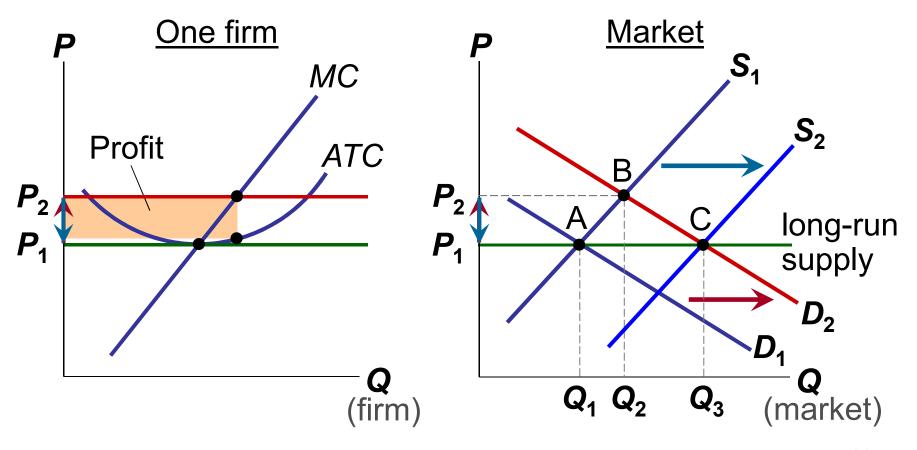
- In the LR, the number of firms can change due to entry & exit.
- If existing firms earn positive economic profit,
 - new firms enter, SR market supply shifts right.
 - P falls, reducing profits and slowing entry.
- If existing firms incur losses,
 - some firms exit, SR market supply shifts left.
 - P rises, reducing remaining firms' losses.

The Zero-Profit Condition


- Long-run equilibrium:
 - The process of entry or exit is complete—remaining firms earn zero economic profit.
- Zero economic profit occurs when P = ATC.
- Since firms produce where P = MR = MC, the zero-profit condition is P = MC = ATC.
- Recall that MC intersects ATC at minimum ATC.
- Hence, in the long run, P = minimum ATC.

Why Do Firms Stay in Business if Profit = 0?

- Recall, economic profit is revenue minus <u>all</u> costs, including implicit costs like the opportunity cost of the owner's time and money.
- In the zero-profit equilibrium,
 - firms earn enough revenue to cover these costs
 - accounting profit is positive


The LR Market Supply Curve

In the long run, the typical firm earns zero profit. The LR market supply curve is horizontal at **P** = minimum *ATC*.

SR & LR Effects of an Increase in Demand

A firm healing inleading 1driving profits to zero duce entry, profits for t and restoring long-run eq'm. 1t, reducing P...

Why the LR Supply Curve Might Slope Upward

- The LR market supply curve is horizontal if
 - 1) all firms have identical costs, and
 - 2) costs do not change as other firms enter or exit the market.
- If either of these assumptions is not true, then LR supply curve slopes upward.

1) Firms Have Different Costs

- As P rises, firms with lower costs enter the market before those with higher costs.
- Further increases in P make it worthwhile for higher-cost firms to enter the market, which increases market quantity supplied.
- Hence, LR market supply curve slopes upward.
- At any *P*,
 - For the marginal firm,
 P = minimum ATC and profit = 0.
 - For lower-cost firms, profit > 0.

2) Costs Rise as Firms Enter the Market

- In some industries, the supply of a key input is limited (e.g., amount of land suitable for farming is fixed).
- The entry of new firms increases demand for this input, causing its price to rise.
- This increases all firms' costs.
- Hence, an increase in P is required to increase the market quantity supplied, so the supply curve is upward-sloping.

CONCLUSION: The Efficiency of a Competitive Market

- Profit-maximization:
 MC = MR
- Perfect competition:
 P = MR
- So, in the competitive eq'm: P = MC
- Recall, MC is cost of producing the marginal unit.
 P is value to buyers of the marginal unit.
- So, the competitive eq'm is efficient, maximizes total surplus.
- In the next chapter, monopoly: pricing and production decisions, deadweight loss, regulation.

Summary

- For a firm in a perfectly competitive market,
 price = marginal revenue = average revenue.
- If P > AVC, a firm maximizes profit by producing the quantity where MR = MC. If P < AVC, a firm will shut down in the short run.
- If P < ATC, a firm will exit in the long run.
- In the short run, entry is not possible, and an increase in demand increases firms' profits.
- With free entry and exit, profits = 0 in the long run, and P = minimum ATC.

Perfect Competition

- Products are Perfect Substitutes
- Result: Price Taking
- P = MR = MC
- SR: Will operate if P > AVC (FC is sunk)
- LR: Will operate at P = ATC
 - Firms enter if P > ATC; exit if P < ATC</p>
- Homework: Mankiw, Ch.14,
 Problem 2, 4, 5, 6, 10, 11