CHAPTER 13

The Costs of Production Econtiples ofics

N．Gregory Mankiw

Premium PowerPoint Slides
by Ron Cronovich
Modified by Joseph Tao－yi Wang

ACTIVELEARNiNG 1
 Brainstorming costs

You run Foxconn Electronics Inc．（鴻海／富士康）．
－List 3 different costs you have．
－List 3 different business decisions that are affected by your costs．
－How would your answers change if you run 台北農產運銷公司 instead？

In this chapter，

 look for the answers to these questions：－What is a production function？What is marginal product？How are they related？
－What are the various costs，and how are they related to each other and to output？
－How are costs different in the short run vs． the long run？
－What are＂economies of scale＂？

Total Revenue，Total Cost，Profit

－We assume that the firm＇s goal is to maximize profit．

Profit $=$ Total revenue - Total cost

Costs：Explicit vs．Implicit

－Explicit costs require an outlay of money， e．g．，paying wages to workers．
－Implicit costs do not require a cash outlay， e．g．，the opportunity cost of the owner＇s time．
－Remember one of the Ten Principles：
The cost of something is what you give up to get it．
－This is true whether the costs are implicit or explicit．Both matter for firms＇decisions．

THE COSTS OF PRODUCTION

Explicit vs．Implicit Costs：An Example
You need \＄1，000，000 to start your business．
The interest rate is 5% ．
－Case 1：borrow \＄1，000，000
－explicit cost＝\＄50，000 interest on loan
－Case 2：use \＄400，000 of your savings， borrow the other \＄600，000
－explicit cost $=\$ 30,000(5 \%)$ interest on the loan
－implicit cost＝\＄20，000（5\％）foregone interest you could have earned on your $\$ 400,000$ ．

In both cases，total（exp＋imp）costs are $\mathbf{\$ 5 0 , 0 0 0}$ ．

Economic Profit vs. Accounting Profit

- Accounting profit
= total revenue minus total explicit costs
- Economic profit
= total revenue minus total costs (including explicit and implicit costs)
- Accounting profit ignores implicit costs, so it's higher than economic profit.

THE COSTS OF PRODUCTION

ACTIVELEARNING 2
 Answers

The rent on office space increases $\$ 5000 /$ month .
a. You rent your office space.

Explicit costs increase $\$ 5000 /$ month.
Accounting profit \& economic profit each fall \$5000/month.
b. You own your office space.

Explicit costs do not change, so accounting profit does not change. Implicit costs increase $\$ 5000 /$ month (opp. cost of using your space instead of renting it), so economic profit falls by $\$ 5000 /$ month.

ACTIVELEARNING 2
 Economic profit vs. accounting profit

The equilibrium rent on office space has just increased by $\$ 5000 /$ month.

Compare the effects on accounting profit and economic profit if
a. you rent your office space
b. you own your office space

The Production Function

- A production function shows the relationship between the quantity of inputs used to produce a good and the quantity of output of that good.
- It can be represented by a table, equation, or graph.
- Example 1:
- Farmer Jack grows vegetables.
- He has 5 acres of land.
- He can hire as many workers as he wants.

Example 1: Farmer Jack's Production Function

Marginal Product

- If Jack hires one more worker, his output rises by the marginal product of labor.
- The marginal product of any input is the increase in output arising from an additional unit of that input, holding all other inputs constant.
- Notation:

$$
\Delta \text { (delta) = "change in..." }
$$

Examples:
$\Delta \boldsymbol{Q}=$ change in output, $\Delta \boldsymbol{L}=$ change in labor

- Marginal product of labor (MPL) $=\frac{\Delta \boldsymbol{Q}}{\Delta \boldsymbol{L}}$

THE COSTS OF PRODUCTION

EXAMPLE 1: Total \& Marginal Product

EXAMPLE 1: MPL = Slope of Prod Function

Why MPL Is Important

- Recall one of the Ten Principles:

Rational people think at the margin.

- When Farmer Jack hires an extra worker,
- his costs rise by the wage he pays the worker
- his output rises by MPL
- Comparing them helps Jack decide whether he would benefit from hiring the worker.

Why MPL Diminishes

- Farmer Jack's output rises by a smaller and smaller amount for each additional worker. Why?
- As Jack adds workers, the average worker has less land to work with and will be less productive.
- In general, MPL diminishes as L rises whether the fixed input is land or capital (equipment, machines, etc.).
- Diminishing marginal product:
the marginal product of an input declines as the quantity of the input increases (other things equal)

THE COSTS OF PRODUCTION

EXAMPLE 1: Farmer Jack's Costs

- Farmer Jack must pay \$10,000 per month for the land, regardless of how much wheat he grows.
- The market wage for a farm worker is $\$ 20,000$ per month.
- So Farmer Jack's costs are related to how much wheat he produces....

EXAMPLE 1: Farmer Jack's Costs

\boldsymbol{L} (no. of workers) of veggie)	\boldsymbol{Q} (bushels land	Cost of Cost of labor	Total Cost	
0	0	$\$ 10,000$	$\$ 0$	$\$ 10,000$
1	1000	$\$ 10,000$	$\$ 20,000$	$\$ 30,000$
2	1800	$\$ 10,000$	$\$ 40,000$	$\$ 50,000$
3	2400	$\$ 10,000$	$\$ 60,000$	$\$ 70,000$
4	2800	$\$ 10,000$	$\$ 80,000$	$\$ 90,000$
5	3000	$\$ 10,000$	$\$ 100,000$	$\$ 110,000$
THE COSTS OF PRODUCTION			17	

EXAMPLE 1: Farmer Jack's Total Cost Curve			
Q (bushels of veggie)	Total Cost		
0	\$10,000		
1000	\$30,000		
1800	\$50,000		
2400	\$70,000		
2800	\$90,000		
3000	\$110,000		
THE COSTS OF PRODUCTION			

Marginal Cost

- Marginal Cost (MC)
is the increase in Total Cost from producing one more unit:

$$
M C=\frac{\Delta T C}{\Delta \boldsymbol{Q}}
$$

EXAMPLE 1: Total and Marginal Cost

\boldsymbol{Q} (bushels of veggie)	Total Cost	Marginal Cost $(M C)$
0 $\$ 10,000$ 1000 $\$ 30,000$ 1800 $\$ 50,000$ 2400 $\$ 70,000$ 2800 $\$ 90,000$ 3000 $\$ 110,000$ $\begin{cases} \\ \Delta \mathbf{T C}=\$ 20,000 & \$ 20.0 \\ \Delta \mathbf{T C}=\$ 20,000 & \$ 25.0 \\ \Delta \mathbf{T C}=\$ 20,000 & \$ 33.3 \\ \Delta \mathbf{T C}=\$ 20,000 & \$ 100.0\end{cases}$		

Why MC Is Important

- Farmer Jack is rational and wants to maximize his profit. To increase profit, should he produce more or less veggie?
- To find the answer, Farmer Jack needs to "think at the margin."
- If the cost of additional veggie (MC) is less than the revenue he would get from selling it, then Jack's profits rise if he produces more.

Fixed and Variable Costs

- Fixed costs (FC) do not vary with the quantity of output produced.
- For Farmer Jack, FC = \$10,000 for his land
- Other examples: cost of equipment, loan payments, rent
- Variable costs (VC) vary with the quantity produced.
- For Farmer Jack, VC = wages he pays workers
- Other example: cost of materials
- Total cost $(T C)=F C+V C$

THE COSTS OF PRODUCTION

EXAMPLE 2

- Our second example is more general, applies to any type of firm
producing any good with any types of inputs.

EXAMPLE 2: Costs

\boldsymbol{Q}	$F C$	$V C$	$T C$
0	$\$ 100$	$\$ 0$	$\$ 100$
1	100	70	170
2	100	120	220
3	100	160	260
4	100	210	310
5	100	280	380
6	100	380	480
7	100	520	620

EXAMPLE 2: Marginal Cost

\boldsymbol{Q}	$T C$	$M C$
0	$\$ 100$	
1	170	$\$ 70$
2	220	50
3	260	40
4	310	50
5	380	70
6	480	100
7	620	140

THE COSTS OF PRODUCTION

EXAMPLE 2: Average Fixed Cost

\boldsymbol{Q}	$F C$	$A F C$
0	$\$ 100$	n / a
1	100	$\$ 100$
2	100	50
3	100	33.33
4	100	25
5	100	20
6	100	16.67
7	100	14.29

EXAMPLE 2: Average Variable Cost

\boldsymbol{Q}	VC	$A V C$
0	$\$ 0$	n / a
1	70	$\$ 70$
2	120	60
3	160	53.33
4	210	52.50
5	280	56.00
6	380	63.33
7	520	74.29

EXAMPLE 2: Average Total Cost

\boldsymbol{Q}	TC	ATC	AFC	AVC
0	$\$ 100$	n / a	n / a	n / a
1	170	$\$ 170$	$\$ 100$	$\$ 70$
2	220	110	50	60
3	260	86.67	33.33	53.33
4	310	77.50	25	52.50
5	380	76	20	56.00
6	480	80	16.67	63.33
7	620	88.57	14.29	74.29

THE COSTS OF PRODUCTION

Average total cost
(ATC) equals total cost divided by the quantity of output:

$$
A T C=T C / Q
$$

Also,

$$
A T C=A F C+A V C
$$

EXAMPLE 2: Average Total Cost

\[

\]

THE COSTS OF PRODUCTION

EXAMPLE 2: The Various Cost Curves Together

[^0]
ACTIVELEARNING 3

Answers
First, deduce $F C=\$ 50$ and use $F C+V C=T C$.

\boldsymbol{Q}	$V C$	$T C$	$A F C$	$A V C$	$A T C$	$M C$
0	$\$ 0$	$\$ 50$	n / a	n / a	n / a	$\$ 10$
1	10	60	$\$ 50.00$	$\$ 10$	$\$ 60.00$	
2	30	80	25.00	15	40.00	20
3	60	110	16.67	20	36.67	30
4	100	150	12.50	25	37.50	40
5	150	200	10.00	30	40.00	50
6	210	260	8.33	35	43.33	60

EXAMPLE 2: Why ATC Is Usually U-Shaped

As \boldsymbol{Q} rises:
Initially,
falling AFC pulls $A T C$ down.

Eventually, rising AVC pulls $A T C$ up.
Efficient scale: The quantity that minimizes ATC.

EXAMPLE 2: ATC and MC

When $M C<A T C$, $A T C$ is falling.
When $M C>A T C$, $A T C$ is rising.

The MC curve crosses the ATC curve at the ATC curve's minimum.

THE COSTS OF PRODUCTION

Costs in the Short Run \& Long Run

- Short run:

Some inputs are fixed (e.g., factories, land).
The costs of these inputs are FC.

- Long run:

All inputs are variable
(e.g., firms can build more factories, or sell existing ones).

- In the long run, $A T C$ at any Q is cost per unit using the most efficient mix of inputs for that \boldsymbol{Q} (e.g., the factory size with the lowest ATC).

THE COSTS OF PRODUCTION

EXAMPLE 3: LRATC with 3 factory Sizes

To produce less than $\boldsymbol{Q}_{\mathrm{A}}$, firm will choose size \mathbf{S} in the long run. To produce between $\boldsymbol{Q}_{\mathrm{A}}$ and $\boldsymbol{Q}_{\mathrm{B}}$, firm will choose size \mathbf{M} in the long run. To produce more than Q_{B}, firm will
 choose size \mathbf{L} in the long run.
THE COSTS OF PRODUCTION

EXAMPLE 3: LRATC with 3 factory Sizes
Firm can choose from 3 factory sizes: S, M, L.
Each size has its own SRATC curve.

The firm can change to a different factory size in the long run, but not in the short run.

Q

A Typical LRATC Curve

In the real world, factories come in many sizes, each with its own SRATC curve.

So a typical LRATC curve looks like this:

THE COSTS OF PRODUCTION

How ATC Changes as

 the Scale of Production ChangesEconomies of scale: ATC falls as \boldsymbol{Q} increases.

Constant returns to scale: ATC stays the same as \boldsymbol{Q} increases.

Diseconomies of scale: $A T C$ rises

as \boldsymbol{Q} increases.

[^1]
How ATC Changes as

the Scale of Production Changes

- Economies of scale occur when increasing production allows greater specialization: workers more efficient when focusing on a narrow task.
- More common when \boldsymbol{Q} is low.
- Diseconomies of scale are due to coordination problems in large organizations.
E.g., management becomes stretched, can't control costs.
- More common when \boldsymbol{Q} is high.

THE COSTS OF PRODUCTION

CONCLUSION

- Costs are critically important to many business decisions, including production, pricing, and hiring.
- This chapter has introduced the various cost concepts.
- The following chapters will show how firms use these concepts to maximize profits in various market structures.

CHAPTER SUMMARY

- The marginal product of labor is the increase in output from a one-unit increase in labor, holding other inputs constant. The marginal products of other inputs are defined similarly.
- Marginal product usually diminishes as the input increases. Thus, as output rises, the production function becomes flatter, and the total cost curve becomes steeper.
- Variable costs vary with output; fixed costs do not.

CHAPTER SUMMARY

- Implicit costs do not involve a cash outlay, yet are just as important as explicit costs to firms' decisions.
- Accounting profit is revenue minus explicit costs. Economic profit is revenue minus total (explicit + implicit) costs.
- The production function shows the relationship between output and inputs.

CHAPTER SUMMARY

- Marginal cost is the increase in total cost from an extra unit of production. The MC curve is usually upward-sloping.
- Average variable cost is variable cost divided by output.
- Average fixed cost is fixed cost divided by output. AFC always falls as output increases.
- Average total cost (sometimes called "cost per unit") is total cost divided by the quantity of output. The ATC curve is usually U-shaped.

CHAPTER SUMMARY

- The MC curve intersects the ATC curve at minimum average total cost. When MC < ATC, ATC falls as \boldsymbol{Q} rises. When MC > ATC, ATC rises as Q rises.
- In the long run, all costs are variable.
- Economies of scale: ATC falls as \boldsymbol{Q} rises. Diseconomies of scale: ATC rises as \boldsymbol{Q} rises. Constant returns to scale: ATC remains constant as \boldsymbol{Q} rises.

The Cost of Production

- Opportunity Cost (Explicit / Implicit)
- Accounting Profit vs. Economic Profit
- Marginal Product
- $\mathrm{MC}, \mathrm{TC}=\mathrm{FC}+\mathrm{VC}, \mathrm{ATC}=\mathrm{AFC}+\mathrm{AVC}$
- Economies of Scale (for LR)
- Homework: Mankiw, Chp. 13,pp. 285-287, Problem 2, 6, 7, 9, 10, 12.

[^0]: THE COSTS OF PRODUCTION

[^1]: THE COSTS OF PRODUCTION

